Some Radius Problem for Certain Families of Analytic Functions

Yaşar Polatoğlu, Metin Bolcal

Abstract

The aim of this paper is to give bounds of the radius of α-convexity for certain families of analytic functions in the unit disc. The radius of α-convexity is generalization of the radius of convexity and the radius of starlikeness, and introduced by S.S.Miller; P.T.Mocanu and M.O.Reade [3,4]

Key Words: Subordination principle, Carathedory functions, Janowski Starlike functions, Starlike functions of order β, The radius of Starlikeness, The radius of convexity, The radius of α-convexity.

1. Introduction

Most radius problems lead to functions $\mathrm{p}(\mathrm{z})$ with positive real part, or some more restrictive condition $\operatorname{Re} p(z)$. Therefore, for our study we shall need the following definitions and the subordination principle.

Subordination Principle: Let $g(z)$ and $f(z)$ be regular and analytic in $D=\{z| |$ $z \mid<1\}$, and let $f(z)$ be univalent there. Let further D_{1} and D_{2} denote the domains onto which the unit circle is mapped by $w=g(z)$ and $w=f(z)$ respectively. If $f(0)=g(0)$ and D_{1} is contained in D_{2} then

$$
\begin{equation*}
g(z)=f(w(z)) \tag{1.1}
\end{equation*}
$$

where $w(z)$ is regular in D and

$$
\begin{equation*}
|w(z)| \leq|z| \tag{1.2}
\end{equation*}
$$

The sign of equality in (1.2) is possible only if the domains D_{1} and D_{2} coincide. If the functions $f(z)$ and $g(z)$ are related by (1.1) we say that $g(z)$ is subordinate to $f(z)$ and we write

$$
\begin{equation*}
g(z) \prec f(z) . \tag{1.3}
\end{equation*}
$$

The Class of Caratheodory Functions

Let $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad$ be regular and analytic in D and satisfies the condition $p(0)=1 \quad$, $\operatorname{Re} p(z)>0$, then this function is Caratheodory functions. The class of these functions is denoted by P. If we use the subordination principle we have

$$
\begin{equation*}
p(z) \in p \quad \text { if and only if } \quad p(z) \prec \frac{1+z}{1-z} \tag{1.4}
\end{equation*}
$$

The Class of Janowski Functions

Let $p(z)=1+b_{1} z+b_{2} z^{2}+\cdots$ be regular and analytic in D and satisfies the condition

$$
\begin{equation*}
p(0)=1, \operatorname{Re} \quad p(z)>0, \quad p(z) \prec \frac{1+A z}{1-B z}, \quad-1<A<1, \quad-1 \leq B<A \tag{1.5}
\end{equation*}
$$

then this functions is called a Janowski function. The class of this functions is denoted by $P(A, B)$

Geometrically, $p(z)$ is in $P(A, B)$ if and only if $p(0)=1$ and $p(D)$ inside the open disc centred on the real axis with diameter end points

$$
p(-1)=\frac{1-A}{1-B} \quad \text { and } \quad p(1)=\frac{1+A}{1+B}
$$

Special selections of A and B lead to familiar sets defined by inequalities under the condition, $\quad p(0)=1, \quad M>\frac{1}{2}, \quad 0 \leq \beta<1$, we have

1) $p(-1,1)=p$ is the set defined by $\operatorname{Re} p(z)>0$ (Caratheodory's Class)
2) $p(1-2 \beta,-1)=p(\beta)$ is the set defined by $\operatorname{Re} p(z)>\beta$
3) $p(1,0)=p(1)$ is the set defined by $|p(z)-1|<1$
4) $p(\beta, 0)=p_{*}(\beta)$ is the set defined by $|p(z)-1|<\beta$
5) $p\left(1, \frac{1}{M}-1\right)=p(M)$ is the set defined by $|p(z)-M|<M$
6) $p(\beta,-\beta)=p_{* *}(\beta)$ is the set defined by $\left|\frac{p(z)-1}{p(z)+1}\right|<\beta$

The Class of Janowski's Starlike Functions

Let $S^{*}(A, B)$ be the class of functions $f(z), \quad f(0)=0, \quad f^{\prime}(0)=1 \quad$ regular in D and satisfying the condition.

$$
\begin{equation*}
f(z) \in S^{*}(A, B) \quad \text { if and only if } \quad z \cdot \frac{f^{\prime}(z)}{f(z)} \in p(A, B) \tag{1.6}
\end{equation*}
$$

Special selections of A and B lead to familiar sets defined by the inequalities under the condition $M>\frac{1}{2}, \quad 0 \leq \beta<1$. We have

1) $S^{*}(1,-1)=S^{*}$ is the class of starlike functions with respect to the origin
2) $S^{*}(1-2 \beta,-1)=S^{*}(\beta)$ is the class of starlike functions of order β
3) $S^{*}(1,-0)=S^{*}(1)$ is the class defined by $\left|z \frac{f^{\prime}(z)}{f(z)}-1\right|<1$,
4) $S^{*}(\beta,-0)=S_{*}^{*}(\beta)$ is the class defined by $\left|z \frac{f^{\prime}(z)}{f(z)}-1\right|<\beta, 0 \leq \beta<1$
5) $S^{*}\left(1, \frac{1}{M}-1\right)=S^{*}(M)$ is the class defined by $\left|z \frac{f^{\prime}(z)}{f(z)}-M\right|<M, M>\frac{1}{2}$
6) $S^{*}(\beta,-\beta)=S_{* *}^{*}(\beta)$ is the class defined by $\left|\frac{z \frac{f^{\prime}(z)}{f(z)}-1}{z \frac{f^{\prime}(z)}{f(z)}+1}\right|<\beta$.

2. The Radius of α-Convexity for the Class $\mathbf{S}^{*}(\mathbf{A}, \mathbf{B})$

In this section we shall give the radius of α-convexity for the class $S^{*}(A, B)$.

Lemma 2.1. Let $p_{1}(z) \in p(A, B)$, then

$$
\begin{equation*}
p_{1}(z)=\frac{(1+A) \quad p(z)+(1-A)}{(1+B) \quad p(z)+(1-B)} \tag{2.1}
\end{equation*}
$$

for some $p(z) \in p$, and conversly. This lemma was proved by Janowski [1].
Lemma 2.2. Let $p_{1}(z) \in p(A, B)$, then

$$
\begin{equation*}
\operatorname{Re} p_{1}(z) \geq \frac{1-A r}{1-B r} \tag{2.2}
\end{equation*}
$$

This lemma was proved by Janowski [1].
Lemma 2.3. Let $p(z) \in p$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z p^{\prime}(z)}{p(z)+\frac{1-A}{1+A}}\right) \geq \frac{-(1+A) r}{(1-r)(1+A r)} \tag{2.3}
\end{equation*}
$$

Proof. Let $p(z) \in p$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z p^{\prime}(z)}{p(z)+\mu}\right) \geq \frac{-2 r}{(1-r)[(1+\gamma)+(1-\gamma) r]} \tag{2.4}
\end{equation*}
$$

where $\operatorname{Re} \mu=\gamma>0$. The inequality (2.4) was proved by S.D.Bernardi [5]. On the other hand

$$
\left\{\begin{array}{l}
-1<A \leq+1 \Longrightarrow 1-A>0,1+A>0 \tag{2.5}\\
\operatorname{Re} \mu=\operatorname{Re}\left(\frac{1-A}{1+A}\right)=\frac{1-A}{1+A}>0
\end{array}\right\} \Longrightarrow \frac{1-A}{1+A}>0 \Longrightarrow \mu=\frac{1-A}{1+A}>0 \Longrightarrow
$$

From the relation (2.4) and (2.5) we have the inequality (2.3). This shows that the lemma is true.

POLATOĞLU, BOLCAL

Theorem 2.1. The radius of α-convexity of the class of $S^{*}(A, B)$ is the unique root of polynomial
$R(A, B, \alpha, r)=(1-r)(1-A r)(1+A r)(1+B r)-\alpha r(1-B r)[(1+A)(1+B r)+(1+B)(1+A r)]$ in the interval (0, 1].

Proof. Let $f(z) \in S^{*}(A, B)$. From the definitions the classes $S^{*}(A, B), p(A, B)$, and Lemma 2.1. we write

$$
\begin{equation*}
z \cdot \frac{f^{\prime}(z)}{f(z)}=p_{1}(z)=\frac{(1+A)}{(1+B)} \quad p(z)+(1-A)+(1-B), \tag{2.6}
\end{equation*}
$$

where $p_{1}(z) \in p(A, B), \quad p(z) \in p$.

If we take the logarithmic derivative from the equality (2.6) we obtain

$$
1+z \cdot \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-z \cdot \frac{f^{\prime}(z)}{f(z)}=\frac{z p^{\prime}(z)}{p(z)+\frac{1-A}{1+A}}+\frac{z p^{\prime}(z)}{p(z)+\frac{1-B}{1+B}}
$$

Therefore, we have

$$
\begin{equation*}
\operatorname{Re}\left[\left(1+z \cdot \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-z \cdot \frac{f^{\prime}(z)}{f(z)}\right]=\operatorname{Re}\left[\frac{z p^{\prime}(z)}{p(z)+\frac{1-A}{1+A}}\right]+\operatorname{Re}\left[\frac{z p^{\prime}(z)}{p(z)+\frac{1-B}{1+B}}\right] \tag{2.7}
\end{equation*}
$$

If we consider the result of lemma 2.3. and the relation (2.7) we obtain

$$
\begin{equation*}
\operatorname{Re}\left[\left(1+z \cdot \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-z \cdot \frac{f^{\prime}(z)}{f(z)}\right] \geq \frac{-r[(1+A)(1+B r)+(1+B)(1+A r)]}{(1-r)(1+B r)(1+A r)} \tag{2.8}
\end{equation*}
$$

On the other hand from the Lemma 2.2. and the equality (2.6) we have

$$
\begin{equation*}
\operatorname{Re} \frac{f^{\prime}(z)}{f(z)} \geq \frac{1-A r}{1-B r} \tag{2.9}
\end{equation*}
$$

POLATOĞLU, BOLCAL

If we multiply both sides inequality (2.8) by $\alpha \quad(0 \leq \alpha \leq 1)$ we get

$$
\begin{equation*}
\operatorname{Re}\left[\alpha\left(1+z \cdot \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-\alpha\left(z \cdot \frac{f^{\prime}(z)}{f(z)}\right)\right] \geq \frac{-\alpha r[(1+A)(1+B r)+(1+B)(1+A r)]}{(1-r)(1+B r)(1+A r)} \tag{2.10}
\end{equation*}
$$

Summing the inequalities (2.9) and (2.10) we obtain that.

$$
\left\{\begin{array}{l}
\operatorname{Re}[J(A, B, \alpha, f(z))]=\operatorname{Re}\left[(1-\alpha) z \frac{f^{\prime}(z)}{f(z)}+\alpha\left(1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right] \tag{2.11}\\
\geq \frac{(1-r)(1-A r)(1+A r)(1+B r)-\alpha r(1-B r)[(1+A)(1+B r)+(1+B)(1+A r)]}{(1-r)(1+A r)(1+B r)(1-B r)}
\end{array}\right.
$$

The inequality (2.11) shows that the theorem is true.
If we give special values to A and B we obtain the radius of α-convexity, the radius of convexity and the radius of starlikeness for the classes. $S^{*}(1,-1), S^{*}(1-$ $2 \beta,-1), S^{*}(1,0), S^{*}(\beta, 0), S^{*}(\beta,-1)$.
(i) For $A=1, B=-1$ we obtain

$$
\operatorname{Re}[J(1,-1, \alpha, f(z))] \geq \frac{(1-r)^{2}-2 \alpha r}{1-r^{2}}
$$

Then

$$
r=(1+\alpha)-\sqrt{(1+\alpha)^{2}-1}
$$

This is the radius of α-convexity for the class of starlike functions. This radius was obtained by S.S.Miller;P.T.Mocanu and M.O.Reade [3].

In this case

For $\alpha=1 \quad$ then we obtain $\quad r=2-\sqrt{3} \quad$ is the radius of convexity for the class of starlike functions. This result is well known.
(ii) For $A=1, B=0 \quad$ we obtain

$$
\operatorname{Re}[J(1,0, \alpha, f(z))] \geq \frac{r^{3}-(\alpha+1) r^{2}-(3 \alpha+1) r+1}{1-r^{2}}
$$

POLATOĞLU, BOLCAL

Now we consider the polynomial.

$$
g(r)=r^{3}-(\alpha+1) r^{2}-(3 \alpha+1) r+1
$$

$g(0)=1>0, \quad g(1)=-4 \alpha<0$. Thus the smallest positive root r_{0} of the equation $g(r)=0 \quad$ lies between 0 and 1 . Thus the inequality

$$
\operatorname{Re}[J(1,0, \alpha, f(z))]>0
$$

is valid for $|z|=r<r_{0}$. Hence the radius of α-convexity for $S^{*}(1,0)$ is not less than r_{0}.
On the other hand if we take $\alpha=0$ in this case we obtain
$g(r)=r^{3}-(\alpha+1) r^{2}-(3 \alpha+1) r+1 \Longrightarrow g_{1}(r)=r^{3}-r^{2}-r+1=(r-1)^{2}(r+1) \Longrightarrow r=1$

This shows that the radius of starlikeness for the class $S^{*}(1,0)$ is $r=1$.
Similarly in this case for $\alpha=1$. The polynomial $g(r)$ reduces to $g_{2}(r)=$ $r^{3}-2 r^{2}-4 r+1$. The polynomial $g_{2}(r)$ satisfies the condition $g_{2}(0)=1>0$ and $g_{2}(1)=-4<0$. Therefore the equation $g_{2}(r)=0$ has a positive real root r_{01} in the interval $(0,1]$, this root is smallest of the roots. Thus the inequality

$$
\operatorname{Re}[J(1,0,1, f(z))]>0
$$

is valid for $|z|=r<r_{01}$. Hence the radius of convexity for $S^{*}(1,0)$ is not less than r_{01} is obtained as follows

$$
\begin{gathered}
0=r^{3}-2 r^{2}-4 r+1 \equiv r^{3}+b r^{2}+c r+d \Longrightarrow b=-2, c=-4, d=1 \\
p=c-\frac{b^{2}}{3}=-\frac{16}{3}, q=d-\frac{1}{3} b c+\frac{2}{27} b^{3}=-\frac{61}{27}, \Delta=-4 p^{3}-27 q^{2}=12668>0
\end{gathered}
$$

. Therefore all root of this equation is real and are distinct. On the other hand

$$
\begin{gathered}
\eta=\sqrt{\frac{-3}{4 p}}=\frac{3}{8}, \operatorname{Cos} 3 \theta=\frac{61}{28}, \quad \theta=\frac{1}{3} \operatorname{ArcCos} \frac{61}{28} \\
r_{1}=\frac{8}{3} \operatorname{Cos}\left(\frac{1}{3} \operatorname{ArcCos} \frac{61}{128}\right)
\end{gathered}
$$

$$
\begin{aligned}
& r_{2}=\frac{8}{3} \operatorname{Cos}\left(\frac{1}{3} \operatorname{ArcCos} \frac{61}{128}+\frac{2 \pi}{3}\right) \\
& r_{3}=\frac{8}{3} \operatorname{Cos}\left(\frac{1}{3} \operatorname{ArcCos} \frac{61}{128}+\frac{4 \pi}{3}\right)
\end{aligned}
$$

(iii) For $A=1-2 \beta, \quad B=1$
$\operatorname{Re}[J(1-2 \alpha,-1, \alpha, f(z))] \geq \frac{(1-2 \beta) r^{3}-\left[(1-2 \beta)^{2}+2 \alpha-2 \alpha \beta\right] r^{2}-(2 \alpha+2 \alpha \beta+1) r+1}{(1-r)(1+(1-2 \beta) r)(1+r)}$
Therefore the polynomial

$$
g_{3}(r)=(1-2 \beta) r^{3}-\left[(1-2 \beta)^{2}+2 \alpha-2 \alpha \beta\right] r^{2}-(2 \alpha+2 \alpha \beta+1) r+1
$$

satisfies the condition $g_{3}(0)=1>0, \quad g_{3}(1)=-2\left(2 \beta^{2}-\alpha \beta+2 \alpha\right)<0$. Thus the smallest positive real root $\quad r_{02}$ of the equation $\quad g_{3}(r)=0 \quad$ lies between 0 and 1 . Thus the inequality

$$
\operatorname{Re}[J(1-2 \alpha,-1, \alpha, f(z))]<0
$$

is valid for $|z|=r<r_{02}$. Hence the radius of α-convexity for $S^{*}(1-2 \beta,-1)$ is not less than r_{02}

In this case.

For $\alpha=\mathbf{0}$;

$$
\operatorname{Re}[J(1-2 \beta,-1,0, f(z))] \geq \frac{(1-2 \beta) r^{3}-(1-2 \beta)^{2} r^{2}-(1+2 \beta) r+1}{(1-r)(1+(1-2 \beta) r)(1+r)}
$$

Thus the polynomial $g_{4}(r)=(1-2 \beta) r^{3}-(1-2 \beta) r^{2}-(1+2 \beta) r+1$ satisfies the condition $g_{4}(0)=1>0, g_{4}(1)=-4 \beta^{2}<0$. Thus the smallest positive real root r_{03} of the equation $g_{4}(r)=0$ lies between 0 and 1 . Thus the inequality

$$
\operatorname{Re}[J(1-2 \beta,-1,0, f(z))]>0
$$

is valid for $|z|=r<r_{03}$. Hence the radius of starlikeness for $S^{*}(1-2 \beta, 1)$ is not less than r_{03}

For $\alpha=\mathbf{1}$;
$\operatorname{Re}[J(1-2 \beta,-1,1, f(z))] \geq \frac{(1-2 \beta) r^{3}-\left((1-2 \beta)^{2}-2 \beta-2\right) r^{2}-(3+2 \beta) r+1}{(1-r)(1+(1-2 \beta) r)(1+r)}$
Thus the polynomial $\quad g_{5}(r)=(1-2 \beta) r^{3}-\left((1-2 \beta)^{2}-2 \beta-2\right) r^{2}-(3+2 \beta) r+1$ satisfies the condition $g_{5}(0)=1>0, g_{5}(1)=-4\left(\beta^{2}+1\right)<0$. Thus the positive smallest r_{04} of the equation $g_{5}(r)=0$ lies between 0 and 1 . Thus the inequality

$$
\operatorname{Re}[J(1-2 \beta,-1,1, f(z))]>0
$$

is valid for $|z|=r<r_{04}$.Hence the radius of convexity for $S^{*}(1-2 \beta,-1)$ is not less than r_{04}

For $\beta=\frac{1}{2}$;

$$
\operatorname{Re}\left[J\left(\frac{1}{2},-1,1, f(z)\right)\right] \geq \frac{\alpha r^{2}-2(\alpha+1)+1}{\left(1-r^{2}\right)} \Longrightarrow r=(1+\alpha)-\sqrt{(1+\alpha)^{2}-\alpha}
$$

is the radius of α-convexity for the class starlike function of order $\frac{1}{2}$.
(iv) \quad For $A=\beta, B=-\beta$;

$$
\operatorname{Re}[J(\beta,-\beta, \alpha, f(z))] \geq \frac{(\beta-\alpha \beta) r^{2}-(2 \alpha+\beta+1) r+1}{1-\beta r}
$$

Thus the radius of α-convexity for the class $S^{*}(\beta,-\beta)$ is

$$
r=\frac{(2 \alpha+\beta+1)-\sqrt{(2 \alpha+\beta+1)^{2}-4 \beta(1-2 \alpha)}}{\beta(1-2 \alpha)}
$$

In this case.

For $\alpha=0 ; r=\frac{2}{\beta}$ is the radius of starlikeness for $S^{*}(\beta,-\beta)$
For $\alpha=1 ; r=\frac{\sqrt{\beta^{2}+10 \beta+9-(3+\beta)}}{\beta}$ is the radius of convexity for the class $S^{*}(\beta,-\beta)$.
(v) \quad For $A=\beta, B=0$;

$$
\operatorname{Re}[J(\beta, 0, \alpha, f(z))] \geq \frac{\beta^{2} r^{3}\left(\beta^{2}+\alpha \beta\right) r^{2}-(\beta \alpha+2 \alpha+1) r+1}{(1-r)(1+\beta r)}
$$

Now we consider the polynomial
$g_{6}(r)=\beta^{2} r^{3}-\left(\beta^{2}-\alpha\right) r^{2}-(1+\alpha+\alpha \beta) r+1, \quad g_{6}(0)=1>0, \quad g_{6}(1)=-\alpha<0$. Thus the smallest positive root r_{05} of the equation $g_{6}(r)=0$ lies between 0 and 1 .

Thus the inequality

$$
\operatorname{Re}[J(\beta, 0, \alpha, f(z))]>0
$$

is valid for $|z|=r<r_{05}$. Hence the radius of α-convexity for $S^{*}(\beta, 0)$ is not less than r_{05}

In this case.

For $\alpha=0$;

$$
\operatorname{Re}[J(\beta, 0,0, f(z))] \geq \frac{\beta^{2} r^{3}-\beta^{2} r^{2}-r+1}{(1-r)(1+\beta r)}
$$

Thus $\beta^{2} r^{3}-\beta^{2} r^{2}-r+1=\left(\beta^{2} r^{2}-1\right)(r-1) \Longrightarrow r=\frac{1}{\beta}$ is the radius of starlikeness. For the class $S^{*}(\beta, 0)$

For $\alpha=1$;

$$
\operatorname{Re}[J(\beta, 0,1, f(z))] \geq \frac{\beta^{2} r^{3}-\left(\beta^{2}+\beta\right) r^{2}-(\beta+3) r+1}{(1-r)(1+\beta r)}
$$

On the other hand the polynomial $g_{7}(r)=\beta^{2} r^{3}-\left(\beta^{2}-\beta\right) r^{2}-(2+\beta) r+1$ satisfies the condition $g_{7}(0)=1>0, g_{7}(1)=-2(\beta+1)<0$. Thus the positive smallest root r_{06} of the equation $g_{7}(r)=0$ lies between 0 and 1 .

Thus the inequality

$$
\operatorname{Re}[J(\beta, 0,1, f(z))]>0
$$

is valid for $|z|=r<r_{06}$. Thus the radius of convexity for $S^{*}(\beta, 0)$ is not less than r_{06}.
(vi) For $A=1, B=1-\frac{1}{M} \quad\left(M=1-\frac{1}{M}\right) ;$

$$
\begin{gathered}
\operatorname{Re}\left[J\left(1,\left(1-\frac{1}{M}\right), \alpha, f(z)\right)\right] \geq \\
\frac{(1-r)^{2}(1+r)(1+M r)-\alpha r(1-M r)[2(1+M r)+(1+M)(1+r)]}{\left(1-r^{2}\right)\left(1-M^{2} r^{2}\right)}
\end{gathered}
$$

Now we consider the polynomial

$$
g_{8}(r)=(1-r)^{2}(1+r)(1+M r)-\alpha r(1-M r)[2(1+M r)+(1+M)(1+r)]
$$

$g_{8}(0)=1, g_{8}(1)=-4 \alpha(1-M)(1+M)<0$. Thus the positive smallest root r_{07} of the equation $g_{8}(r)=0$ lies between 0 and 1 . Thus the inequality.

$$
\operatorname{Re}[J(1, M, \alpha, f(z))]>0
$$

is valid for $|z|=r<r_{07}$. Thus the radius of α-convexity for $S^{*}\left(1,\left(1-\frac{1}{M}\right)\right)$ is not less than r_{07}.

In this case.

For $\alpha=0$;

$$
\operatorname{Re}[J(1, M, 0, f(z))] \geq \frac{1-r}{1+M r}
$$

This shows that the radius of starlikeness for the class $S^{*}(1, M)$ is $r=1$. This radius was obtained by Janowski [7].

For $\alpha=1$;
$\operatorname{Re}[J(1, M, 1, f(z))] \geq \frac{(1-r)^{2}(1+r)(1+M r)-r(1-M r)[2(1+M r)+(1+M)(1+r)]}{\left(1-r^{2}\right)\left(1-M^{2} r^{2}\right)}$
Thus the polynomial

$$
g_{9}(r)=(1-r)^{2}(1+r)(1+M r)-r(1-M r)[2(1+M r)+(1+M)(1+r)]
$$

$g_{9}(0)=1>0, g_{9}(1)=-4(1-M)(1+M)<0$.Thus the positive smallest root r_{08} of the equation $g_{9}(r)=0 \quad$ lies between 0 and 1 . Thus the inequality.

$$
\operatorname{Re}[J(1, M, 1, f(z))]>0
$$

is valid for $|z|=r<r_{08}$. Thus the radius of convexity for $S^{*}(1, M)$ is not less than r_{08}.

References

[1] Hassan. S. Al. Amiri, On the radius of β - Convexity of starlike functions of order α. Proo. Amer. Math. Soc. 39 (1973), 101-109.

POLATOĞLU, BOLCAL

[2] S. K. BaJpai: On regions of α-Convexity for starlike functions.
[3] S. S. Miller, P. T. Mocanu and M. O. Reade Bozilevic functions and generalized Convexity. Rev. Roum de Math. Pures at Appl. 16, (1971), 1541-1544.
[4] S. S. Miller, P. T. Mocanu and M. O. Reade. On generalized Convexity in Conformal mapping II. Rev. Roum. Math. Pures. Et Appl. Tome XXI. No. 2 219-225 (1976).
[5] S. D. Bernardi. New distorsion theorems for functions of positive real parts and appli- cation to the partial sum of univalent convex functions. Proc. of Amer. Math. Soc. 34, (1974), 113-118.
[6] W. Janowski. Extremal problems for a family of functions with positive real part and some related families. Ann. Polon. Math. 23, (1970) 159-177.
[7] W. Janowski. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 28, (1973). 297-326.
[8] Y. Polatoğlu. The radius of α-convexity for the class of λ - spirallike functions. Revue. Roum. Math. Pures et Appl. 34. (1989) 263-267.

Yaşar POLATOĞLU, Metin BOLCAL
Received 01.05.2000
İstanbul Kültür University
Department of Mathematic of
Faculty of Science and Arts of
34540 Şirinevler, İstanbul-TURKEY
e-mail: bolcal@iku.edu.tr

