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Abstract

The aim of this paper is to give bounds of the radius of α-convexity for certain

families of analytic functions in the unit disc. The radius of α-convexity is general-

ization of the radius of convexity and the radius of starlikeness, and introduced by

S.S.Miller; P.T.Mocanu and M.O.Reade [3,4]
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1. Introduction

Most radius problems lead to functions p(z) with positive real part, or some more

restrictive condition Re p(z). Therefore, for our study we shall need the following

definitions and the subordination principle.

Subordination Principle: Let g(z) and f(z) be regular and analytic in D = {z
∣∣∣∣ |

z |< 1}, and let f(z) be univalent there. Let further D1 and D2 denote the domains onto

which the unit circle is mapped by w = g(z) and w = f(z) respectively. If f(0) = g(0)

and D1 is contained in D2 then

g(z) = f(w(z)), (1.1)

401
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where w(z) is regular in D and

|w(z)| ≤ |z|. (1.2)

The sign of equality in (1.2) is possible only if the domains D1 and D2 coincide. If the

functions f(z) and g(z) are related by (1.1) we say that g(z) is subordinate to f(z) and

we write

g(z) ≺ f(z). (1.3)

The Class of Caratheodory Functions

Let p(z) = 1 + p1z + p2z
2 + · · · be regular and analytic in D and satisfies the

condition p(0) = 1 , Re p(z) > 0, then this function is Caratheodory functions. The

class of these functions is denoted by P . If we use the subordination principle we have

p(z) ∈ p if and only if p(z) ≺ 1 + z

1− z . (1.4)

The Class of Janowski Functions

Let p(z) = 1+b1z+b2z
2 + · · · be regular and analytic in D and satisfies the condition

p(0) = 1,Re p(z) > 0, p(z) ≺ 1 +Az

1− Bz , −1 < A < 1, −1 ≤ B < A (1.5)

then this functions is called a Janowski function. The class of this functions is denoted

by P (A,B)

Geometrically, p(z) is in P (A,B) if and only if p(0) = 1 and p(D) inside the open

disc centred on the real axis with diameter end points

p(−1) =
1−A
1− B and p(1) =

1 + A

1 +B
.

Special selections of A and B lead to familiar sets defined by inequalities under the

condition, p(0) = 1, M > 1
2 , 0 ≤ β < 1 , we have

1) p(−1, 1) = p is the set defined by Re p(z) > 0 (Caratheodory’s Class)

2) p(1− 2β,−1) = p(β) is the set defined by Re p(z) > β

3) p(1, 0) = p(1) is the set defined by |p(z)− 1| < 1
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4) p(β, 0) = p∗(β) is the set defined by |p(z)− 1| < β

5) p(1, 1
M − 1) = p(M) is the set defined by |p(z)−M | < M

6) p(β,−β) = p∗∗(β) is the set defined by

∣∣∣∣∣∣∣ p(z)−1
p(z)+1

∣∣∣∣∣∣∣ < β

The Class of Janowski’s Starlike Functions

Let S∗(A,B) be the class of functions f(z), f(0) = 0, f
′
(0) = 1 regular in D

and satisfying the condition.

f(z) ∈ S∗(A,B) if and only if z.
f
′
(z)

f(z)
∈ p(A,B). (1.6)

Special selections of A and B lead to familiar sets defined by the inequalities under

the condition M > 1
2 , 0 ≤ β < 1. We have

1) S∗(1,−1) = S∗ is the class of starlike functions with respect to the origin
2) S∗(1− 2β,−1) = S∗(β) is the class of starlike functions of order β

3) S∗(1,−0) = S∗(1) is the class defined by

∣∣∣∣∣∣∣z f
′
(z)

f(z) − 1

∣∣∣∣∣∣∣ < 1,

4) S∗(β,−0) = S∗∗ (β) is the class defined by

∣∣∣∣∣∣∣z f
′
(z)

f(z)
− 1

∣∣∣∣∣∣∣ < β, 0 ≤ β < 1

5) S∗(1, 1
M − 1) = S∗(M) is the class defined by

∣∣∣∣∣∣∣z f
′
(z)

f(z) −M

∣∣∣∣∣∣∣ <M , M > 1
2

6) S∗(β,−β) = S∗∗∗(β) is the class defined by

∣∣∣∣∣∣∣
z f
′
(z)

f(z) −1

z f
′ (z)
f(z) +1

∣∣∣∣∣∣∣ < β.

2. The Radius of α-Convexity for the Class S∗(A,B)

In this section we shall give the radius of α-convexity for the class S∗(A,B).
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Lemma 2.1. Let p1(z) ∈ p(A,B), then

p1(z) =
(1 + A) p(z) + (1−A)
(1 +B) p(z) + (1−B)

(2.1)

for some p(z) ∈ p, and conversly. This lemma was proved by Janowski [1].

Lemma 2.2. Let p1(z) ∈ p(A,B), then

Re p1(z) ≥ 1− Ar
1− Br (2.2)

This lemma was proved by Janowski [1].

Lemma 2.3. Let p(z) ∈ p, then

Re

 z p
′
(z)

p(z) + 1−A
1+A

 ≥ −(1 + A)r
(1− r)(1 +Ar)

(2.3)

Proof. Let p(z) ∈ p, then

Re

 zp
′
(z)

p(z) + µ

 ≥ −2r
(1− r)[(1 + γ) + (1− γ)r]

, (2.4)

where Re µ = γ > 0. The inequality (2.4) was proved by S.D.Bernardi [5]. On the other

hand
−1 < A ≤ +1 =⇒ 1− A > 0 , 1 + A > 0

 =⇒ 1−A
1 +A

> 0 =⇒ µ =
1−A
1 +A

> 0 =⇒

Re µ = Re
(

1−A
1 +A

)
=

1− A
1 + A

> 0

(2.5)

From the relation (2.4) and (2.5) we have the inequality (2.3). This shows that the lemma

is true. 2
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Theorem 2.1. The radius of α-convexity of the class of S∗(A,B) is the unique root

of polynomial

R(A,B, α, r) = (1−r)(1−Ar)(1+Ar)(1+Br)−αr(1−Br)
[

(1+A)(1+Br)+(1+B)(1+Ar)
]

in the interval (0, 1].

Proof. Let f(z) ∈ S∗(A,B) . From the definitions the classes S∗(A,B) , p(A,B), and

Lemma 2.1. we write

z.
f
′
(z)

f(z)
= p1(z) =

(1 + A) p(z) + (1−A)
(1 +B) p(z) + (1−B)

, (2.6)

where p1(z) ∈ p(A,B), p(z) ∈ p. 2

If we take the logarithmic derivative from the equality (2.6) we obtain

1 + z.
f
′′
(z)

f ′ (z)
− z. f

′
(z)

f(z)
=

zp
′
(z)

p(z) + 1−A
1+A

+
zp
′
(z)

p(z) + 1−B
1+B

.

Therefore, we have

Re


1 + z.

f
′′
(z)

f
′(z)

− z. f ′ (z)
f(z)

 = Re

 zp
′
(z)

p(z) + 1−A
1+A

+ Re

 zp
′
(z)

p(z) + 1−B
1+B

. (2.7)

If we consider the result of lemma 2.3. and the relation (2.7) we obtain

Re


1 + z.

f
′′
(z)

f
′ (z)

− z. f ′(z)
f(z)

 ≥ −r[(1 +A)(1 +Br) + (1 +B)(1 +Ar)]
(1− r)(1 +Br)(1 + Ar)

(2.8)

On the other hand from the Lemma 2.2. and the equality (2.6) we have

Re
f
′
(z)

f(z)
≥ 1− Ar

1−Br (2.9)
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If we multiply both sides inequality (2.8) by α (0 ≤ α ≤ 1) we get

Re

α
1 + z.

f
′′
(z)

f ′ (z)

− α
z. f ′(z)

f(z)


 ≥ −αr[(1 +A)(1 +Br) + (1 +B)(1 +Ar)]

(1− r)(1 +Br)(1 +Ar)

(2.10)

Summing the inequalities (2.9) and (2.10) we obtain that.
Re[J(A,B, α, f(z))] = Re

(1− α)z f
′
(z)

f(z) + α

1 + z f
′′

(z)

f
′
(z)




≥ (1−r)(1−Ar)(1+Ar)(1+Br)−αr(1−Br)[(1+A)(1+Br)+(1+B)(1+Ar)]
(1−r)(1+Ar)(1+Br)(1−Br)

(2.11)

The inequality (2.11) shows that the theorem is true.

If we give special values to A and B we obtain the radius of α-convexity, the

radius of convexity and the radius of starlikeness for the classes. S∗(1,−1), S∗(1 −
2β,−1), S∗(1, 0), S∗(β, 0), S∗(β,−1).

(i) For A = 1, B = −1 we obtain

Re [J(1,−1, α, f(z))] ≥ (1− r)2 − 2αr
1− r2

Then

r = (1 + α)−
√

(1 + α)2 − 1

This is the radius of α-convexity for the class of starlike functions. This radius was

obtained by S.S.Miller;P.T.Mocanu and M.O.Reade [3].

In this case

For α = 1 then we obtain r = 2−
√

3 is the radius of convexity for the class of

starlike functions. This result is well known.

(ii) For A = 1, B = 0 we obtain

Re [J(1, 0, α, f(z))]≥ r3 − (α+ 1)r2 − (3α+ 1)r + 1
1− r2
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Now we consider the polynomial.

g(r) = r3 − (α+ 1)r2 − (3α+ 1)r + 1

g(0) = 1 > 0, g(1) = −4α < 0. Thus the smallest positive root r0 of the equation

g(r) = 0 lies between 0 and 1. Thus the inequality

Re [J(1, 0, α, f(z))] > 0

is valid for |z| = r < r0. Hence the radius of α-convexity for S∗(1, 0) is not less than r0.

On the other hand if we take α = 0 in this case we obtain

g(r) = r3−(α+1)r2−(3α+1)r+1 =⇒ g1(r) = r3−r2−r+1 = (r−1)2(r+1) =⇒ r = 1

This shows that the radius of starlikeness for the class S∗(1, 0) is r = 1.

Similarly in this case for α = 1 . The polynomial g(r) reduces to g2(r) =

r3 − 2r2 − 4r + 1. The polynomial g2(r) satisfies the condition g2(0) = 1 > 0 and

g2(1) = −4 < 0. Therefore the equation g2(r) = 0 has a positive real root r01 in the

interval (0, 1], this root is smallest of the roots. Thus the inequality

Re [J(1, 0, 1, f(z))] > 0

is valid for |z| = r < r01 . Hence the radius of convexity for S∗(1, 0) is not less than r01

is obtained as follows

0 = r3 − 2r2 − 4r + 1 ≡ r3 + br2 + cr + d =⇒ b = −2, c = −4, d = 1

p = c− b2

3
= −16

3
, q = d− 1

3
bc+

2
27
b3 = −61

27
,∆ = −4p3 − 27q2 = 12668 > 0

. Therefore all root of this equation is real and are distinct. On the other hand

η =
√
−3
4p

=
3
8
, Cos3θ =

61
28
, θ =

1
3
ArcCos

61
28

r1 =
8
3
Cos

(
1
3
ArcCos

61
128

)
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r2 =
8
3
Cos

(
1
3
ArcCos

61
128

+
2π
3

)

r3 =
8
3
Cos

(
1
3
ArcCos

61
128

+
4π
3

)
(iii) For A = 1− 2β, B = 1

Re [J(1−2α,−1, α, f(z))] ≥
(1− 2β)r3 −

[
(1− 2β)2 + 2α− 2αβ

]
r2 − (2α+ 2αβ + 1)r + 1

(1− r)(1 + (1 − 2β)r)(1 + r)

Therefore the polynomial

g3(r) = (1− 2β)r3 −
[
(1− 2β)2 + 2α− 2αβ

]
r2 − (2α+ 2αβ + 1)r + 1

satisfies the condition g3(0) = 1 > 0, g3(1) = −2
(

2β2 − αβ + 2α
)
< 0. Thus the

smallest positive real root r02 of the equation g3(r) = 0 lies between 0 and 1.

Thus the inequality

Re [J(1− 2α,−1, α, f(z))] < 0

is valid for |z| = r < r02. Hence the radius of α-convexity for S∗(1 − 2β,−1) is not less

than r02

In this case.

For α = 0;

Re [J(1− 2β,−1, 0, f(z))] ≥ (1− 2β)r3 − (1 − 2β)2r2 − (1 + 2β)r + 1
(1− r)(1 + (1− 2β)r)(1 + r)

Thus the polynomial g4(r) = (1−2β)r3−(1−2β)r2−(1+2β)r+1 satisfies the condition

g4(0) = 1 > 0, g4(1) = −4β2 < 0. Thus the smallest positive real root r03 of the equation

g4(r) = 0 lies between 0 and 1. Thus the inequality

Re [J(1− 2β,−1, 0, f(z))] > 0

is valid for |z| = r < r03 . Hence the radius of starlikeness for S∗(1 − 2β, 1) is not less

than r03
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For α = 1;

Re [J(1− 2β,−1, 1, f(z))] ≥ (1− 2β)r3 − ((1− 2β)2 − 2β − 2)r2 − (3 + 2β)r + 1
(1− r)(1 + (1− 2β)r)(1 + r)

Thus the polynomial g5(r) = (1−2β)r3−
(

(1−2β)2−2β−2
)
r2−(3+2β)r+1 satisfies

the condition g5(0) = 1 > 0, g5(1) = −4
(
β2 + 1

)
< 0. Thus the positive smallest r04 of

the equation g5(r) = 0 lies between 0 and 1. Thus the inequality

Re [J(1− 2β,−1, 1, f(z))] > 0

is valid for |z| = r < r04 .Hence the radius of convexity for S∗(1−2β,−1) is not less than

r04

For β = 1
2
;

Re [J(
1
2
,−1, 1, f(z))] ≥ αr2 − 2(α+ 1) + 1

(1− r2)
=⇒ r = (1 + α)−

√
(1 + α)2 − α

is the radius of α-convexity for the class starlike function of order 1
2 .

(iv) For A = β, B = −β ;

Re [J(β,−β, α, f(z))] ≥ (β − αβ)r2 − (2α+ β + 1)r + 1
1− βr

Thus the radius of α-convexity for the class S∗(β,−β) is

r =
(2α+ β + 1)−

√
(2α+ β + 1)2 − 4β(1− 2α)
β(1 − 2α)

In this case.

For α = 0; r = 2
β is the radius of starlikeness for S∗(β,−β)

For α = 1; r =
√
β2+10β+9−(3+β)

β is the radius of convexity for the class S∗(β,−β) .

(v) For A = β, B = 0;

Re [J(β, 0, α, f(z))] ≥ β2r3(β2 + αβ)r2 − (βα + 2α+ 1)r + 1
(1− r)(1 + βr)
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Now we consider the polynomial

g6(r) = β2r3−
(
β2−α

)
r2− (1 +α+αβ)r+1, g6(0) = 1 > 0, g6(1) = −α < 0. Thus

the smallest positive root r05 of the equation g6(r) = 0 lies between 0 and 1.

Thus the inequality

Re [J(β, 0, α, f(z))] > 0

is valid for |z| = r < r05 . Hence the radius of α-convexity for S∗(β, 0) is not less than

r05

In this case.

For α = 0;

Re [J(β, 0, 0, f(z))] ≥ β2r3 − β2r2 − r + 1
(1− r)(1 + βr)

Thus β2r3 − β2r2 − r + 1 =
(
β2r2 − 1

)
(r − 1) =⇒ r = 1

β is the radius of starlikeness.

For the class S∗(β, 0)

For α = 1;

Re [J(β, 0, 1, f(z))] ≥ β2r3 − (β2 + β)r2 − (β + 3)r + 1
(1− r)(1 + βr)

On the other hand the polynomial g7(r) = β2r3 − (β2 − β)r2 − (2 + β)r + 1 satisfies the

condition g7(0) = 1 > 0, g7(1) = −2(β + 1) < 0. Thus the positive smallest root r06 of

the equation g7(r) = 0 lies between 0 and 1.

Thus the inequality

Re [J(β, 0, 1, f(z))] > 0

is valid for |z| = r < r06. Thus the radius of convexity for S∗(β, 0) is not less than r06.

(vi) For A = 1, B = 1− 1
M

(
M = 1− 1

M

)
;

Re

J(1, (1− 1
M

), α, f(z)
) ≥

(1− r)2(1 + r)(1 + Mr)− αr(1−Mr)[2(1 +Mr) + (1 +M)(1 + r)]
(1− r2)(1−M2r2)
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Now we consider the polynomial

g8(r) = (1− r)2(1 + r)(1 +Mr) − αr(1−Mr)[2(1 + Mr) + (1 +M)(1 + r)]

g8(0) = 1, g8(1) = −4α(1−M)(1 + M) < 0. Thus the positive smallest root r07 of the

equation g8(r) = 0 lies between 0 and 1. Thus the inequality.

Re [J(1,M, α, f(z))] > 0

is valid for |z| = r < r07. Thus the radius of α -convexity for S∗
(

1, (1− 1
M

)
)

is not less

than r07.

In this case.

For α = 0 ;

Re [J(1,M, 0, f(z))] ≥ 1− r
1 +Mr

This shows that the radius of starlikeness for the class S∗(1,M) is r = 1. This radius

was obtained by Janowski [7].

For α = 1;

Re[J(1,M, 1, f(z))] ≥ (1− r)2(1 + r)(1 +Mr) − r(1−Mr)[2(1 +Mr) + (1 +M)(1 + r)]
(1− r2)(1 −M2r2)

Thus the polynomial

g9(r) = (1− r)2(1 + r)(1 + Mr)− r(1−Mr)[2(1 + Mr) + (1 +M)(1 + r)]

g9(0) = 1 > 0, g9(1) = −4(1−M)(1 +M) < 0.Thus the positive smallest root r08 of the

equation g9(r) = 0 lies between 0 and 1. Thus the inequality.

Re[J(1,M, 1, f(z))] > 0

is valid for |z| = r < r08. Thus the radius of convexity for S∗(1,M) is not less than r08.
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