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G-bundles on Abelian surfaces, hyperkähler manifolds,
and stringy Hodge numbers.

Jim Bryan, Ron Donagi, Naichung Conan Leung

1. Results and the motivating examples.

Recent advances in certain string theories have inspired a resurgence of interest in the
moduli space of G-bundles on elliptic curves [14] [15] [16] [17] [18] [36]. In these studies,
care has been taken to develop methods that apply to arbitrary G and that are well
suited to families of elliptic curves—the situation of physical interest is principal bundles
on elliptic fibrations with structure group contained in E8 ×E8.

In this paper we study flat G-bundles on an Abelian surface A. We are primarily
interested in the geometry of MG(A), the coarse moduli space, and so we will not address
the existence of a universal family or the variation of MG(A) in families. This affords us
the opportunity to keep the discussion of MG(A) very concrete and elementary; we have
strived to give the paper some expository value in addition to reporting our findings.

Before we begin, we summarize our results in the following theorem, deferring defini-
tions, explanations, and details to the rest of the paper.

Theorem 1.1. Let G be a compact, simple, simply connected Lie group. Let MG(A) be
the moduli space of flat G bundles on an Abelian surface A. Then

1. MG(A) has a hyperkähler resolution if and only if G is SU(n) or Sp(n) (Theo-
rem 3.5);

2. In these cases, the resolution is realized as a certain moduli space of G-bundles,
namely the moduli space of Mukai-stable (see Definition 5.2) GC-bundles (Theo-
rems 5.3 and 5.4).

3. The stringy Hodge numbers of MSU(n)(A) and MSp(n)(A) coincide with the ordinary
Hodge numbers of their corresponding hyperkähler resolutions (Theorems 4.2 and
4.3).

1.1. Notation

Fix A to be a principally polarized Abelian surface (we do this primarily for convenience
—our results can be adapted to any complex torus of dimension 2 without much trouble)
and fix E to be an elliptic curve. We choose origins p0 ∈ A and p0 ∈ E. We will freely
identify A and E with their duals A∨ and E∨ (using the polarizations). Let G be a
compact, simple, simply connected, connected Lie group (e.g. SU(n) or Sp(n)). Let GC
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be the complexification of G (e.g. SL(n, C) or Sp(n, C)), let r be the rank of G, and let
W be its Weyl group.

1.2. Questions.

Let MG(A) (respectively MG(E)) denote the moduli space of flat G connections on
A (respectively E). Equivalently, MG(A) (respectively MG(E)) is the (coarse) moduli
space of s-equivalence classes of semi-stable holomorphic GC-bundles on A (respectively
E) with trivial Chern classes.

In contrast to MG(E), MG(A) is not in general connected. We denote by M0
G(A)

the component containing the trivial connection. This component can be described as a
quotient of an r-fold product of A by an action of the Weyl group

M0
G(A) ∼= Ar/W.

The action of W preserves the natural holomorphic symplectic form on Ar and so M0
G(A)

has a holomorphic symplectic form on the open dense locus of W orbits with trivial
stabilizer (see Sections 2 and 3 for the details of these assertions).

The questions that motivated this work are:

Question 1.1. Does M0
G(A) have a smooth resolution M̃0

G(A) to which the holomorphic
symplectic form extends? Such a resolution would admit a hyperkähler metric.

Question 1.2. If M̃0
G(A) exists, can it be realized as a moduli space for some moduli

problem related to GC-bundles on A?

Question 1.3. How are the Hodge numbers of the desingularization M̃0
G(A) (if it exists)

encoded in the action of W on Ar?

The answer to the first two questions is “yes” in the case when G is Sp(n) or SU(n). In
these cases, M0

G(A) = MG(A) and the hyperkähler manifolds obtained are exactly the two
known families of irreducible hyperkähler manifolds. M̃Sp(n)(A) is Hilbn(X), the Hilbert
scheme of n points on X, the Kummer K3 surface associated to A. M̃SU(n)(A) is KAn−1,
the so called generalized Kummer variety which is the fiber of the map Hilbn(A) → A
given by summing the points using the group law of A. We realize these resolutions as
the moduli spaces of “Mukai-stable” GC-bundles (see Definition 5.2).

A framework for answering the third question is nicely provided by the “stringy Hodge
numbers”. These can be computed purely from the group theory that defines the action
of W on Ar. In the case of Sp(n) and SU(n) we prove that they give exactly the Hodge
numbers of the resolution1.

1After this paper was written, we learned that this result (and, in fact, Conjecture 4.1) follows from
general results of Batyrev [2] and Denef-Loeser [11]. In light of this, one can view our computation,

combined with the results in [2] or [11], as giving a new computation of the Hodge numbers of the Hilbert
scheme of points on K3. The first computation of these numbers is due to Göttsche [22].
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1.3. The case of SU(n)

Since the case of SU(n) was one of the motivating examples, we describe it in more
detail. The rank of SU(n) is n− 1 and we have

An−1 ↪→ An

as the set of points (x1, . . . , xn) with
∑

xi = 0. The Weyl group W is the symmetric
group Sn and its action on An−1 is the restriction of the natural action on An. The
identification

MSU(n)(A) ∼= An−1/Sn

is easy to understand in concrete terms. Points of MSU(n)(A) naturally correspond to
s-equivalence classes of holomorphic semi-stable SLn bundles with trivial Chern classes,
that is bundles E → A with c1(E) = c2(E) = 0 and an isomorphism det E ∼= OA. In this
case, every semi-stable bundle is strictly semi-stable and E can be decomposed (up to
s-equivalence) into a sum of flat line bundles:

E ∼= Lx1 ⊕ · · · ⊕ Lxn

where Lx is the line bundle corresponding to x ∈ A ∼= Pic0 A. This decomposition is
unique up to s-equivalence and reordering the factors. The condition that det E ∼= O
imposes the condition

∑
xi = 0.

The singular points of MSU(n)(A) occur on the Sn-orbits with a non-trivial stabilizer.
This occurs when two or more of the line bundles in the above description coinciding.
When this happens, s-equivalence is rather brutal. It identifies many non-isomorphic
bundles to a single moduli point. To illustrate, consider SL(2, C) bundles on A. The
moduli space is

MSU(2)(A) ∼= A/± 1

where the orbit {x,−x} corresponds to the bundle Lx ⊕ L−x = Lx ⊕ L−1
x . The singular

points occur for the sixteen two torsion points of A where x = −x. For a two torsion
point τ , the moduli point {τ, τ} ∈ A/± 1 corresponds to the s-equivalence class of

Lτ ⊗ (O ⊕O).

For any non-trivial extension

0→ O → E → O → 0

the bundle Lτ ⊗ E is s-equivalent to Lτ ⊗ (O ⊕ O). The natural parameter space for
isomorphism classes of non-trivial extensions of O by O is

P(Ext1(O,O)) ∼= P(H1(A,O)) ∼= P1.

This suggests that if one could find a way to “destabilize” Lτ ⊗ (O ⊕ O) and remove it
from the moduli problem, then the corresponding moduli space should replace each of
the sixteen double points of MSU(2)(A) with P1’s. Of course, if we blow up A/ ± 1 at
the sixteen double points, we obtain X, the Kummer K3 surface which is a solution to
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Question 1.1 in this case. The above discussion also suggests a strategy for constructing
S as a moduli space in order to answer Question 1.2. Following a suggestion of Aaron
Bertram (that goes back to ideas of Mukai), we carry this out for G equal to SU(n) or
Sp(n) in Section 5. In that section we define a new notion of stability (Mukai stability).
The moduli space of Mukai stable bundles is then related to the Hilbert scheme of points
on the dual Abelian surface via the Fourier-Mukai transform. Functorial properties of the
Fourier-Mukai transform allow us to carefully analyze the condition that a bundle has a
symplectic structure (the Sp(n) case) where many subtleties occur.

1.4. The general case

Unfortunately, this program does not succeed in producing new examples of compact
hyperkähler manifolds. We prove that MG(A) admits no hyperkähler resolution (in fact,
no crepant resolution) for G not SU(n) or Sp(n) (Theorem 3.5). This situation has an
analogue for the moduli space MG(E) of bundles on the elliptic curve E. In [37], Looijenga
proves that MG(E) is a weighted projective space. The weighted projective space is
smooth if and only if G is SU(n) or Sp(n). As we will explain, the same mechanism that
causes MG(E) to fail smoothness, causes MG(A) to not admit a crepant resolution. This
analogy continues to hold when we replace E with C and A with C2 : Chevalley’s theorem
asserts that Cr/W is always smooth; a recently announced result of Bezrukavnikov-
Ginzburg claims that C2r/W always admits a holomorphic symplectic resolution. Thus
the failure of MG(A) (G 6= SU(n) or Sp(n)) to admit a holomorphic symplectic resolution
has to do with global properties of A (like torsion points). We discuss this analogy and
these results further in Section 3.

1.5. Stringy Hodge numbers

When a Calabi-Yau manifold X is acted on by a finite group H preserving the holo-
morphic volume form, Batyrev and Dais (based on ideas of the physicists Vafa [50] and
Zaslow [53]) define “stringy Hodge numbers” hp,qst (X, H) [3]. In particular, if X is holo-
morphic symplectic (e.g. Ar) and the action of H preserves the symplectic form (e.g. W
acting on Ar), then the numbers hp,qst (X, H) are well defined. The stringy Hodge numbers
are conjectured2 to coincide with the ordinary Hodge numbers of a crepant resolution of
X/H , if it exists (see Conjecture 4.1). This conjecture is part of the generalized McKay
correspondence.

The situations where this conjecture has been tested are somewhat limited. It has
been verified for dimX ≤ 3, and for H Abelian. Since the (ordinary) Hodge numbers
of the resolutions of MSU(n)(A) and MSp(n)(A) are known, the pairs (Ar, W ) provide
higher dimensional examples with non-Abelian group actions where the conjecture can
be tested. This was done for G = SU(n) by Göttsche (see Theorem 4.2); we verify
the conjecture for Sp(n) (Theorem 4.3). To our knowledge, there are no other higher
dimensional, non-Abelian examples where this conjecture has been verified.

2This conjecture has, in fact, been verified. See the earlier footnote in section 1.2.
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2. G-bundles on elliptic curves and Abelian surfaces.

Much has been written recently concerning flat G-bundles/holomorphic GC-bundles
on elliptic curves (for example [14] [15] [16] [17] [18] [36]). In this section we follow
a “standard” approach to the construction of MG(E) and we develop the theory for
Abelian surfaces in parallel. Since we are mainly interested in the geometry of the coarse
moduli space MG(A), we take an elementary approach to its construction and ignore the
issues of the existence of a universal bundle and the variation of MG(E) in a family.

Definition 2.1. Let MG(X) denote the moduli space of flat G-bundles on a path con-
nected space X. It is given by

MG(X) = Hom(π1(X), G)/G

where G acts on a representation by conjugation.

When X is Kähler, there is a correspondence between flat G-bundles and certain
holomorphic GC-bundles. In the case of E and A it is a special case of the famous
theorems of Narasimhan-Seshadri and Donaldson (generalized by Uhlenbeck and Yau
[49]):

Theorem 2.1 (Narasimhan-Seshadri, Donaldson). MG(E) (respectively MG(A)) is iso-
morphic to the coarse moduli space of s-equivalence classes of semi-stable holomorphic
GC-bundles on E (respectively A) with vanishing Chern classes. In particular, MG(E)
and MG(A) are projective varieties.

See [32] or Section 5 for the definitions of semi-stable and s-equivalence. For the most
part we will work with the topological description of these moduli spaces, but we will
identify and use the holomorphic structure coming from the above theorem.

2.1. Reduction to a finite quotient

Choose a maximal torus T ⊂ G. By a classical result of Borel [6], any pair of commuting
elements in a compact, simply connected Lie group lie in the same maximal torus and
thus can be simultaneously conjugated to the fixed torus T . Noting that W = N(T )/T
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is the normalizer of T quotiented by T , we have

MG(E) ∼= Hom(π1(E), G)/G

∼= Hom(π1(E), T )/W

∼= (T × T )/W.

In general, three or more commuting elements do not all lie in the same maximal
torus (although it is true for SU(n) and Sp(n)), so the above analysis for MG(A) does
not apply. However, the condition that commuting elements all lie in the same maximal
torus is both open and closed in MG(A) so if we restrict our attention to the connected
component containing the trivial connection, the above argument will apply.

Definition 2.2. Let M0
G(A) ⊂MG(A) be the connected component containing the trivial

connection.

By the previous argument, we then have

M0
G(A) ∼= Hom(π1(A), T )/W

∼= (T × T × T × T )/W.

The above description does not make the complex structure of M0
G(A) apparent. To

do this we define the coroot lattice Λ by the kernel of the exponential map to T :

0→ Λ→ t→ T → 0.

An element π1(A)→ T of Hom(π1(A), T ) is dual to a homomorphism

Hom(T, S1)→ Hom(π1(A), S1) ∼= A∨ ∼= A.

The first group is just Λ∨ and so the above homomorphism is an element of Λ ⊗ A. In
this way we have a natural isomorphism

Hom(π1(A), T ) ∼= Λ⊗ A.

The action of W on Λ induces an action on Λ⊗A and the complex structure of A induces
a holomorphic structure on the quotient. The same discussion applies to E and so we
have

MG(E) ∼= (Λ⊗E)/W (1)

M0
G(A) ∼= (Λ⊗A)/W.

Although we will not prove it, this holomorphic structure is the same as the one deter-
mined by Theorem 2.1. Since Λ is a rank r lattice, we may choose a Z-basis and write
Λ⊗A ∼= Ar as we did in the first section.
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2.2. An example of an unusual commuting triple

Before we continue our study of M0
G(A), we give an example (adapted from a talk of

Witten) showing that there are commuting elements in a simply connected Lie group that
do not all lie in the same maximal torus T .

Proposition 2.2. Consider the following commuting matrices in SO(8):

a =Diag(+1,−1, +1,−1, +1,−1, +1,−1)

b =Diag(+1, +1,−1,−1, +1, +1,−1,−1)

c =Diag(+1, +1, +1, +1,−1,−1,−1,−1).

Choose lifts ã, b̃, c̃ ∈ Spin(8). Then ã, b̃, and c̃ are mutually commuting elements of
Spin(8) that do not all lie in a single maximal torus.

Remark 2.1. In a non-simply connected group, it is easy to find even just two commuting
elements that do not lie in a single maximal torus. For example, Diag(−1,−1, +1) and
Diag(+1,−1,−1) are a commuting pair of SO(3) matrices that are in different maximal
tori (they have different axis of rotation), however any lifts of these elements to the simply
connected cover SU(2) will not commute—their commutator is −Id. For an extensive
study of commuting pairs and triples see [7] and also [46] or [33].

Proof of Proposition 2.2: We first show that a, b, and c do not lie in the same
maximal torus in SO(8). We then show that the lifts ã, b̃, and c̃ mutually commute. The
result will then follow since if ã, b̃, and c̃ were contained in the same maximal torus in
Spin(8), then a, b, and c would be contained in the image torus in SO(8).

Let T 3 be the three torus. The elements a, b, and c determine a representation
π1(T 3) → SO(8). i.e. a flat SO(8) connection. If a, b, and c were contained in the
same maximal torus, then they could be simultaneously conjugated to T , and the asso-
ciated flat bundle would correspond to a moduli point in (T × T × T )/W . This bundle
would hence have deformations as a flat bundle. We will show that it does not have
deformations.

Real line bundles with a flat connection are parameterized by H1(T 3, Z/2) ∼= (Z/2)3.
Let {Rα} be the eight flat line bundles corresponding to elements α of H1(T 3, Z/2). The
holonomy of the direct sum connection on the rank eight bundle

E =
⊕

α∈H1(T 3,Z/2)

Rα

around the generators of π1(T 3) is given by the matrices a, b, and c. To show that E has
no deformations as a flat SO(8) bundle we compute the deformation space

H1(T 3, so(E)).
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The bundle so(E) can be described as the skew symmetric endomorphisms:

so(E) ⊂ End(E)

= ⊕α,βRα ⊗R∨β
∼= ⊕α,βRα ⊗Rβ

so that, so(E) = ⊕Mαβ where the sum is over unordered pairs (α, β) with α 6= β and
Mαβ is by definition the rank 1 subbundle of (Rα ⊗Rβ)⊕ (Rβ ⊗Rα) with local sections
(sα⊗sβ ,−sβ⊗sα). Note that Mαβ

∼= Rα⊗Rβ as a flat line bundle and Rα⊗Rβ
∼= Rα+β

is the trivial bundle if and only if α = β. Thus so(E) is a sum of flat line bundles with no
trivial factors. Our claim will then follow when we show that H1(T 3, Rα) = 0 if α 6= 0.

Viewing T 3 as S1 × S1 × S1 we can decompose α as (α1, α2, α3) by the Kunneth
theorem. Then

Rα
∼= π∗1(Rα1) ⊗ π∗2(Rα2)⊗ π∗3(Rα3)

where πi is the projection on to the ith factor and Rαi is the line bundle corresponding
to αi ∈ H1(S1 , Z/2). We then have (again by the Kunneth theorem)

H1(T 3, Rα) ∼= H1(S1, Rα1) ⊗H0(S1, Rα2)⊗H0(S1 , Rα3)

⊕H0(S1 , Rα1)⊗H1(S1 , Rα2) ⊗H0(S1, Rα3)

⊕H0(S1 , Rα1)⊗H0(S1 , Rα2) ⊗H1(S1, Rα3).

Now H0(S1 , Rαi) = 0 for Rαi non-trivial and dimH0(S1, Rαi) = dimH1(S1 , Rαi) by the
index theorem and so H1(S1 , Rαi) = 0 for Rαi non-trivial. Thus H1(T 3, Rα) = 0 unless
α = (α1, α2, α3) = 0 and so we conclude that H1(T 3, so(E)) = 0.

Finally, the lifts ã, b̃, and c̃ mutually commute if and only if the bundle E is spin. We
compute w2(E) by the Whitney product formula:

w(E) =
∏

α∈H1(T 3;Z/2)

(1 + α)

and so

w2(E) =
∑

α,β∈H1(T 3;Z/2)

α ∪ β = 0

by the skew-symmetry of the cup product on H1(T 3; Z/2). Thus E is spin and the
proposition is proved.

We leave it as an exercise to the reader to translate the above argument into a purely
algebraic proof.

2.3. Looijenga’s theorem

We return to our study of MG(E) and M0
G(A). The geometry of MG(E) is completely

determined by Looijenga’s theorem:
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G (g1, . . . , gr)
SU(n) (1, . . . , 1)
Sp(n) (1, . . . , 1)

Spin(2n) (1, 1, 1, 2, . . . , 2)
Spin(2n + 1) (1, 1, 2, . . . , 2)

G2 (1, 2)
F4 (1, 2, 2, 3)
E6 (1, 1, 2, 2, 2, 3)
E7 (1, 2, 2, 2, 3, 3, 4)
E8 (2, 2, 3, 3, 4, 4, 5, 6)

Table 1. Coefficients of the highest coroots in terms of the simple coroots.

Theorem 2.3 (Looijenga [37]). MG(E) ∼= (Λ ⊗ E)/W is isomorphic to a weighted pro-
jective space P(1, g1, . . . , gr) where the weights gi are the coefficients of the highest coroot
expressed in terms of the simple coroots (see Table 1). In particular, (Λ ⊗ E)/W is a
smooth projective space CPr if and only if G is SU(n) or Sp(n).

Notice that the theorem fails for G not simple. For example, if G = U(n), then
ΛU(n)

∼= Zn and WU(n)
∼= Sn acting on Zn by permuting the factors. Thus

MU(n)(E) ∼= En/Sn

= Symn(E)

is the nth symmetric product of E. However, we have an inclusion ΛSU(n) ⊂ ΛU(n) as the
rank n−1 sublattice of points e1, . . . , en with

∑
ei = 0 and the action of WSU(n) = WU(n)

on ΛSU(n) is the restriction of the action on ΛU(n). Thus we see that MSU(n)(E) is the
fiber over the origin p0 of the sum map

� ³ µ ¶ · ¸ � û � Æ Ø ÷ é
·

� û �

û

ß æ é

Ç

By viewing Symn(E) as the space of effective degree n divisors on E and using the
canonical isomorphism E ∼= Picn E, the above sum map is identified with the Abel-
Jacobi map. Then the fiber MSU(n)(E) gets identified with the linear system |O(np0)|
which is indeed a projective space of dimension n−1 as predicted by Looijenga’s theorem.

The predicted isomorphism MSp(n)(E) ∼= Pn arises in a slightly different way. In this
case ΛSp(n)

∼= Zn and WSp(n) is a semi-direct product of Sn and {±1}n. W acts on Λ by
permuting the factors and multiplying each factor by ±1 (see the proof of Theorem A.2
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for a detailed discussion of the coroot lattice and W action in this case). Thus

MSp(n)(E) ∼= En/(Sn n {±1}n)
∼= (E/± 1)n/Sn

∼= Symn(P1)
∼= Pn.

2.4. Examples: MSU (n)(A) and MSp(n)(A)

We can apply the previous analysis in the case of the Abelian surface A. For these
cases (Sp(n) and SU(n)), any collection of commuting matrices is contained in the same
maximal torus. Thus M0

Sp(n)(A) = MSp(n)(A) and M0
SU(n)(A) = MSU(n)(A). As in the

elliptic curve case, we find that MSU(n)(A) is the fiber of the sum map

� ³ µ ¶ · ¸ � � � Æ Ø ÷ é
·

� � �

�

ß æ é

Ç

and MSp(n)(A) is a symmetric product

MSp(n)(A) ∼= Symn(A/± 1).

Note that unlike for curves, the symmetric product of a surface is singular. Similarly,
while E/ ± 1 ∼= P1 is smooth, A/ ± 1 is singular. However, these spaces have natural
desingularizations. In general for a surface S, the Hilbert scheme of n points on S together
with the Hilbert-Chow map is a desingularization of Symn(S):

Hilbn(S) → Symn(S)

(we discuss the Hilbert scheme of points in more detail in Section 3). Likewise, A/±1 has
a natural desingularization which is the Kummer K3 surface X associated to A. Thus we
can construct ad hoc desingularizations of MSU(n)(A) and MSp(n)(A) as follows. Define
M̃SU(n)(A) to be the fiber over p0 of the composition Hilbn(A)→ Symn(A)→ A so that
we have:
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Û� ³ µ ¶ · ¸ � � � Æ � ³ µ ¶ · ¸ � � �

ê à ê ì
· � � �

Ç

Æ Ø ÷ é
· � � �

Ç

�
Ç

Ô Ô Ô Ô Ô Ô Ô Ô Ô Ô � ×

ß æ é

Ç

Define M̃Sp(n)(A) to be Hilbn(X) so that we get the desingularization:

M̃Sp(n)(A) = Hilbn(X)→ Symn(X) → Symn(A/± 1) ∼= MSp(n)(A).

In Section 3 we will see that these ad hoc desingularizations are exactly the two known
families (up to deformation) of compact irreducible hyperkähler manifolds. These give an
affirmative answer to Question 1.1 for Sp(n) and SU(n).

In Section 5 we will realize these desingularizations as moduli spaces giving an affir-
mative answer to Question 1.2 for these cases.

3. Hyperkähler manifolds, holomorphic symplectic manifolds, and
crepant resolutions.

In this section we first give brief expositions of hyperkähler manifolds and holomorphic
symplectic manifolds. A general source for this material is [41] and the references therein.
We then use some basic facts about crepant resolutions to determine which MG(A) have
hyperkähler resolutions. The main result of this section is that MG(A) does not admit a
hyperkäher resolution unless G is SU(n) or Sp(n).

3.1. Hyperkähler manifolds.

A 4n dimensional Riemannian manifold (X, g) is called hyperkähler if the holonomy
group of the Levi-Civita connection is contained in Sp(n). It is called irreducible hy-
perkähler if the holonomy group is exactly Sp(n). It is well known that up to finite
covers, every hyperkäher manifold is a product of irreducible hyperkähler manifolds and
flat tori (e.g. [4]). The hyperkähler condition is equivalent to the existence of a triple
of almost complex structures (I, J, K) such that each is integrable and the metric g is
Kähler with respect to any of these structures, and (I, J, K) satisfy the algebra of the
quaternions; that is

∇I = ∇J = ∇K = 0,
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and

I2 = J2 = K2 = IJK = −1.

In fact, there is a whole 2-sphere of Kähler structures: for each (a, b, c) with a2+b2+c2 = 1,
the almost complex structure λ = aI + bJ + cK is integrable and g is Kähler with respect
to λ. This family of Kähler structures is called the twistor family (c.f. [9]).

The holonomy condition imposes very restrictive conditions on the Hodge theory of
a compact hyperkähler manifold X. Since Sp(n) ⊂ SU(2n), hyperkähler manifolds are
Ricci flat and so h0,2n(X) = 1. In fact, the whole Hodge diamond is “mirror symmetric”;
that is,

Hp,q(X) ∼= H2n−p,q(X).

This isomorphism is obtained by wedging a harmonic (p, q) form with a holomorphic
symplectic form (see below) n− p times [31].

Examples of hyperkähler manifolds can be obtained from other hyperkähler manifolds
by a process analogous to symplectic reduction. Suppose a hyperkähler manifold admits
an action of a compact Lie group G preserving (g, I, J, K), then Hitchin et. al. [29]
introduced the notion of a hyperkähler moment map

µ : X → R3 ⊗ g
∗

and under suitable conditions, they show that the quotient µ−1(ζ)/G has a natural in-
duced hyperkähler structure (for example, see [35]). However, no known, non-trivial
examples of this type are compact unless the original hyperkähler manifold and group are
both infinite dimensional.

3.2. Holomorphic symplectic manifolds

A Kähler manifold X of complex dimension 2n is a holomorphic symplectic mani-
fold if there exists a closed, non-degenerate holomorphic 2-form σ ∈ H0(X, Ω2

X). Non-
degenerate means that σn is a non-vanishing section of Ω2n

X = KX . A holomorphic sym-
plectic manifold is called irreducible if h0(X, Ω2

X) = 1. The following is due to Beauville
[4]:

Theorem 3.1. A compact manifold X has an (irreducible) hyperkähler metric if and
only if it has a metric such that it is an (irreducible) holomorphic symplectic manifold.

Remark 3.1. If one removes the Kähler condition in the definition of holomorphic sym-
plectic, then this theorem no longer holds. Examples of compact (non-Kähler) complex
manifolds with holomorphic symplectic forms and no hyperkähler structure were con-
structed by Guan [25][26].

Sketch of proof of Theorem 3.1: Suppose that (X, g) is hyperkähler and let
(ωI , I), (ωJ , J), and (ωK , K) be the defining Kähler structures. Then with respect to the
Kähler structure (ωI , I), it is easy to check that the form σ = ωJ + iωK is a holomorphic
symplectic form. Conversely, suppose (X, g) is a holomorphic symplectic manifold with
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Kähler form ω and holomorphic symplectic form σ. Then σn defines a trivialization of
KX and so by Yau’s solution to the Calabi conjecture [52], there is a unique Ricci flat
metric for which ω is Kähler. This gives a reduction of the holonomy group from U(2n)
to SU(2n). Since the Ricci curvature is zero, the standard Bôchner argument using the
Weitzenböck formula shows that ∇σ ≡ 0. Thus the holonomy group is contained in
SU(2n) ∩ Sp(n, C) = Sp(n). One can sharpen this argument to conclude that the two
notions of irreducibility coincide.

3.3. Examples

Theorem 3.1 can be used to construct examples of compact hyperkähler manifolds
using the Hilbert scheme of points on a surface.

Let Hilbn(X) denote the Hilbert scheme parameterizing 0 dimensional subschemes
of length n in a smooth projective surface X (a.k.a. the Hilbert scheme of n points).
This turns out to be a smooth projective variety of dimension 2n with many beautiful
properties (see the book by Göttsche [22]). There is a proper morphism (the Hilbert-Chow
morphism) from the Hilbert scheme to the symmetric product

Hilbn(X)→ Symn(X)

that sends a subscheme Z ⊂ X to its support (with multiplicities). Via this map,
Hilbn(X) is a smooth resolution of Symn(X).

The exceptional strata of Hilbn(X) are in general very complicated, but over the locus
in Symn(X) where no more than two points coincide, Hilbn(X) can be described explicitly:
The Hilbert-Chow morphism is an isomorphism on the locus of configurations of n distinct
points; over configurations with exactly two points coinciding at x the fiber is a CP1

parameterizing the lines in TxX. Geometrically, Hilbn(X) records in which direction the
two points come together. A local model3 for a configuration in Symn(X) with exactly 2
points coinciding is

Sym2(C2) ×C2n−4

and the Hilbert-Chow morphism is locally a product:

Hilb2(C2)×C2n−4 → Sym2(C2)×C2n−4.

Now Sym2(C2) = (C2 × C2)/S2 which, after a linear change of variables, is just
(C2/ ± 1) × C2. The rational double point in C2/ ± 1 can be resolved by blowing up.
The resulting space is the total space of the cotangent bundle of CP1 and the map

T ∗CP1 → C2/± 1

3We say that A ⊂ X has a local model or is locally modeled on A ⊂ Y if there is an analytic
neighborhood of A in X that is complex analytically isomorphic to a neighborhood of A in Y . Note that

A could just be a point and if the subspace or the ambient space is clear from the context, then we will
drop them from the terminology (e.g. “the subset B is locally modeled on Y ”).
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contracts the zero section to the double point. The resolution Hilbn(X)→ Symn(X) near
the locus where 2 points coincide is locally modeled on

T ∗CP1 ×C2n−2 → (C2/± 1)×C2n−2. (2)

Note that this local model has a holomorphic symplectic form since for any complex
manifold M , T ∗M has a canonical holomorphic symplectic form (a fact analogous to the
corresponding fact for real manifolds and real symplectic forms).

This description enabled Fujiki [19] and Beauville [4] to construct examples of com-
pact holomorphic symplectic manifolds (and hence compact hyperkähler manifolds) from
Hilbert schemes of points.

Theorem 3.2. If X is an algebraic surface that is holomorphic symplectic, then Hilbn(X),
the Hilbert scheme of n points on X, is a holomorphic symplectic manifold (of complex
dimension 2n).

Sketch of proof: Recall that Hilbn(X) is a smooth resolution of Symn(X) =
Xn/Sn. If X has a holomorphic symplectic form, then Xn has a natural holomorphic
symplectic form that is invariant under the action of Sn. Thus Symn(X) has a holo-
morphic symplectic form on the open set of Sn-orbits with trivial stabilizer. The map
Hilbn(X) → Symn(X) restricts to an isomorphism on this set, so we get a holomorphic
symplectic form on Hilbn(X) defined on the complement of the exceptional set. We need
to show that this form extends to a non-degenerate form on all of Hilbn(X). This form
can be extended to the complement of the codimension 2 set where 3 or more points
come together using the canonical symplectic form on the local model (Equation 2) on
this locus. The form then automatically extends across the codimension 2 strata (by
Hartog’s theorem) to a form σ. The form is non-degenerate since if σn had a non-empty
zero set, it would have codimension one, but σ is non-degenerate in codimension two by
construction.

Remark 3.2. The restriction to algebraic surfaces is not necessary. The same argument
applies when X is a non-algebraic, holomorphic symplectic surface if we replace the
Hilbert scheme with the corresponding Douady space. We restrict to algebraic surfaces
for convenience only.

From the Kodaira-Enriques classification of compact complex surfaces, we know that
if a compact algebraic surface X is holomorphic symplectic, then X must be either a
K3 or an Abelian surface. If X is a K3 surface, then h0(Hilbn(X), Ω2) = 1 (Göttsche
[21]) so Hilbn(X) is an irreducible hyperkähler manifold. Since any two K3 surfaces are
deformation equivalent, all the examples produced in this way are deformation equivalent.

For an Abelian surface A, Hilbn(A) is not irreducible. However, one can easily see that
the holomorphic symplectic form is non-degenerate on the fibers of the map Hilbn(A)→ A
given by the composition of the Hilbert-Chow map and the sum map Symn(A)→ A. Thus
the fibers of Hilbn(A) → A, which are, by definition, the generalized Kummer varieties
KAn−1, are holomorphic symplectic. One can also check that KAn−1 are irreducible.
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Until recently, the only known examples of compact irreducible hyperkähler manifolds
were deformation or birationally equivalent to Hilbn(X) for a K3 surface X or KAn

for some Abelian surface A. In particular, all the known examples had the same Betti
numbers4 as Hilbn(X) or KAn. However, O’Grady has recently constructed an isolated
example in dimension 10 that does not have the same Betti numbers as Hilb5 X or KA5

[42].

3.4. Crepant resolutions

The hyperkähler manifolds KAn and Hilbn(X) appear as resolutions of orbifolds. As
we showed in Section 2, these orbifolds are M0

G(A) = An/W where G is SU(n + 1) and
Sp(n) respectively. The orbifolds of the form An/W are holomorphic symplectic in the
sense that An has a holomorphic symplectic form preserved by W . The resolution of
M0
G(A) that we seek (and have for SU(n + 1) and Sp(n)) should have a holomorphic

symplectic form that agrees with the holomorphic symplectic form on the smooth locus
of M0

G(A). We call such a resolution a holomorphic symplectic resolution and since An/W
is projective, such a resolution is a hyperkähler manifold.

Definition 3.1. Let M be a quasi-projective variety non-singular in codimension 1 with
a holomorphic symplectic form defined on the smooth locus of M . We say that a smooth
resolution M̃ →M is a holomorphic symplectic resolution if M̃ has a global holomorphic
symplectic form that agrees with the form pulled back from M on the corresponding
locus. If M is projective, we will also call such a resolution a hyperkähler resolution.

Hyperkähler resolutions are special cases of crepant resolutions:

Definition 3.2. Let M be a quasi-projective variety, non-singular in codimension one,
with a holomorphic volume form defined on the smooth locus of M (equivalently, M has
a trivial canonical class KM

∼= OM ). We say a smooth resolution M̃ → M is crepant if
M̃ has a global holomorphic volume form that agrees with the form pulled back from M
on the corresponding locus.

Remark 3.3. We’ve restricted our definition of crepant to the case where M has trivial
canonical class to emphasize the analogy with holomorphic symplectic resolutions. In
general, an arbitrary proper, birational morphism φ : Y → X has a discrepancy divisor
∆ = KY − φ∗KX and φ is crepant if ∆ = 0.

Crepant resolutions may not exist in general. Locally, at an isolated orbifold point,
the issue is:

Question 3.1. Let H ⊂ SL(n, C) be a finite group. When does Cn/H admit a crepant
resolution? What can one say about the geometry of a resolution if it exists?

4Birationally equivalent hyperkähler manifolds have the same Betti numbers [1]. In fact, it is believed

(but not proven) that birationally equivalent hyperkähler manifolds are actually deformation equivalent
(and hence diffeomorphic). c.f. [31]
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These questions are the subject of study of the so-called generalized McKay correspon-
dence, and to some extent they motivated the definition of stringy Hodge numbers (see
[3] [43] [44]). We will return to this topic in more detail in Section 4.

For this section, we quote some existence and non-existence results for holomorphic
symplectic and crepant resolutions.

Consider C2r = C2 ⊗Λ with its W action. The orbifold C2r/W is the affine analogue
of our moduli space M0

G(A) ∼= Ar/W . In a recent announcement of Bezrukavnikov and
Ginzburg [5], they construct a holomorphic symplectic resolution of this space.

Theorem 3.3 (Bezrukavnikov-Ginzburg). C2r/W = (C⊗ Λ)/W admits a holomorphic
symplectic resolution.

At first glance, this (announced) theorem suggests that Ar/W should also have a
holomorphic symplectic (and hence hyperkähler) resolution. However, not all the orbifold
points of Ar/W have local models of the type C2r/W ; there are additional possibilities
arising from the presence of torsion in A.

The only non-existence result we need is a very simple one that we have borrowed
from the McKay correspondence literature (it is implied by Theorem 5.4 of [3] or see [44]
example 5.4).

Theorem 3.4. Let Z/2 = {±1} act by −1 on all the factors of C2d, d > 1. Then
C2d/± 1 does not admit a crepant resolution.

Our main result of this section is the following:

Theorem 3.5. Let G be a compact, simple, simply connected Lie group. Let MG(A) be
the moduli space of flat G bundles on an Abelian surface A. Then MG(A) admits a crepant
resolution if and only if G is SU(n) or Sp(n); in particular, MG(A) has a hyperkähler
resolution if and only if G is SU(n) or Sp(n).

We devote the rest of this section to the proof. To prove the theorem as stated, it
obviously suffices to prove it for M0

G(A) since when G is Sp(n) or SU(n), M0
G(A) =

MG(A).

3.5. The basic examples: G2, B3, and D4.

To prove Theorem 3.5, we first prove it in the cases when G is G2, Spin(7), and
Spin(8), which in Cartan’s classification, corresponds to the Dynkin diagrams G2, B3 ,
and D4. We will later show how the basic examples can be propagated to every other G
not equal to SU(n) or Sp(n).

Theorem 3.5 for G = G2 follows from Theorem 3.4 and the following:

Theorem 3.6. Let W and Λ be the Weyl group and coroot lattice for G2. There exists
a point of (A⊗ Λ)/W locally modeled on C4/± 1.

Proof: Λ is the rank two sublattice of Z3 consisting of those elements summing to
zero:

Λ = {(a1, a2, a3) ∈ Z3 : a1 + a2 + a3 = 0}.
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The Weyl group W is the dihedral group of order 12. W is a Z/2 extension of the
symmetric group S3 and the S3 action on Λ is given by permuting the ai’s and the
Z/2 = {±1} action is given by (a1, a2, a3) 7→ (−a1,−a2,−a3).

Choose a triple of distinct 2-torsion points in A that sum to zero; i.e. let p =
(τ1, τ2, τ3) ∈ A3 such that 2τi = 0, τi 6= τj 6= 0 for all i 6= j, and τ1 + τ2 + τ3 = 0.
Note that p ∈ A⊗ Λ since

A⊗ Λ = {(x1, x2, x3) ∈ A3 : x1 + x2 + x3 = 0}.

Since the τi are distinct, no non-trivial permutation fixes p; on the other hand, since
τi = −τi, we have that p = −p. Thus the stabilizer of p is Z/2 = {±1} ⊂W .

Therefore a neighborhood of the image of p in (A ⊗ Λ)/W is modeled on C4/ ± 1,
where ±1 actions non-trivially on all factors.

Remark 3.4. If we replace A with E in the above discussion, we see that in MG2(E) =
(E ⊗ Λ)/W there is a point modeled on C2/ ± 1. Looijenga’s theorem (Theorem 2.3)
tells us that MG2(E) is in fact CP(1, 1, 2) which has a unique singular point (modeled on
C2/± 1). In an elliptic curve E, there are exactly 3 non-zero 2-torsion points and so the
choice of the τi is unique (up to permutation). Thus the orbit of p is the unique singular
point in CP(1, 1, 2). In A, there are many choices for the τi’s and so there are multiple
points in MG2(A) where a crepant resolution does not exist locally.

The basic examples for B3 and D4 (Spin(7) and Spin(8)) are variations on the same
theme that are slightly more involved. See the appendix for their construction (Theorems
A.1 and A.2).

Remark 3.5. It is no accident that the examples we have for D4, B3, and G2 are all
very similar. The D4 Dynkin diagram has an action of the symmetric group S3 and the
“quotient” of the D4 diagram by S3 “is” the G2 diagram, while the “quotient” of the
D4 diagram by Z/2 ⊂ S3 “is” the B3 diagram. What this really means is that there
is an S3 action on ΛD4 so that ΛG2 and ΛB3 are respectively the S3 and Z/2 invariant
sublattices. In this way, we get an S3 action on M0

Spin(8)(A) so that the S3 and Z/2 fixed
point sets give inclusions M0

G2
(A) ⊂ M0

Spin(8)(A) and M0
Spin(7)(A) ⊂ M0

Spin(8)(A). The
basic examples for G2 and B3 are just the restriction of the basic example for D4 under
the above inclusions.

3.6. Propagating the basic examples.

The Dynkin diagrams of D4 and B3 (corresponding to Spin(8) and Spin(7) respec-
tively) are
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B3D4

The D4 diagram is a sub-diagram of the diagrams of E6, E7, E8, and Dn, n ≥ 4. The
Dynkin diagram of B3 is a sub-diagram of the diagrams of F4 and Bn, n ≥ 3. We can
thus get from the diagrams of G2, B3, and D4 to any other Dynkin diagram not in the
An or Cn series by inclusion.

The following lemma will show that the operation of inclusion allows us to “propagate”
our basic examples to find points in M0

G(A) (G 6= Sp(n) or SU(n)) with local models
of the form (C2l/ ± 1) × C2k, l > 1, which then by Theorem 3.4 do not admit crepant
resolutions. This will complete the proof of Theorem 3.5.

Lemma 3.7. Suppose that Λ ⊂ Λ′ and W ⊂W ′ are the inclusions of a coroot lattice and
its Weyl group into another coroot lattice and Weyl group that are induced by an inclusion
of a rank l Dynkin diagram into a rank l + k diagram. Let p ∈ A ⊗ Λ be a point and let
Wp ⊂ W denote the W -stabilizer of p. Then there exists a point p′ ∈ A ⊗ Λ′ such that
its W ′-stabilizer is isomorphic to Wp. Moreover, the point [p′] ∈ (A ⊗ Λ′)/W ′ is locally
modeled on (C2l/Wp) ×C2k.

Proof: Since Λ′/Λ is torsion free, the induced map A ⊗ Λ → A ⊗ Λ′ is injective.
Via this inclusion, the W ′-stabilizer of p (denoted W ′

p) contains the W -stabilizer, i.e.
Wp ⊂W ′

p.
Using translation by p and the exponential map, we W ′

p-equivariantly identify a small
neighborhood of p ∈ A⊗Λ ⊂ A⊗Λ′ with a small neighborhood of 0 ∈ C2⊗Λ ⊂ C2⊗Λ′.
Let N be the orthogonal complement of C2 ⊗ Λ in C2 ⊗ Λ′. Let q be a small, generic,
non-zero element of N which, after exponentiation and translation, gives us an element
p′ ∈ A ⊗ Λ′ lying in a small neighborhood of p. We need to show that W ′

p′ = Wp;
equivalently we need to show that the W ′

p-stabilizer of q ∈ N ⊂ C2⊗Λ′ (denoted (W ′
p)q)

is Wp.
Since W is generated by reflections through planes perpendicular to vectors in Λ,

elements of Wp ⊂ W fix N = (C2 ⊗ Λ)⊥ and so (W ′
p)q contains Wp. To prove the

converse, let g ∈ (W ′
p)q ⊂W ′

p ⊂ W ′. Since q was chosen generically, g must fix all of N .
We claim that any element of W ′ fixing (C2⊗Λ)⊥ must in fact be an element of W . This
claim implies that g ∈W ′

p ∩W = Wp and so (W ′
p)q = Wp as asserted.

To prove the claim, it is enough to prove the claim with C2 replaced by R. In other
words, suppose g ∈W ′ acts on t′ = R⊗Λ′ preserving t⊥ = (R⊗Λ)⊥; we wish to show that
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g ∈ W . The set of Weyl chambers in t′ (respectively t) forms a W ′-torsor (respectively
W -torsor). By choosing a fundamental chamber C ′ ⊂ t′ for W ′ such that C = C ′ ∩ t is a
fundamental chamber for W , we get a bijective correspondence between elements of W ′

(respectively W ) and Weyl chambers in t′ (respectively t) with the following property.
Those elements of W ′ that lie in W correspond to exactly those Weyl chambers in t′ whose
intersection with t is non-trivial. If g ∈ W ′ preserves t⊥ then it must be an orthogonal
transformation of t and so g(C ′) ∩ t = g(C) is a Weyl chamber in t and hence g ∈ W
which proves the claim.

Finally, to finish the proof of the Lemma, we observe that via translation and expo-
nentiation, the decomposition C2 ⊗ Λ′ = (C2 ⊗ Λ) ⊕N provides the local model whose
existence is asserted by the Lemma.

4. The stringy Hodge numbers of MSU (n)(A) and MSp(n)(A).

The Calabi-Yau spaces that appear in the physics of string theory often have orbifold
singularities. Based on mirror symmetry considerations, physicists have suggested a novel
way to extend the definition of Hodge numbers to Calabi-Yau varieties with orbifold
singularities [50][53].

These so called “stringy Hodge numbers” have been extensively studied by mathe-
maticians recently, especially in the context of the generalized McKay correspondence
(see [3][44][43]). The stringy Hodge numbers are conjectured to coincide with the ordi-
nary Hodge numbers of any Crepant resolution, provided it exists5.

In this section we compute the stringy Hodge numbers of MSp(n)(A) and MSU(n)(A)
and show that they coincide with the ordinary Hodge numbers of their resolutions M̃Sp(n)(A)
and M̃SU(n)(A).

4.1. Stringy Euler numbers

Historically, the stringy Euler number was defined first [12][13]. Let X be a smooth
Calabi-Yau manifold and let H be a finite group acting on X preserving KX

The ordinary Euler number of the quotient Y = X/H can be expressed as

e(X/H) =
1
|H |

∑
g

e(Xg)

where Xg is the fixed point set of an element g ∈ H .
In contrast, the stringy Euler number is defined by

est(X, H) =
1
|H |

∑
gh=hg

e(Xg ∩Xh)

where the sum is over pairs of commuting elements in H .

5See the footnote in section 1.2.
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Note that this sum can be rearranged as a sum over conjugacy classes in H . We let {g}
denote the conjugacy class represented by an element g. Let C(g) denote the centralizer
of g. Then C(g) acts on Xg and it is easy to see that est(X, H) can be rewritten as

est(X, H) =
∑

{g}∈Conj(H)

e(Xg/C(g)).

Via localization, it can be shown that e(X/H) is the Euler characteristic of the H-
equivariant cohomology of X while est(X, H) turns out to be equal to the Euler charac-
teristic of the H-equivariant K-theory of X (see [28], [8]).

4.2. Stringy Hodge numbers

The stringy Euler number was generalized to Hodge numbers by Zaslow [53]. We follow
the definition as given by Batyrev and Dais [3].

Let X be a smooth Calabi-Yau manifold with an action of a finite group H that
preserves the holomorphic volume form. Let Y = X/H be the quotient. We will define
the stringy Hodge numbers hp,qst (X, H), which we will just write as hp,qst (Y ) when the
orbifold structure of Y is clear from the context.

Definition 4.1. Let X, H , and Y be as above. For each g ∈ H , let

Xg = Xg
1 ∪ · · · ∪Xg

rg

denote a decomposition of the fixed locus of g into groups of components which are the
orbits of the connected components under the centralizer C(g) of g. For any x ∈ Xg

i , g
acts on TxX with eigenvalues e2πiα1 , . . . , e2πiαn where we choose the weights αj so that
0 ≤ αj < 1 and we define the Fermion shift number F g

i of the component Xg
i as the sum

of the corresponding weights; i.e.

F g
i =

n∑
j=1

αj.

Note that the F g
i ’s are integers since the action of g preserves the holomorphic volume

form.
We then define the stringy Hodge numbers of Y by

hp,qst (Y ) =
∑

{g}∈Conj(H)

hp,qg (X, H)

where

hp,qg (X, H) =
rg∑
i=1

hp−F
g
i ,q−F

g
i (Xg

i /C(g)).

Note that Xg
i is smooth and has an action of C(g). The notation on the right in the

above equation is as follows: for any finite group K acting on a smooth complex manifold
V , let hp,q(V/K) denote the dimension of the K-invariant part of Hp,q(V ).
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It is easy to see that the stringy Euler characteristic is then given by

est(Y ) =
∑
p,q

(−1)p+qhp,qst (Y ).

The main conjecture concerning the stringy Hodge numbers is the following.

Conjecture 4.1 (Zaslow). If Z → X/H is any crepant resolution of X/H then

hp,q(Z) = hp,qst (X/H).

Remark 4.1. We learned after the first version of this paper was written that this con-
jecture is now proved. It follows from general results of Batyrev [2] and Denef-Loeser [11].
See the discussion in the footnote in section 1.2.

Remark 4.2. The definition of stringy Hodge numbers and the above conjecture are
often both extended to the case where we do not assume that X is Calabi-Yau, but we
merely assume that the singularities of X/H are Gorenstein.

4.3. The Fermionic shifts in the holomorphic symplectic case

For a finite group acting on a holomorphic symplectic manifold preserving the holo-
morphic symplectic form, the Fermionic shifts F g

i become very simple.
Recall that the Hodge diamond of a holomorphic symplectic manifold is mirror sym-

metric; in other words, if dimX = 2n, then the Hodge diamond is completely symmetric
about (n, n) meaning that

hn+p,n+q(X) = hn−p,n−q(X) = hn−p,n+q(X) = hn+p,n−q(X).

The shifts F g
i in the formula for hp,qst (Y ) are such that each individual contribution

is completely symmetric (in the above sense) about (n, n). This can be seen as follows.
Since H preserves the symplectic form, the fixed point sets Xg

i are each smooth and
holomorphic symplectic. Thus their Hodge diamonds are completely symmetric about
(n− 1

2 codim(Xg
i ), n− 1

2 codim(Xg
i )). Thus we just want to show that

F g
i =

1
2

codim(Xg
i ). (3)

This follows from the fact that g acts on TxX
g
i symplectically: The eigenvalues of any

symplectic transformation come in pairs λ, λ−1 so the weights αj come in pairs of the
form (α, 1− α) or (0, 0). The number of non-zero eigenvalues is exactly the codimension
of Xg

i and so we have that

F g
i =

2n∑
j=1

αj =
1
2

codim(Xg
i )

as asserted.
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4.4. The computation of hp,qst (Symn(X))

In [23], Göttsche showed that for an algebraic surface X, the stringy Hodge numbers
of the symmetric product Symn(X) = Xn/Sn coincide with the ordinary Hodge numbers
of the resolution Hilbn(X), verifying Conjecture 4.1 in this case (c.f. Remark 4.2).

In order to state his formula and to facilitate our computations in this section, we
introduce some of Göttsche’s notation:

Definition 4.2. Let P (n) be the set of partitions of n. We write α ∈ P (n) as (1α1 , 2α2,
. . . , nαn) so that αi is the number of i’s in the partition. Thus n =

∑
i iαi and we put

|α| =
∑

i αi. We will use the following shorthand:

X(n) := Symn(X),

X[n] := Hilbn(X),
Xα := Xα1 × · · · ×Xαn , and

X(α) := X(α1) × · · · ×X(αn),

where by convention, X(0) or X0 is just a single point. For an element of the symmetric
group g ∈ Sn, let α(g) denote its cycle type and note that g 7→ α(g) defines a bijection
between conjugacy classes of Sn and P (n). Let X be smooth with an action of a finite
group H . Define the Hodge and stringy Hodge polynomials by

h(X, x, y) :=
∑
p,q

hp,q(X)xpyq

hst(X/H, x, y) :=
∑
p,q

hp,qst (X/H)xpyq .

Recall that when we use the ordinary Hodge number notation for an orbifold hp,q(X/H)
we mean the dimension of the H-invariant part of Hp,q(X). We will then also have the
corresponding polynomial:

h(X/H, x, y) :=
∑
p,q

hp,q(X/H)xpyq .

Note that the Hodge polynomial is multiplicative:

h(Y × Z) = h(Y )h(Z).

If it happens that the Fermionic shift numbers for all the different components of Xg

agree (i.e. F g
1 = · · · = F g

rg
) for all g, then the stringy Hodge polynomial can be written
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as follows:

hst(X/H) =
∑
p,q

hp,qst (X/H)xpyq

=
∑
p,q

∑
{g}

hp−F
g ,q−Fg (Xg/C(g))xpyq

=
∑
{g}

(xy)F
g

h(Xg/C(g)). (4)

In [23], Göttsche computes the stringy Hodge numbers of S(n) and An−1/Sn (a.k.a.
MSU(n)(A)). Having computed the ordinary Hodge numbers of S[n] and KAn−1 in pre-
vious works ([22][24]), he then verifies Conjecture 4.1 in these cases.

Theorem 4.2 (Göttsche). For any projective surface S we have

h(S[n] , x, y) = hst(S(n), x, y) =
∑

α∈P(n)

(xy)n−|α|h(S(α), x, y).

In particular, in the notation of Section 2,

h(M̃U(n)(A)) = hst(MU(n)(A)).

Moreover,

h(KAn−1) = hst(An−1/Sn),

or, in the notation of Section 2,

h(M̃SU(n)(A)) = hst(MSU(n)(A)).

4.5. The stringy Hodge number of MSp(n)(A)

Göttsche’s theorem verifies Conjecture 4.1 for MSU(n)(A) (with its resolution M̃SU(n)(A)).
We wish to do the same for MSp(n)(A), i.e. we need to compute the stringy Hodge poly-
nomial of MSp(n)(A) and compare it to the ordinary Hodge polynomial of M̃Sp(n)(A).
The result is the following:

Theorem 4.3. Let MSp(n)(A) and M̃Sp(n)(A) be as in Section 2. Then

h(M̃Sp(n)(A)) = hst(MSp(n)(A)).

In particular, Conjecture 4.1 holds for MSp(n)(A) (with its resolution M̃Sp(n)(A)).

Proof: Recall that MSp(n)(A) = An/Sn n {±1}n. To compute hp,qst (MSp(n)(A)) we
first need to identify the conjugacy classes of W = Sn n {±1}n. An element of W
consists of a permutation along with n signs. We give an overall sign to each cycle in the
permutation by multiplying all of the signs in the cycle together. In this way, each element
determines a splitting of a partition α ∈ P (n) into two partitions α+ + α− = α, where
α+
i and α−i are the number of cycles of length i of positive and negative type respectively.
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The conjugacy classes of W are in bijective correspondence with the data (α+, α−) (see
Carter [10]). For each (α+, α−), we choose the representative group element to be such
that the positive cycles are first, arranged in order of increasing length, followed by the
negative cycles, also arranged in order of increasing length. Furthermore, each positive
cycle should have all positive signs and each negative cycle should have exactly one minus
sign at the beginning of each cycle. This determines a unique representative g(α±) of
each conjugacy class (α+, α−).

We next determine the fixed point set of g(α±) acting on An. The fixed point locus
of each positive cycle fixes is the diagonal in the product of factors that the cycle acts
on. The fixed point locus of each negative cycle is the 2-torsion points in the diagonal
in the product of the factors that the cycle acts on. Thus the fixed point set of g(α±)
is isomorphic to a product of copies of A (one for each positive cycle) and a product of
copies of the set of 2-torsion points of A, denoted A2, one for each negative cycle. In
other words,

(An)g(α
±) =

n∏
i=1

Aα+
i ×A

α−i
2

= Aα+
× Aα−

2 .

We next need to determine the action of the centralizer C(g(α±)) on the fixed set
(An)g(α

±). Elements that commute with g(α±) permute the cycles of g(α±) of the same
length and type. It is easy to see that all such permutations can be realized (possibly with
signs). We only need to understand the signs of the elements of the centralizer acting on

the Aα+
i factors since the A

α−i
2 factors are not changed by multiplication by −1 (recall

that A2 is the group of 2-torsion points in A). Assume then that all the α±i are zero
except for a single α+

l = n/l = m; that is g = g(α±) is a permutation consisting of m
cycles all of length l and no minus signs. We claim that C(g)/〈g〉 is then Sm n {±1}m
acting on (An)g ∼= Am in the standard way. The Sm ⊂ C(g) is generated by elements
that exchange two of the l cycles in g; they are a product of l disjoint transpositions with
all positive signs. If each of the transpositions in this product is given a single minus sign
at the beginning of each transposition, then this element is also in C(g). The effect of the
action of this element on (An)g ∼= Am is to permute two of the factors and then multiply
one of them by −1. One can directly check that elements of this form generate C(g)/〈g〉.

The above discussion easily generalizes to an arbitrary conjugacy class (α+, α−). The

centralizer C(g(α±)) acts independently on each Aα+
i and A

α−i
2 factor, acting by Sα−i

on

A
α−i
2 and by Sα+

i
n {±1}α+

i on Aα+
i . Thus we have

(An)g(α
±)/C(g(α±)) =

n∏
i=1

K(α+
i ) × A

(α−i )
2

= K(α+) ×A
(α−)
2
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where K = A/ ± 1 is the (singular) Kummer surface associated to A.
Since the codimension of (An)g(α

±) is 2n − 2|α+| and the action is symplectic, the
Fermionic shift number is just n− |α+| (see Equation 3).

From Equation 4 and the multiplicative properties of the Hodge polynomial, we then
have

hst(MSp(n)(A)) =
∑
α±

(xy)n−|α
+|h(K(α+))h(A(α−)

2 )

=
∑
α±

(xy)n−|α|
n∏
i=1

h(K(α+
i ))h(A(α−i )

2 )(xy)α
−
i

=
∑

α∈P(n)

(xy)n−|α|
n∏
i=1

 ∑
α+
i +α−i =αi

h(K(α+
i ))h(A(α−i )

2 )(xy)α
−
i

 . (5)

Let X be the smooth Kummer K3 surface associated to A, i.e. the blowup of K at
the sixteen double points. Note that

h(X) = h(K) + h(A2)xy.

To each polynomial h(x, y) with positive, integral coefficients, we can assign a bigraded
vector space where the dimension of the (p, q) graded piece is the coefficient of xpyq in
h(x, y). The nth symmetric power of this vector space is also a bigraded vector space
and so gives rise to a polynomial which we denote Symn(h(x, y)). By what is essentially
a tautology of the definitions, we have

h(X(l)) = Syml(h(X)),

and from well known properties of the symmetric tensor products we also have

Syml(f + g) =
∑

l++l−=l

Syml+(f) Syml−(g).

Thus we get

h(X(αi)) = Symαi(h(X))

= Symαi(h(K) + h(A2)xy)

=
∑

α+
i +α−i =αi

Symα+
i (h(K)) Symα−i (h(A2)xy)

=
∑

α+
i +α−i =αi

h(K(α+
i ))h(A(α−i )

2 )(xy)α
−
i
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and so substituting into Equation 5 and using Theorem 4.2 we get

hst(MSp(n)(A)) =
∑

α∈P(n)

(xy)n−|α|
n∏
i=1

h(X(αi))

=
∑

α∈P(n)

(xy)n−|α|h(X(α))

= h(X[n])

= h(M̃Sp(n)(A))

completing the proof of Theorem 4.3.

4.6. Stringy speculations.

It turns out that the series
∞∑
n=0

hst(MSp(n)(A), x, y)qn

and
∞∑
n=0

hst(MSU(n)(A), x, y)qn

have some interesting arithmetic properties. Certain series obtained by setting x and y
to special values can be expressed in terms of modular and quasi-modular forms. For
example, by setting (x, y) = (−1, 1) one obtains the generating series for the signature,
while setting (x, y) = (−1,−1) one obtains the generating series for the Euler charac-
teristic. Göttsche gives expressions for these series as the Fourier expansions of certain
quasi-modular forms ([22] pages 37–39, 51–53, and 57).

Regardless of the existence of crepant resolutions, the stringy Hodge numbers hp,qst (MG(A))
are well defined for any G. It would be interesting to compute the generating series for
the Bn and Dn series (i.e. Spin(odd) and Spin(even)) and determine if they also have nice
expressions. This calculation is straight forward, although rather complicated. We con-
jecture that the generating series for the stringy signature and stringy Euler characteristic
have closed expressions in terms of quasi-modular forms.

5. Realization of the desingularizations as moduli spaces

The previous desingularizations of MSU(n)(A) and MSp(n)(A) defined in Section 2 were
ad hoc. In this section, we expand on a suggestion of Aaron Bertram (that also is implicitly
contained in the work of Mukai), to realize these desingularizations as moduli spaces of
holomorphic GC-bundles satisfying a stability condition that we call Mukai-stability. This
will give an affirmative answer to Question 1.2 (for the SU(n) and Sp(n) cases).

The notion of Mukai-stability refines ordinary semi-stability in the sense that Mukai
stable bundles are semi-stable. Furthermore, the generic semi-stable bundle is also Mukai
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stable. Consequently, the map from the moduli space of Mukai stable bundles to the mod-
uli space of semi-stable bundles is generically an isomorphism. However, non-generically,
the stability notions differ which results in a different equivalence relation for the cor-
responding moduli problems. In this way, the moduli space for Mukai stable bundles
actually becomes a resolution of singularities for the ordinary moduli space.

To define Mukai-stability we use a “framing” of the fiber over p0 of the holomorphic
vector bundle associated to a principal GC bundle. That is, if E is a holomorphic bundle,
a framing6 is a surjective sheaf map τ : E → Op0 where Op0 is the one dimensional
skyscraper sheaf at the origin p0. We say that the bundle E is Mukai-stable if it is semi-
stable and Ker(τ ) is simple, i.e. the automorphism group of Ker(τ ) is C∗. It turns out
that Ker(τ ) is independent of τ (as long as Ker(τ ) is simple).

We motivate how this sort of condition arises by considering how the desingularization
Hilbn(A) → Symn(A) occurs in the context of moduli spaces and then interpreting this
in the context of bundles via the isomorphism MU(n)(A) ∼= Symn(A). The main tool is
the Fourier-Mukai transform. A detailed study of this case allows us to generalize to the
cases of SU(n) and Sp(n).

5.1. Sym, Hilb, and the moduli of sheaves

We begin by discussing the isomorphism MU(n)(A) ∼= Symn(A) from the point of
view of holomorphic bundles rather than flat connections. Recall that we have been
viewing MU(n)(A) as parameterizing flat U(n) connections so that the isomorphism with
Symn(A) was obtained by “diagonalizing” the representation π1(A) → U(n) (see Sec-
tion 2). By Donaldson’s theorem (Theorem 2.1), we may also view MU(n)(A) as param-
eterizing s-equivalence classes of semi-stable holomorphic Gl(n, C) bundles, or, equiva-
lently, MU(n)(A) parameterizes s-equivalence classes of semi-stable, rank n, holomorphic
bundles E with

ch(E) = (n, 0, 0) ∈ H0(A, Z) ⊕H2(A, Z)⊕H4(A, Z).

More generally, if v = (n, c, χ) ∈ H0(A, Z)⊕H2(A, Z)⊕H4(A, Z) is any vector, there
exists (Simpson [47], c.f. [32]) a (coarse) moduli space, which we denote M(v), of s-
equivalence classes of semi-stable, coherent, pure-dimensional sheaves F with ch(F) =
(n, c, χ).

Using this notation for this section, we write M(n, 0, 0) instead of MU(n)(A). The
isomorphism M(n, 0, 0) ∼= Symn(A) is obtained by arguing that every bundle E with
ch(E) = (n, 0, 0) is s-equivalent to a direct sum of degree 0 line bundles, i.e. Lx1⊕· · ·⊕Lxn
where xi ∈ Pic0(A) ∼= A. This follows from basic facts concerning s-equivalence and
Jordan-Hölder filtrations: in general, every semi-stable bundle E admits a filtration 0 =
E0 ⊂ E1 ⊂ · · · ⊂ Ek = E where the sheaves Ei+1/Ei are stable and have constant slope.
Let Gr(E) = ⊕iEi+1/Ei, then F is s-equivalent to E if and only if Gr(E) ∼= Gr(F). In the

6We use the terminology “framing” following Huybrechts and Lehn [30] who more generally define a
“framed module” as a pair (E , τ ) where τ : E → F is a sheaf map to some fixed sheaf F.
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case at hand, the semi-stability of E and the stability and constant slope of the Ei+1/Ei’s
imply that all the factors of Gr(E) must be degree 0 line bundles.

We see that under s-equivalence, all the possible different extensions

0→ Ei → Ei+1 → Ei+1/Ei → 0

get identified in the same s-equivalence class. In order to find a desingularization, we
would like to find a different notion of equivalence that remembers such information.

To motivate how one should go about doing this, we first consider how the desingular-
ization

Hilbn(A)→ Symn(A)

naturally occurs in the context of moduli spaces of sheaves. Hilbn(A), by definition, pa-
rameterizes length n, 0-dimensional subschemes of A. Such a subscheme Z is determined
by its ideal sheaf IZ which can be considered as a point in M(1, 0, n) (the moduli space
of rank 1 semi-stable sheaves F with c1(F) = 0 and c2(F) = −n). In fact, there is an
isomorphism

Hilbn(A) × A ∼= M(1, 0, n)

given by (Z, x) 7→ IZ ⊗ Lx.
Now the subscheme Z ⊂ A is also determined by its structure sheaf OZ which we can

regard as a rank 0 sheaf on A where ch(OZ) = (0, 0, n). Thus OZ determines a point
in M(0, 0, n) . However, M(0, 0, n) is isomorphic to Symn(A). The reason is that every
sheaf in M(0, 0, n) is s-equivalent to a sheaf of the form Ox1 ⊕ · · · ⊕ Oxn . For example,
if Z ⊂ A is a subscheme of length 2 supported at x ∈ A then OZ can be written as a
non-trivial extension

0→ Ox → OZ → Ox → 0

which is s-equivalent to the trivial extension Ox ⊕Ox.
Under these isomorphisms, the Hilbert-Chow morphism

Hilbn(A)→ Symn(A)

is obtained by sending the moduli point of IZ to the moduli point of OZ .
To translate this picture over to rank n bundles we need a correspondence between

sheaves on A and sheaves on Pic0(A) that generalizes the tautological correspondence
between points in Pic0(A) and line bundles on A. The Fourier-Mukai transform provides
such a dictionary.

5.2. The Fourier-Mukai transform

Although we have been identifying A and Pic0(A) throughout his paper via the polar-
ization, for clarity in this section we write Â for Pic0(A). The ideas of this subsection are
due to Mukai; see the papers [39] and [40].
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Let P → A × Â denote the normalized Poincare bundle, i.e. P |A×{x} = Lx and
P |{p0}× bA is trivial. Let π : A× Â→ A and π̂ : A× Â→ Â denote the projections. Define
the functors

S(?) = π̂∗(π∗(?) ⊗ P )

and

Ŝ(?) = π∗(π̂∗(?)⊗ P ).

If F is a sheaf on A (respectively, Â), we obtain sheaves RiS(F) (respectively, RiŜ(F))
on Â (respectively, A) via the right derived functors of S (respectively, Ŝ).

Definition 5.1. If RiS(F) = 0 for all i except some i0, then we say that F satisfies the
Weak Index Theorem (W.I.T.) with index i(F) = i0 and we call the sheaf Ri0S(F) the
Fourier-Mukai transform of F and denote it F̂ .

We also have the analogous definition for sheaves on Â and furthermore, if F satisfies

W.I.T., then F̂ satisfies W.I.T. and ̂̂F = (−1A)∗F .
For example, any degree 0 line bundle L

bx → A corresponding to the point x̂ ∈ Â

satisfies W.I.T. (with i(L
bx) = 2) and L̂

bx = O−bx. More generally, every bundle E →
A with ch(E) = (n, 0, 0) satisfies W.I.T. and the Fourier-Mukai transform induces an
isomorphism ̂: M(n, 0, 0)→M(0, 0, n).

Conversely, the structure sheaf OZ of a length n, zero-dimensional subscheme Z ⊂ A,
satisfies W.I.T. with i(OZ ) = 0 and ÔZ is a bundle E with ch(E) = (n, 0, 0).

Note that despite the fact that the moduli spaces M(n, 0, 0) and M(0, 0, n) (each
isomorphic to Symn(Â)) both suffer from an undiscriminating s-equivalence, the Fourier-
Mukai transform itself does not lose information. For example, if E is a non-trivial exten-
sion

0→ O → E → O → 0

then Ê = OZ where Z is a length 2 subscheme supported at p0 ∈ Â and so it is a
non-trivial extension of Ô = Op0 by Ô = Op0 :

0→ Op0 → OZ → Op0 → 0.

The P1’s worth of non-trivial extensions of O by O correspond to the P1’s worth of length
2 subschemes supported at a point.

It is not quite the case that the Fourier-Mukai transform is an equivalence of the
category of coherent sheaves on A with the category of coherent sheaves on Â. However,
the Fourier-Mukai transform is an equivalence of the subcategories of sheaves satisfying
W.I.T.. More generally, the derived functor of S defines an equivalence between the
derived categories of coherent sheaves on A and Â:

RS : D(A)→ D(Â)
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(see [48] for an introduction to the derived category or [51] for more detail). The inverse
functor is easily determined because there is an isomorphism of functors, RS ◦ RŜ ∼=
(−1A)∗[−2] where “[−2]” denotes “shift the complex 2 places to the right”.

5.3. Translating points to bundles.

We now examine what happens to the sheaves IZ and OZ, their corresponding moduli
spaces, and the exact sequence 0 → IZ → O → OZ → 0 under the equivalence of
categories RS.

We saw in the last subsection that for any length n, zero dimensional subscheme Z,
OZ satisfies W.I.T. with i(OZ) = 0 and ÔZ is a bundle E with ch(E) = (n, 0, 0). That
is, RS(OZ ) is represented by the complex of sheaves that in degree 0 is E and it is 0 in
all other degrees. O also satisfies W.I.T. with i(O) = 2 and Ô = Op0 ; that is, RS(O) is
represented by the complex Op0 [2] which is Op0 in degree 2 and 0 otherwise.

The exact sequence of sheaves

0→ IZ → O → OZ → 0

is an exact triangle in D(A) when we regard the sheaves as complexes concentrated in
degree 0. Since the functor RS is an equivalence of categories, it must take exact triangles
to exact triangles and so

RS(IZ)→ Op0 [2]→ E → RS(IZ)[1]

is an exact triangle in D(Â).
This triangle gives us a long exact sequence in cohomology from which we see imme-

diately that RS(IZ) cannot be a sheaf; it is represented by a complex of sheaves whose
cohomology is Op0 in degree 2, E in degree 1, and 0 otherwise. The problem is that RS(O)
and RS(OZ ) are sheaves, but they are concentrated in different degrees. To rectify this
problem, we employ another functor that is an equivalence of derived categories.

Let ∆(?) = Hom(?,O) be the dualizing functor and let

R∆ : D(Â)→ D(Â)

be its derived functor (warning: our notation for ∆ differs from Mukai’s, his has the R
built in and has an additional shift of the index by 2). Since OA is the dualizing sheaf of
A, R∆ is an anti-equivalence of the category D(Â) to itself. The composition

R∆ ◦RS = R(∆S) : D(A)→ D(Â)

is thus also an anti-equivalence. The derived dual of E is simply the ordinary dual, i.e.
R∆(E) = E∨. The derived dual of Op0 [2] is also a sheaf concentrated in degree zero since

Ri∆(Op0 [2]) = Ext2+i(Op0 ,O) ∼=
{
Op0 i = 0
0 i 6= 0.
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Thus if we apply R(∆S) to the sequence IZ → O → OZ (which reverses arrows), we
get the exact triangle

R(∆S)(IZ)← Op0 ← E∨ ← R(∆S)(IZ)[−1].

Since the map O → OZ is non-zero, the map E∨ → Op0 must be non-zero and hence
surjective. Thus we see that R(∆S)(IZ) is concentrated in degree -1 and is the sheaf
Ker(E∨ → Op0).

We have shown that the functor R(∆S), which is an (anti-)equivalence of categories,
takes the ideal sheaves of zero-dimensional subschemes of A to sheaves on Â which are the
kernel of a framing τ : E → Op0 . It remains to see which bundles and framings arise in
this way. This can be answered by reversing the question; when is R(∆S)(Ker(E → Op0 ))
a sheaf of the form I

bZ where I
bZ is the ideal sheaf of a 0 dimensional subscheme Ẑ of

Â? We can reverse the question in this way because the functor R(∆Ŝ) is the inverse of
R(∆S), i.e. R(∆Ŝ) ◦ R(∆S) is isomorphic to the identity functor (Theorem 2.2. and
Equation 3.8 of [39]). The answer to this question is given by the following theorem of
Mukai (c.f. [40] Proposition 2.18 and Corollary 2.19).

Theorem 5.1. Let E be a holomorphic bundle on A with ch(E) = (n, 0, 0), let τ : E →
Op0 be a surjective sheaf map, and let F = Ker(τ ). Then the following are equivalent:

1. R(∆S)(F) is a sheaf;
2. Ê, the Fourier-Mukai transform of E , is of the form O

bZ = O/I
bZ where Ẑ ⊂ Â is a

length n, 0 dimensional subscheme of Â.
3. F is simple, i.e. End(F) = C;

In this case R(∆S)(F) = I
bZ[−1].

Note that the theorem implies that F is independent of the choice of τ (as long as
Ker(τ ) is simple).

Proof: First we note that R(∆S)(E) = R∆(RS(E)) = R∆(Ê [2]) = Ê and R(∆S)(Op0 )
= R∆(O) = O. We apply the functor R(∆S) to the exact sequence 0 → F → E → Op0

→ 0 to get the exact triangle

R(∆S)(F) ← Ê ← O ← R(∆S)(F)[−1]

Suppose that R(∆S)(F) is a sheaf. Since Ê is a sheaf supported on a finite number
of points, R−1(∆S)(F) = Ker(O → Ê) 6= 0. Thus R(∆S)(F) is a sheaf implies that
R0(∆S)(F) = Coker(O → Ê) = 0. Thus O → Ê is surjective and since Ê is supported
on points the kernel of O → Ê must be an ideal sheaf of a zero dimensional subscheme.
Thus (1) implies (2) and R(∆S)(F) = I

bZ[−1]. It follows then that F is simple since I
bZ

is a simple sheaf and R(∆S) is an equivalence of categories. It remain to be seen that
(3) implies (1).

Assume thatF is simple and suppose that R(∆S)(F) is not a sheaf. Then R0(∆S)(F) =
Coker(O → Ê) 6= 0. Since Ê is supported on a finite number of points, so is R0(∆S)(F)
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and so there must exist some point x̂ ∈ Â so that

Hom
bA(R0(∆S)(F),O

bx) 6= 0.

Since Ri(∆S)(F) = 0 for i > 0 we have

Hom
bA(R0(∆S)(F),O

bx) = HomD( bA)(R(∆S)(F),O
bx)

where O
bx is regarded as a complex concentrated in degree 0. Now O

bx = R(∆S)(L
bx)

since RS(L
bx) = O

bx[2] and R∆(O
bx[2]) = O

bx. So

HomD( bA)(R(∆S)(F),O
bx) = HomD( bA)(R(∆S)(F), R(∆S)(L

bx))

= HomD(A)(Lbx,F)

= HomA(L
bx,F)

using the fact that R(∆S) is an anti-equivalence of categories. This gives us Hom(L
bx,F) 6=

0 which implies Hom(L
bx, E) = H0(E ⊗L∨

bx ) 6= 0. This in turn implies (by Proposition 4.18
of [38]) that H0(E∨⊗L

bx) = Hom(E , L
bx) 6= 0 from which we get Hom(F , L

bx) 6= 0. There-
fore we get a (necessarily non-constant) endomorphism F → L

bx → F which contradicts
the simplicity of F .

5.4. Mukai stability

We can regard the three equivalent conditions in Theorem 5.1 as giving a different
stability condition for bundles. We call this condition Mukai stability and we extend it
to principal GC bundles:

Definition 5.2. We say a semi-stable holomorphic bundle E on A is Mukai-stable if
there exists a framing τ : E → Op0 such that Ker(τ ) is simple, i.e. End(Ker(τ )) = C. We
say that a holomorphic GL(n, C), SL(n, C), or Sp(n, C) bundle is Mukai stable if the
associated vector bundle (induced by the standard representation) is Mukai stable.

Using the facts that Hilbn(Â) is a fine moduli space and R(∆S) is an equivalence of
categories, and applying Theorem 5.1, we get the following (c.f. Theorem 2.20 of [40]):

Theorem 5.2. Let M̃(n, 0, 0) be the space of Mukai-stable bundles E on A with ch(E) =
(n, 0, 0), then M̃(n, 0, 0) is a fine moduli space and the functor R(∆S) applied to Ker(τ )
induces an isomorphism M̃(n, 0, 0) ∼= Hilbn(Â). Moreover the map M̃(n, 0, 0)→M(n, 0, 0)
induced by sending E to its s-equivalence class fits into the following commutative diagram

Û� � � Æ ý Æ ý � Æ � � � Æ ý Æ ý �

ê à ê ì
·

� �� �
Ç

Æ Ø ÷ é
· � �� �

Ç
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where the vertical arrows are isomorphisms induced by R(∆S) applied to Ker(τ ) and E
respectively. In particular, M̃(n, 0, 0) is a resolution of singularities of M(n, 0, 0).

This theorem provides an answer to Question 1.2 in the case when G is the (non-semi-
simple) group U(n). That is, it shows that the moduli space MU(n)(A) = M(n, 0, 0)
of flat U(n) connections on A has a hyperkähler resolution given by the moduli space
M̃(n, 0, 0) of Mukai stable U(n)C-bundles (i.e. Gl(n, C)-bundles).

We now use this theorem to analyze the Mukai-stable moduli spaces in the Sp(n) and
SU(n) cases.

Definition 5.3. Let M̃SU(n)(A) ⊂ M̃(n, 0, 0) be the subset of Mukai stable bundles
that arise as the associated vector bundles of principal holomorphic SL(n, C) = SU(n)C

bundles. For the case of Sp(n), let M̃Sp(n)(A) ⊂ M̃(2n, 0, 0) be the closure of the subset of
Mukai stable bundles that arise as the associated vector bundles of principal holomorphic
Sp(n, C) = Sp(n)C bundles.

We now wish to show (as the notation suggests) that M̃SU(n)(A) and M̃Sp(n)(A) are
hyperkähler resolutions of MSU(n)(A) and MSp(n)(A).

We first treat the SU(n) case. A holomorphic vector bundle E is the associated bun-
dle of a holomorphic principal SL(n, C) bundle if and only if det E ∼= O. There fore
M̃SU(n)(A) ⊂ M̃(n, 0, 0) is the subset of bundles with trivial determinant. Since the
determinant of a bundle is constant in its s-equivalence class, M̃SU(n)(A) is the preim-
age of the subset of bundles in M(n, 0, 0) which have trivial determinant. This set is just
MSU(n)(A) which under the isomorphism M(n, 0, 0) ∼= Symn(Â) is the fiber over p0 of the
sum map Symn(Â)→ Â. Thus we recover the ad hoc hyperkähler resolution constructed
in Section 2:

Theorem 5.3. The moduli space of Mukai stable SL(n, C) bundles M̃SU(n)(A) is smooth,
holomorphic symplectic, and isomorphic to the generalized Kummer variety KAn−1. The
natural map M̃SU(n)(A)→MSU(n)(A) is a hyperkähler resolution.

We now turn to the Sp(n) case. A holomorphic bundle E is the associated bundle of a
holomorphic principal Sp(n, C) bundle if and only if there is an isomorphism

φ : E → E∨

such that φ∨ = −φ (i.e. a symplectic form). We apply the Fourier-Mukai transform to
translate this into a condition for M̃Sp(n)(A) ⊂ M̃(2n, 0, 0) ∼= Hilb2n(Â). The result is
the following.

Theorem 5.4. The moduli space of Mukai stable Sp(n, C) bundles M̃Sp(n)(A) (Defini-
tion 5.3) is smooth, holomorphic symplectic, and birationally equivalent to Hilbn(X) where
X is the Kummer K3 surface associated to A. The natural map M̃Sp(n)(A)→MSp(n)(A)
is a hyperkähler resolution.
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Remark 5.1. Note that strictly speaking, Definition 5.3 is not consistent with our earlier
ad hoc definition of M̃Sp(n)(A) as Hilbn(X) since Theorem 5.4 only asserts that they are
birationally equivalent. However, from the point of view of this paper, the distinction
is not very important—we have compared the Hodge numbers of the resolution to the
stringy Hodge numbers and so we can work with either of the desingularizations since
the Hodge numbers of birationally equivalent hyperkähler manifolds are the same. As
we remarked earlier, it is believed (but has not been proved) that birationally equivalent
hyperkähler manifolds are actually deformation equivalent and hence diffeomorphic, c.f.
[31].

We also note that the subset of Mukai stable bundles that admit a symplectic form is
not closed in M̃(2n, 0, 0). Thus the points of M̃Sp(n)(A) parameterize not only symplectic
Mukai stable bundles but also Mukai stable bundles with degenerate symplectic forms
that occur as the limits of symplectic Mukai stable bundles. We will give examples of
such bundles in the course of the proof of the theorem (see Remark A.2).

Proof of Theorem 5.4: Since E is Mukai stable, by Theorem 5.1, RS(E) = Ê[2] =
O

bZ [2] where Ẑ ⊂ Â is a length 2n, 0 dimensional subscheme of Â. In the sequel, we drop
the hats and just write Z ⊂ A. Let (−1) : A → A be the involution x 7→ −x and note
that (−1)∗ induces an involution on Hilb2n(A). We use −Z to denote the image of Z
under (−1)∗ so that we also have (−1)∗OZ = O−Z . There is a natural equivalence of
functors [39]

R(S∆) = (−1)∗R(∆S)[2]

and so

RS(E∨) = R(S∆)(E)
= (−1)∗R∆(OZ[2])

= (−1)∗ Ext2(OZ ,O)

= Ext2(O−Z ,O).

For an arbitrary 0-dimensional subscheme W ⊂ A, the sheaf Ext2(OW ,O) is not neces-
sarily isomorphic toOW because it may fail to be the structure sheaf of a subscheme. How-
ever, if Ext2(OW ,O) is the structure sheaf of a subscheme, then Ext2(OW ,O) is isomorphic
to OW (although not canonically!); this assertion will be proved in the course of the proof
of Lemma 5.5. In the case at hand, since E ∼= E∨ we have OZ ∼= Ext2(O−Z ,O) ∼= O−Z
and so Z = −Z. In particular, M̃Sp(n)(A) is contained in the fixed point set of the action
of (−1)∗ on Hilb2n(A). More precisely, we have the following Lemma:

Lemma 5.5. M̃Sp(n)(A) is a connected component of the fixed locus of (−1)∗ acting on
Hilb2n(A).

We defer the proof of the lemma to the appendix. The theorem follows easily from
the lemma: First, since Hilb2n(A) is smooth, the components of the fixed point set of
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the involution (−1)∗ are smooth. Furthermore, since (−1)∗ preserves the holomorphic
symplectic form on Hilb2n(A), the fixed components are also holomorphic symplectic.
Finally, the fixed component that we claim is M̃Sp(n)(A) lies over the subset of Sym2n(A)
consisting of n pairs of points of the form {x,−x}. This set is naturally identified with
Symn(A/ ± 1). Thus M̃Sp(n)(A) is birational to Symn(A/ ± 1) which is birational to
Hilbn(X).

Appendix A. Miscellaneous details

Here we provide the details that were suppressed in the main discourse.

A.1. The basic example for D4.

Theorem A.1. Let W and Λ be the Weyl group and coroot lattice for Spin(8). There
exists a point of (A ⊗ Λ)/W locally modeled on C8/± 1.

Proof: We first derive a useful description of A ⊗ Λ. The coroot lattice Λ is the
sublattice of Z4 generated by the simple coroots e1− e2, e2− e3, e3 − e4, and e3 + e4. W
is generated by the reflections through the planes perpendicular to the simple coroots.

Thus one can easily see that

Λ = {
4∑
i=1

aiei ∈ Z4 :
∑

ai ≡ 0 mod 2}

and

W = S4 n {±1}3 ⊂ S4 n {±1}4

where the action of W on Λ is the restriction of the action on Z4 given by permuting
the factors and multiplying by −1 on some even number of factors. The elements

∑
aiei

with ai ≡ 0 mod 2 form a sublattice of Λ giving us the exact sequence:

0→ (2Z)4 → Λ→ (Z/2)3 → 0

where (Z/2)3 ⊂ (Z/2)4 is the kernel of the sum map (Z/2)4 → Z/2. Noting that A ⊗
(2Z)4 ∼= A⊗Z4 = A4 we apply A⊗ (·) to the sequence and examine the Tor sequence to
arrive at:

0→ Tor1(A, (Z/2)3)→ A4 → A⊗ Λ→ 0.

The subgroup Tor1(A, (Z/2)3) ⊂ A4 is concretely given as

Tor1(A, (Z/2)3) = {(τ1, . . . , τ4) ∈ A4 : 2τi = 0,
∑

τi = 0}.

Thus we can regard elements of A⊗ Λ as orbits of points in A4 by translation by the
finite number of elements in Tor1(A, (Z/2)3). The action of W = S4 n {±1}3 on A ⊗ Λ
is induced from the natural action on A4.

Now we choose 3 distinct, non-zero 2-torsion points of A that sum to 0; that is, let
τ1, τ2, τ3 ∈ A be such that 2τi = 0, τi 6= τj 6= 0 for all i 6= j, and τ1 + τ2 + τ3 = 0. Note
that (0, τ1, τ2, τ3) ∈ Tor1(A, (Z/2)3).
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We then choose “square-roots” of the τi’s; that is, elements τi/2 ∈ A, such that
2(τi/2) = τi.

Let

p = (0, τ1/2, τ2/2, τ3/2) ∈ A4.

In A⊗ Λ, −p is equivalent to p since

(0,−τ1/2,−τ2/2,−τ3/2) = (0, τ1 − τ1/2, τ2 − τ2/2, τ3 − τ3/2)

= (0, τ1/2, τ2/2, τ3/2).

Thus the subgroup {±1} ⊂ S4n{±1}3 ⊂ S4n{±1}4 with generator Id×(−1,−1,−1,−1)
fixes p in A⊗ Λ. In fact, the stabilizer of p in A⊗Λ is exactly {±1}: The stabilizer does
not contain non-trivial permutations because 0, τ1/2, τ2/2, and τ3/2 are distinct. No
other subgroup of {±1}3 stabilizes p since τi/2 6= −τi/2 and we must have at least two
−1’s acting. Thus, the local model of the quotient of A ⊗ Λ by W near p is C8/ ± 1
(where ±1 acts non-trivially on all factors) as asserted by Theorem A.1.

Remark A.1. If we replace A with E in the above discussions, we see that in MSpin(8)(E)
= (E ⊗ Λ)/W there is a point modeled on C4/± 1. Looijenga’s theorem (Theorem 2.3)
tells us that MSpin(8)(E) is in fact CP(1, 1, 1, 1, 2) which has a unique singular point
(modeled on C4/ ± 1). In an elliptic curve E, there are exactly 3 non-zero 2-torsion
points and so the choice of the τi is unique (up to permutation) and the choice of the
square roots τi/2 is unique up to addition by a 2-torsion point. It is then easily checked
that the W orbit of the point (0, τ1/2, τ2/2, τ3/2) ∈ A ⊗ Λ is unique and corresponds to
the predicted singular point in CP(1, 1, 1, 1, 2). In A, there are many choices for the τi’s
and so there are multiple points in M0

Spin(8)(A) where a crepant resolution does not exist
locally.

A.2. The basic example for B3.

Theorem A.2. Let W and Λ be the Weyl group and coroot lattice for Spin(7). There
exists a point of (A ⊗ Λ)/W locally modeled on C6/± 1.

Proof: The coroot lattice of Bn in general is given as the sublattice of Zn defined by
the condition that the sum of the coordinates should be even. That is, there is an exact
sequence

ý Æ y # � Æ ~
· Ï À m

Æ ~ Ö ð Æ ý ×
(6)

The Weyl group W = WBn is the same as the Weyl group of the Cn coroot system:
WCn

∼= Sn n {±1}n. The action of W on ΛBn is induced by the action on Zn ∼= ΛCn
which is given by permuting the factors and multiplying by ±1 on each coordinate. We
remark that for the root lattices, the situation is exactly reversed, Λ∗Cn ⊂ Λ∗Bn

∼= Zn.
These facts are easily seen by examining the simple roots (see for example the tables in
Appendix C of [34]). The simple roots of the Bn root system are given by

{e1 − e2, e2 − e3, . . . , en−1 − en, en}
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which span the full lattice Zn =
∑

i eiZ, whereas the simple roots of Cn are given by

{e1 − e2, e2 − e3, . . . , en−1 − en, 2en}
which spans the kernel of the (mod 2) sum Zn → Z/2. To obtain the coroot system from
the root system, one replaces each root α with its coroot (see for example page 496 of
[20])

α′ =
2
||α||2α.

It is then clear that the coroot system of Bn is isomorphic to the root system of Cn
and vice versa since (ei − ei+1)′ = ei − ei+1, e′n = 2en , and (2en)′ = en.

As in the D4 case (indeed, Dn in general) we can regard ΛBn as a quotient of (2Z)n:

0→ (2Z)n → ΛBn → (Z/2)n−1 → 0

where (Z/2)n−1 is the kernel of the sum map (Z/2)n → Z/2. Thus, as in the D4 case,
we have a sequence

0→ Tor1(A, (Z/2)n−1)→ An → A⊗ ΛBn → 0.

Specializing to n = 3, we can express the subgroup Tor1(A, (Z/2)n−1) ⊂ A3 as

{(τ1, τ2, τ3) ∈ A3 : 2τi = 0 and
∑

τi = 0}.

As in the D4 case, choose (τ1, τ2, τ3) ∈ Tor1(A, (Z/2)n−1) such that τi 6= τj 6= 0 for all
i 6= j and choose elements τi/2 ∈ A such that 2(τi/2) = τi. Define

p = (τ1/2, τ2/2, τ3/2) ∈ A3/ Tor1(A, (Z/2)n−1).

By essentially the same argument as in the D4 case, the stabilizer of p is {±1}. Therefore
the local model of the image of p in (A⊗ ΛB3)/W is C6/{±1}.

A.3. The proof of Lemma 5.5

Let F 0 ⊂ Hilb2n(A) be the locus of subschemes consisting of 2n distinct points of the
form {p1,−p1, . . . , pn,−pn}. Let F be the closure of F 0. Note that F has dimension
2n an is a connected component of the fixed locus of (−1)∗ and is hence smooth. Let
S = Sn ⊂ Hilb2n(A) be the locus of subschemes whose Fourier-Mukai transforms admit
a symplectic form so by definition M̃Sp(n)(A) = S. We will prove that S = F .

Let Hk ⊂ Hilb2k(A) be the locus of subschemes supported at the origin and let
H ′k ⊂ Hilb2k(A) be the locus of subschemes supported at the two-torsion points. By
Theorem 1.13 of [41], dimHk ≤ 2k−1 for k ≥ 1. It follows that dimH ′k ≤ 2k−1. In fact,
a component of H ′k parameterizing subschemes supported at precisely l of the two-torsion
points has dimension 2k − l.

Now S has a stratification

S =
⋃
k≥0

S0
n−k × (H ′k ∩ Sk),
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where S0
n−k ⊂ Sn−k ⊂ Hilb2(n−k)(A) parameterizes subschemes whose support is disjoint

from the two-torsion points. Since dim(S0
n−k) = 2(n−k), we see that all strata of S have

dimension less than or equal to 2n−1, except for S0
n which is irreducible of dimension 2n:

In fact, there is a quasi-finite map from an open subset of Hilbn(A) onto S0
n. Note that

F 0 is a dense open subset of S0
n. Indeed, if Z = {p1,−p1, . . . , pn,−pn} is a subscheme

corresponding to a point in F 0, then the Fourier-Mukai transform of OZ is the direct sum
Lp1⊕L−p1⊕· · ·⊕Lpn⊕L−pn of degree zero line bundles which has an obvious symplectic
form.

We claim that all the strata of S are contained in the closure S0
n and hence S = F 0 = F

which proves the lemma. This claim is equivalent to showing that dimz(S) = 2n at every
point z ∈ S. By factoring S locally near z, this reduces to showing that dimz(Sk) = 2k
at each z ∈ Sk ∩Hk. Since n is arbitrary, we prove this for k = n.

To prove this claim, we begin by examining the Fourier-Mukai transform of the condi-
tion −φ = φ∨. We get −RS(φ) = RS(φ∨) = R(S∆)(φ) = (−1)∗R(∆S)(φ)[2] and so the
following diagram commutes:

� �

ö � ) � � ý �
Æ ÿ Ý V ) � � î � Æ � �

� î �

� ö Â � ®

Ç �
Á

� ÿ � � � ý �
Æ ÿ Ý V ) � � � Æ � �

� ö Â � ®

Ç

(7)

Let VZ = H0(OZ) so by Serre duality V ∨Z = Ext2(OZ ,O). Applying the global sections
functor Γ to the above diagram and writing Φ for R(ΓS)(φ) we get

T �
ö È

Æ T Ãî �

T î �

� ö Â � ®

Ç È Ã
Æ T Ã�

� ö Â � ®

Ç

so that in particular, (−1)∗ ◦ Φ is a symplectic form on VZ .
Suppose now that z ∈ Sn ∩Hn. That is, z corresponds to a subscheme Z ⊂ A with

Supp(Z) = p0 such that we have the Diagram (7). The sheaf OZ is then determined
by the corresponding module over the local ring Ôp0

∼= C[[x, y]]. This has a concrete
description in terms of linear algebra (c.f. Nakajima [41] section 1.2), namely OZ is
determined by the actions of x and y on VZ . That is, OZ is determined by a pair of
nilpotent endomorphisms Mx, My ∈ End(VZ) that commute. Conversely, suppose Mx

and My are any pair of commuting, nilpotent, 2n × 2n dimensional complex matrices.
Then the action of Mx and My give C2n the structure of a finite length module over
C[[x, y]]; this module will be of the form C[[x, y]]/IZ (and hence correspond to a point
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in H0) if and only if there exists a vector v ∈ C2n such that the vectors {M i
xM

j
y (v)}i,j≥0

span C2n. In this case, IZ = {f ∈ C[[x, y]] : f(Mx, My) = 0} and the matrices are unique
up to simultaneous conjugation.

More generally, if (Mx, My) are a pair of (not necessarily nilpotent) commuting ma-
trices satisfying the above spanning condition, then they determine (uniquely up to si-
multaneous conjugation) an ideal I ⊂ C[x, y] of finite length and hence a 0 dimensional
subscheme of C2.

Note that Hn ⊂ Hilb2n(A) has a neighborhood ν(Hn), open in the analytic topology,
parameterizing subschemes whose support is contained in an open ε-polydisc about p0.
ν(Hn) is isomorphic to the corresponding neighborhood of Hn ⊂ Hilb2n(C2) whose points
are given by (equivalence classes of) commuting matrices (Mx, My) whose eigenvalues
have modulus less than ε. Under this identification, Diagram (7) for A corresponds to
the same diagram for C2. We may therefore replace A and the subschemes Sn and Hn

of Hilb2n(A) by C2 and the corresponding subschemes of Hilb2n(C2).
If the sheaf OZ is given by the pair (Mx, My), then the sheaf O−Z is then clearly given

by the pair (−Mx,−My). We can also determine the matrices corresponding to the sheaf
Ext2(OZ ,O). This sheaf must be given by the pair (M t

x, M
t
y) where M t

x, M
t
y denote the

transpose matrices. This follows from the uniqueness of the dualizing functor for modules
over a local ring ([27] pg. 275): both OZ 7→ Ext2(OZ ,O) and (Mx, My) 7→ (M t

x, M
t
y)

satisfy the conditions of a dualizing functor and so they must coincide7. In this language,
the existence of Diagram (7) means that there is a skew-symmetric, invertible matrix
Φ = −Φt such that ΦM•Φ−1 = −M t

• for • = x, y.
Note that whenever (M•, Φ) satisfy ΦM•Φ−1 = −M t

•, then (P−1M•P, P tΦP ) satisfy
the same equation. Since Φ is skew-symmetric and invertible, there exists a P so that
P tΦP = J where J =

(
0 I
−I 0

)
is the standard symplectic form. Thus we may assume

that (Mx, My) satisfy JM• + M t
•J = 0, i.e. (Mx, My) ∈ sp(n) ⊕ sp(n). This equation is

preserved under M• 7→ g−1M•g if and only if gtJg = J , i.e. g ∈ Sp(n, C).
We conclude that S ⊂ Hilb2n(C2) is the image of an open set C0 of the “commuting

variety”

C0 ⊂ C = {(g1, g2) ∈ sp⊕ sp : [g1, g2] = 0}

under a morphism whose fibers are the simultaneous Sp(n, C) conjugacy classes in C0.
The open set C0 is the set of (g1, g2) ∈ C satisfying the spanning condition; that is, there
exists a vector v ∈ C2n such that {gi1g

j
2v}i,j≥0 spans C2n. By Theorem A of Richardson

[45], C is irreducible. It follows that S ⊂ Hilb2n(C2), the image of C0, is also irreducible,

7One sees from this description that the sheaf Ext2(OZ ,O) is isomorphic (non-canonically) to OZ as
long as Ext2(OZ ,O) is of the form O/I. This follows since the ideals {f ∈ C[[x, y]] : f(Mx,My) = 0}
and {f ∈ C[[x, y]] : f(M t

x,M
t
y) = 0} coincide. However, it can happen that (M t

x,M
t
y) fails the spanning

condition even if it is met by (Mx,My). For example, Ext2(O/(x2, xy, y2),O) is not isomorphic to the

structure sheaf of a subscheme. In this example, the pair (Mx,My) =
��

0 0 0
1 0 0
0 0 0

�
,
�

0 0 0
0 0 0
1 0 0

��
satisfies the

spanning condition, but the transpose pair (M t
x,M

t
y) does not.
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hence everywhere of dimension at least 2n, and so the same must hold for the original
S ⊂ Hilb2n(A).

Remark A.2. We have shown that S = F but in general S 6= F—the symplectic form
can degenerate in a family of Mukai stable symplectic bundles. For example, let E be the
Fourier-Mukai transform of OZ where Z is a subscheme supported at p0 ∈ A defined by
the ideal I = (x, y)3 ∪ (y2 − xy, x2 − xy). A matrix representation of this subscheme is
given by the pair

Mx =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , My =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 1 0


One can check by hand that there does not exist an invertible matrix Φ such that

Φ = −Φt and ΦM• = −M t
•Φ for • = x, y. Thus E is not symplectic.

Another example with a slightly different flavor is as follows. Let E be the Fourier-
Mukai transform of O/(Ip0)2. As we showed earlier in the footnote, O/(Ip0)2 is invariant
under (−1)∗ but it is not isomorphic to Ext2(O/(Ip0)2,O). This implies that E 6∼= E∨.
Consequently, any bundle of the form (L ⊗ E) ⊕ (L−1 ⊗ E) is Mukai stable but cannot
have a non-degenerate symplectic form (here L is a degree zero line bundle that is not
two-torsion). Examples of this type occur in codimension 4; in fact, one can prove that in
general, the components of the locus of bundles in M̃Sp(n)(A) with degenerate symplectic
forms have codimension at least 4.
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