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The topology of symplectic manifolds

Robert E. Gompf

1. Introduction

The purpose of this article is twofold: First, we provide an informal introduction to
symplectic structures from a topological viewpoint. Second, we address the question of
whether symplectic manifolds can ultimately be described as purely topological objects.
We sketch work that will appear in [G2], pointing towards an affirmative answer to the
question. The first section of the present article motivates and defines symplectic struc-
tures, and then discusses obstructions to their existence. In Section 2, we focus on a
particular topological construction of symplectic structures, and in Section 3 we see that
the construction is likely to be universal in the sense of realizing a dense subset of all
symplectic structures on any given manifold. This would lead to a complete topological
characterization of those manifolds that admit symplectic structures, and to a reinterpre-
tation of a dense set of symplectic structures on a given manifold as a certain set that
should ultimately be describable by purely topological means. Further details will appear
in [G2]; see also [GS] for a discussion of the 4-dimensional case. For additional reading
on symplectic topology, see e.g., [McS]. In this article, manifolds will always be assumed
to be smooth, closed and oriented.

1.1. Why study symplectic manifolds?

While symplectic structures naturally arise in diverse contexts such as Hamiltonian me-
chanics and algebraic geometry, we focus on a topological application: the classification
problem for simply connected 4-manifolds. The most direct approach to a classification
problem is to begin by writing down examples. The main classical source of examples
of simply connected 4-manifolds was complex surfaces (complex manifolds of complex
dimension 2, hence real dimension 4). These can be constructed, for example, by writing
down collections of homogeneous polynomials in n + 1 complex variables. The common
zero locus then specifies a well-defined subset of projective space CPn = Cn+1−{0} mod-
ulo multiplication by nonzero complex scalars. If this subset happens to be a manifold,
it will automatically be complex. Complex surfaces arising in this manner are called
algebraic surfaces. Many examples of simply connected algebraic surfaces are known —
for example, any generic collection of n − 2 homogeneous polynomials will determine a
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simply connected algebraic surface in CPn (as will some nongeneric collections of more
than n− 2 polynomials).

Once we have examples of simply connected 4-manifolds, we can construct many more
by the connected sum operation: We remove the interior of a 4-ball from each of the
4-manifoldsX1 and X2, and glue along the resulting boundary 3-spheres so that the new
manifoldX1 #X2 inherits the same orientation from each summand. This can be thought
of as an unnecessary complication, however. We would like to restrict attention to those
4-manifolds that cannot be split as connected sums. Unfortunately, it is still unknown
whether every 4-manifold homeomorphic to the 4-sphere is actually diffeomorphic to it,
and it is even possible that every 4-manifold could split off arbitrarily many nontrivial
summands homeomorphic to S4 . Thus, we define a 4-manifold X to be irreducible if for
every (smooth) decomposition X ≈ X1 #X2, one summand Xi must be homeomorphic
(but not necessarily diffeomorphic) to S4 .

We can now begin a brief history of the classification problem for simply connected,
irreducible 4-manifolds. In the 1970’s, virtually nothing was known. While there were
many examples of simply connected complex surfaces, these could in general not be dis-
tinguished from each other (up to diffeomorphism) or shown to be irreducible. In fact,
it was possible that a complete list of irreducible, simply connected 4-manifolds could
be given by S4 , ±CP2 (the complex projective plane with both orientations), S2 × S2

(= CP1×CP1) and ±K3 (where K3 denotes the zero locus of a generic quartic polynomial
in CP3). Furthermore, it was unknown whether K3 could split as X #S2 × S2 for some
unknown manifold X. In the 1980’s, the situation began to change dramatically, due to
techniques pioneered by Donaldson using gauge theory. While it now seems likely (in
light of Freedman’s breakthrough for topological 4-manifolds) that any simply connected
(smooth) 4-manifold is homeomorphic to a connected sum of manifolds from the above
list, the diffeomorphism classification is much more complicated. Our present knowledge
about simply connected complex surfaces can be summed up as follows:

• There are many diffeomorphism types (sometimes infinitely many within a homeo-
morphism type).

• They are irreducible (when minimal).

Minimality is a technical condition that causes no essential difficulties here — any complex
surface X can be “blown down” to a minimal complex surface Y , and then X is diffeo-
morphic to a connected sum of Y with copies of −CP2. The K3-surface, for example, is
minimal and hence irreducible.

This breakthrough in understanding complex surfaces highlighted our ignorance re-
garding a related question: Are all simply connected, irreducible 4-manifolds (6= S4)
complex? By the end of the 1980’s, no counterexamples were known. An affirmative
answer would have reduced the classification problem to that of understanding complex
surfaces, much as the study of oriented surfaces can be reduced to that of complex curves
(Riemann surfaces). In 1990, the question was answered in the negative: Infinitely many
irreducible 4-manifolds homeomorphic to the K3-surface were produced, and shown not
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to admit complex structures with either orientation [GM]. Subsequently, many other fam-
ilies of counterexamples have been constructed. (See [GS] for a recent survey.) However,
the underlying beauty of the question suggested looking for a generalization. It had long
been known that every simply connected complex surface is algebraic (after deformation
of the complex structure). But every algebraic manifold inherits a Kähler structure, i.e.,
a symplectic structure compatible with its complex structure. (See 1.2-3 for definitions.)
Thus, we could generalize to the following question: Are all simply connected, irreducible
4-manifolds (6= S4) symplectic? Work in the early 1990’s showed this to be a reasonable
question. In fact:
• There are many diffeomorphism types of symplectic, noncomplex 4-manifolds [G1].

For example, the exotic K3-surfaces of [GM] are symplectic. Dropping the simple
connectivity hypothesis, we find that every finitely presented group is realized as
the fundamental group of a symplectic 4-manifold, whereas fundamental groups of
Kähler manifolds and complex surfaces are quite restricted.

• Minimal, simply connected, symplectic 4-manifolds are irreducible (Kotschick [K],
after Taubes [T]), at least when b+2 6= 1.

(The discussion of symplectic minimality is parallel to that of the holomorphic version
discussed above. For b+2 , see 1.3.) At present, there are only a few known methods for
constructing simply connected, irreducible, noncomplex 4-manifolds. These are highly
restricted cut-and-paste constructions. (More general cut-and-paste constructions seem to
invariably result in connected sums of simple manifolds.) These restricted operations can
be shown to preserve symplectic structures under reasonable hypotheses [G1], [S]. Could it
be that the only way to build an irreducible manifold is by equipping it with a symplectic
structure? In fact, the answer is no: In 1996, Szabó [Sz] produced simply connected,
irreducible 4-manifolds admitting no symplectic structures, by applying these operations
under more general hypotheses. Subsequently, Fintushel and Stern [FS] generalized the
method to produce an abundance of such examples. At present, there seems to be no
reasonable question of this sort to ask to shed light on the structure of arbitrary simply
connected, irreducible 4-manifolds.

In summary, we are left with the following classes of simply connected, irreducible
4-manifolds (up to diffeomorphism):

∅ ⊂ {complex} ⊂ {symplectic} ⊂ {arbitrary} .
We have seen that each class contains many elements not in the previous one — in fact,
there seems to be a sense in which “most” elements of a given class lie outside the previous
one. At present, there seems to be little hope of classifying arbitrary simply connected,
irreducible 4-manifolds, so we might hope to simplify the problem by restricting to one
of the other classes. Complex surfaces, on the other hand, are difficult for a topologist to
study. There is little hope of cutting and pasting, due to the rigid nature of holomorphic
functions, so one must resort to methods of algebraic geometry. Symplectic manifolds,
however, are accessible by topological methods. The main constructions of symplectic,
noncomplex manifolds are of a cut-and-paste nature (e.g., [G1], [S]). In Sections 2 and 3
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we will discuss a different topological construction, motivated by fiber bundles, that (at
least in dimension 4) provides a complete topological characterization of those manifolds
admitting symplectic structures. Thus, one can consider the diffeomorphism classifi-
cation of simply connected, irreducible, symplectic 4-manifolds as a purely topological
problem that may be more accessible than the original classification problem for smooth
4-manifolds.

1.2. Symplectic structures

Definition 1.1. A symplectic manifold is a 2n-manifold X together with a symplectic
form ω on X, i.e., a differential 2-form that is closed (dω = 0) and nondegenerate.

Here, nondegeneracy has its usual meaning in the context of bilinear forms: For any
nonzero v ∈ TxX there is a vector w ∈ TxX such that ω(v, w) 6= 0. An equivalent
condition is that the top exterior power ωn of ω should be nowhere zero, i.e., a volume
form on X. (This indicates why X must have even dimension.) The volume form ωn

determines an orientation on X; we will always use this orientation when considering X
as an oriented manifold. For example, we will see that CP2 admits a symplectic structure
while −CP2 does not.

It is instructive to compare the above definition with Riemannian geometry. If ω
were symmetric rather than skew-symmetric, nondegeneracy would imply that ω was a
Riemannian or Lorentzian metric. The condition that dω = 0 can be compared with
requiring a Riemannian metric to have constant curvature. In each case, the relevant
partial differential equation guarantees the absence of local structure — two Riemannian
n-manifolds with the same constant curvature are locally identical (i.e., any two points
have isometric neighborhoods), and the same holds for symplectic 2n-manifolds (any
two points have symplectomorphic neighborhoods). Thus, symplectic structures can be
thought of as skew-symmetric analogs of constant curvature metrics. In the Riemannian
case, constant curvature allows a classification theory, which reduces to a study of dis-
crete groups of isometries of Euclidean, hyperbolic or spherical space. One might hope
to similarly reduce the study of symplectic manifolds to a topological or combinatorial
problem. One cannot hope to generalize the Riemannian theory directly, since there is no
symplectic analog of geodesics, and since the classification problem is already difficult for
simply connected symplectic manifolds. We will use a different approach to this problem
in Section 3.

1.3. Obstructions to constructing symplectic structures

The study of which manifolds admit symplectic structures has two directions: existence
and nonexistence. We now discuss the three known sources of obstructions to existence,
and defer the discussion of constructing symplectic manifolds to the next section.

To obtain the first obstruction, note that since a symplectic form is closed, it determines
a cohomology class [ω] ∈ H2

dR(X) ∼= H2(X;R). Nondegeneracy implies that the top
exterior power [ω]n = [ωn] ∈ H2n

dR(X) ∼= R (for X connected) is positive relative to the
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given orientation on X. Thus, a symplectic structure cannot exist unless there is a class
α ∈ H2(X;R) with αn > 0.

Examples. S2n admits no symplectic structure for n > 1, since H2(S2n;R) = 0. S2 ×
S2n−2 admits no symplectic structure for n > 2, for although H2(S2 × S2n−2;R) ∼= R,
the generator α has α∧ α = 0. Similarly, −CP2 admits no symplectic structure since the
generator of H2(−CP2;R) ∼= R has negative square.

For the second source of obstructions, we forget the closure condition on ω, and consider
arbitrary nondegenerate 2-forms on X. Such a 2-form reduces the structure group of the
tangent bundle TX from GL(2n,R) to the subgroup Sp(2n) consisting of isomorphisms
of R2n preserving the standard symplectic form dx1 ∧ dy1 + · · · + dxn ∧ dyn. (This
corresponds to the reduction to O(n) ⊂ GL(n;R) in the Riemannian case.) The group
Sp(2n) is noncompact, but it deformation retracts onto its maximal compact subgroup
U(n) ⊂ GL(n;C) (where we identify R2n with Cn in the obvious way). Since the latter
inclusion is also a homotopy equivalence, the homotopy classification of nondegenerate
2-forms on X is equivalent to the homotopy classification of almost-complex structures,
i.e., complex vector bundle structures on TX. This is a classical problem in obstruction
theory. For example, a homotopy class of nondegenerate 2-forms inherits Chern classes
from the corresponding homotopy class of almost-complex structures.

Examples. CP2 #CP2 admits no symplectic structure, even though it has classes α ∈
H2(CP2 #CP2;R) with α ∧ α > 0, because it admits no almost-complex structure. In
fact, standard characteristic class theory shows that such a structure would have a Chern
class with c21 = 2χ+ 3σ = 14 (where χ is the Euler characteristic and σ is the signature
of the wedge product pairing on H2), but a routine computation shows that no integral
cohomology class has square 14. More generally, a 4-manifold X cannot admit an almost-
complex structure unless the invariant 1

2(χ + σ) = 1− b1(X) + b+2 (X) is even, where b+2
is the dimension of a maximal positive definite subspace of H2 under the wedge product.
In contrast, S3 × S1 admits a complex structure as C2 − {0} modulo multiplication by
2, and this automatically determines an almost-complex structure on S3 × S1. Thus,
this manifold admits nondegenerate 2-forms. Such forms cannot be closed, however, since
H2(S3 × S1;R) = 0.

We will find it useful to link symplectic structures more explicitly with almost-complex
structures. First note that the latter structures can be specified by choosing the effect
of multiplication by i on each tangent space. Thus, an almost-complex structure can
be thought of as a linear bundle isomorphism J : TX → TX (covering idX) such that
J2 = − idTX . It is routine to verify that such an isomorphism actually does specify a
complex structure; we require the induced orientation to agree with the given one on TX.

Definition 1.2. A 2-form ω tames an almost-complex structure J if for any nonzero
tangent vector v we have ω(v, Jv) > 0. If, in addition, ω(Jv, Jw) = ω(v, w) for any two
tangent vectors v, w lying in the same tangent space, we say that ω and J are compatible.
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Thus, ω tames J if it is a positive area form on each complex line (in the complex orien-
tation). The compatibility condition, that J preserves ω (i.e., J ∈ Sp(TX)), corresponds
to orthogonality of J in the Riemannian case. A compatible pair (ω, J) determines a
Hermitian structure on TX via the metric g(v, w) = ω(v, Jw). For a fixed nondegenerate
form on X, the spaces of tamed and compatible almost-complex structures are nonempty
and contractible (e.g., [McS]), so either condition exhibits the above correspondence of
homotopy classes. In the remaining sections, we will make extensive use of the following

Observations. (1) If a 2-form tames some almost-complex structure, it is obviously non-
degenerate. Hence, a closed, taming form is automatically symplectic.

(2) If ω1, . . . , ωk tame a fixed J , then any convex combination
∑k

i=1 tiωi (all ti ≥ 0,∑
ti = 1) will also tame J .
(3) The taming condition is open, i.e., preserved under sufficiently small perturbations

of ω and J .

To verify the last observation, note that the taming condition ω(v, Jv) > 0 is satisfied
provided that it holds for vectors v in the unit sphere bundle Σ ⊂ TX (given by any
preassigned metric). Since Σ is compact, taming implies that ω(v, Jv) is bounded below
by a positive constant on Σ, so it will remain positive under small perturbations of ω
and J . Note that compatibility is not an open condition. For this reason, we will mainly
use the taming condition in subsequent sections, although compatibility appears more
commonly in the literature.

Examples. While every symplectic manifold (X, ω) has a compatible almost-complex
structure J , this latter structure may not come from a complex structure on X. (For J
to be a complex structure on X, it must be locally identical to Cn, which is equivalent to
requiring J to satisfy a certain partial differential equation.) If J actually is a complex
structure on X, the triple (X, J, ω) is called a Kähler manifold . A standard example
of this is CPn, which inherits both J and ω in simple ways from Cn+1. (Restrict the
standard ω =

∑n
i=0 dxi∧dyi from Cn+1 to S2n+1, then note that its projection to CPn is

well-defined by U(1)-invariance and the fact that all tangent vectors projecting to 0 pair
trivially with TS2n+1.) Since a complex submanifold of a Kähler manifold is Kähler, it
follows immediately that any algebraic manifold is Kähler. (More generally, if ω tames J
and Y ⊂ X is J-holomorphic, i.e., each TyY ⊂ TyX is a J-complex subspace, then ω|Y
tames J |Y .)

The third and final known source of obstructions to the existence of symplectic struc-
tures is the Seiberg-Witten invariants (from gauge theory) on 4-manifolds [T] (cf. also
[GS], [K]). An important example is that minimal, simply connected symplectic 4-
manifolds with b+2 6= 1 must be irreducible. Similarly, if an arbitrary symplectic 4-manifold
has a connected sum splitting, the wedge product pairing on H2 must be negative definite
for all but one summand. The Seiberg-Witten invariants are much more subtle than the
previously discussed invariants, and will not be needed in the subsequent sections.
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Example. CP2 #CP2 #CP2 has no symplectic structure, since the pairing on H2(CP2)
is not negative definite. However, it clearly has a cohomology class α with α ∧ α > 0,
and can be shown to admit an almost-complex structure. Similarly, a connected sum of
3 copies of CP2 with 19 copies of −CP2 does not admit a symplectic structure, but it is
actually homeomorphic (although clearly not diffeomorphic) to a Kähler manifold. The
homeomorphism is covered by an isomorphism of tangent bundles. This shows that the
obstructions from Seiberg-Witten theory are more subtle than the homotopy-theoretic
ones discussed previously.

2. Constructing symplectic structures

We turn to the construction of symplectic manifolds. Historically, the first examples
of (compact) symplectic manifolds were the Kähler manifolds, obtained largely by al-
gebrogeometric methods. We will consider in detail the first construction of symplectic
manifolds admitting no Kähler structure. (For other topological constructions, see e.g.,
[G1], [Mc], [S].) We will then generalize the construction into a form suitable for the
applications in Section 3.

2.1. Symplectic forms on bundles

The original construction of symplectic, nonKähler manifolds, due to Thurston [Th]
(see also [McS]), consists of finding a symplectic form on the total space of a fiber bundle.
The basic method is quite simple, and reminiscent of techniques previously introduced
into complex analysis by Grauert. We state the simplest version of Thurston’s theorem,
in which the fibers are 2-dimensional.

Theorem 2.1. [Th] Let f : X2n → Y 2n−2 be a bundle map, with X connected, Y sym-
plectic and [f−1(y)] 6= 0 ∈ H2(X;R). Then X admits a symplectic structure.

Recall that all manifolds are assumed to be compact and oriented. Thus, the fibers f−1(y)
are all closed, oriented surfaces and homologous, so the homological condition makes sense
and is independent of y. To see that this condition is necessary, consider the bundle map
f : S3 × S1 → S2 obtained by projecting to S3 and applying the Hopf fibration. The
theorem generalizes to bundles with higher dimensional fibers. In that case one also needs
the fibers to be symplectic and the transition functions to be symplectomorphisms. These
additional conditions are automatically satisfied when the fibers have dimension 2, since
a symplectic form on a surface is the same as an area form.

Example. It is easy to construct a torus bundle over the torus whose total space X
has b1(X) = 3. For example, begin with a torus bundle over S1 whose monodromy is a
Dehn twist, then cross with S1 . This example clearly has a section, so [f−1(y)] 6= 0, and
Theorem 2.1 provides a symplectic structure on X. However, it is a basic fact that the
odd-degree Betti numbers of a Kähler manifold must be even, so X is not even homotopy
equivalent to a Kähler manifold. This example from Thurston’s paper was also known to
Kodaira. It can also be seen as the quotient of (R4, dx1∧ dy1 + dx2∧ dy2) by the discrete
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group of symplectomorphisms generated by unit translations along the x1, y1 and x2 axes
and the map (x1, y1, x2, y2) 7→ (x1 + y1, y1, x2, y2 + 1).

2.2. Symplectic forms induced by J-holomorphic maps

Although Theorem 2.1 has a simple direct proof, we will proceed by the alternate
method of generalizing the theorem and supplying a proof of the generalization that is
not significantly harder than the original proof. To motivate the generalization, first recall
that the symplectic manifold Y in Theorem 2.1 automatically has a compatible almost-
complex structure JY . We can easily construct an almost-complex structure J on X for
which f is J-holomorphic, i.e., df ◦ J = JY ◦ df . (That is, each dfx : TxX → Tf(x)Y is
complex linear.) For example, choose a metric on X and let H ⊂ TX be the subbundle
of orthogonal complements to the fibers of f . Clearly, df |H : H → TY is an isomorphism
on each fiber; let J |H be the pullback of JY . Define J on the tangent spaces to the fibers
of f to be π

2 counterclockwise rotation (using the metric and preimage orientation and
the fact that these spaces are 2-dimensional). J is now uniquely determined on TX by
linearity, and f is J-holomorphic by construction. Thus, the hypotheses of Theorem 2.1
are hiding almost-complex structures on X and Y making f J-holomorphic. Once we
observe this, we find that the bundle structure is completely unnecessary! We obtain the
following theorem:

Theorem 2.2. Let f : X → Y be a J-holomorphic map of almost-complex manifolds.
Let ωY be a symplectic form on Y taming JY . Fix a class c ∈ H2

dR(X). Suppose that
for each y ∈ Y , f−1(y) has a neighborhood Wy with a closed 2-form ηy such that [ηy] =
c|Wy ∈ H2

dR(Wy), and such that ηy tames J | ker dfx for each x ∈ Wy. Then X admits a
symplectic structure.

Note that ker dfx is a J-complex subspace of TxX (since f is J-holomorphic); the taming
condition means ηy(v, Jv) > 0 for each nonzero v ∈ ker dfx.

To motivate the remaining hypotheses of Theorem 2.2, we show that it implies Theo-
rem 2.1. This is essentially the first part of Thurston’s proof. We leave it as an exercise
to state and deduce the analog of Theorem 2.1 for bundles with higher dimensional fibers.

Proof of Theorem 2.1. We assume the hypotheses of Theorem 2.1 and deduce those of
Theorem 2.2; the conclusion follows. We have already obtained the first two sentences
of Theorem 2.2. We may assume the fibers f−1(y) are connected, by passing to a finite
cover of Y if necessary. Let c be any class for which 〈c, f−1(y)〉 = 1; such classes exist
since [f−1(y)] 6= 0 in H2(X;R) and H2

dR(X) is dual to this space. For each y ∈ Y ,
let Dy be an open disk containing y and let Wy = f−1(Dy) ≈ Dy × f−1(y). Choose
an area form on f−1(y) with area 1 (and inducing the preimage orientation on f−1(y)),
and let ηy be the pullback of this form to Wy via the projection Wy → f−1(y). Since
H2(Wy) is generated by [f−1(y)], the equalities 〈ηy, f−1(y)〉 = 1 = 〈c, f−1(y)〉 show that
[ηy] = c|Wy ∈ H2

dR(Wy). Since f is a bundle map, ker dfx is the tangent plane to the
fiber at x, so the required taming condition is just the obvious statement that ηy tames
J when restricted to each fiber of f in Wy.
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Proof of Theorem 2.2. The proof follows Thurston’s paper, except for two deviations
where we exploit the almost-complex structures. The first step is to splice together the
locally defined forms ηy into a global closed form η on X satisfying the corresponding
hypotheses that [η] = c and η tames J | ker dfx for all x ∈ X. Unfortunately, splicing the
forms in the obvious way by a partition of unity destroys the closure condition, so we
use a trick: Fix a representative ζ of the deRham class c = [ζ]. Now for each y ∈ Y we
have ηy = ζ + dαy on Wy, for some 1-form αy on Wy (since [ηy] = c|Wy). We splice
the forms ηy by splicing the 1-forms αy as follows. Let {ρi} be a partition of unity on
Y , subordinate to a sufficiently fine cover. Pull back by f to obtain the correspond-
ing partition of unity {ρi ◦ f} on X, and let η = ζ + d

∑
i(ρi ◦ f)αyi , where the sum

splices the forms αy in the usual way via {ρi ◦ f}. Clearly, η is a closed 2-form on X
with [η] = c. To verify the taming condition, we carry out the differentiation to obtain
η = ζ+

∑
i(ρi ◦f) dαyi +

∑
i(dρi◦df)∧αyi . The last term clearly vanishes when applied to

a pair of vectors in ker dfx, so on ker dfx we have η = ζ +
∑

i(ρi ◦ f) dαyi =
∑

i(ρi ◦ f)ηyi .
This is a convex combination of forms taming J | ker dfx, so it tames as required (by Ob-
servation 2 of 1.3). Note how the almost-complex structures guide the construction here
— an arbitrary convex combination of symplectic forms need not be symplectic, e.g., any
symplectic form ω satisfies −ω+ω = 0, but ±ω are both symplectic for the same oriented
manifold if the dimension is divisible by 4.

As in Thurston’s proof, we now wish to show that the closed form ωt = tη + f∗ωY on
X is symplectic for sufficiently small t > 0. By Observation 1 of 1.3, it suffices to show
that ωt tames J for small t > 0, so we only need to verify that ωt(v, Jv) > 0 on the unit
tangent bundle Σ ⊂ TX. But

ωt(v, Jv) = tη(v, Jv) + ωY (df(v), df(Jv))

= tη(v, Jv) + ωY (df(v), JY df(v)) ,

where the last line uses J-holomorphicity of df (df ◦ J = JY ◦ df). Since ωY tames JY ,
the last term is ≥ 0, with equality if and only if v ∈ ker df . On the other hand, η tames
J on ker df , so by openness of the taming condition (Observation 3 of 1.3), η(v, Jv) > 0
for v in some neighborhood U of the subset Σ ∩ ker df in Σ. Thus, ωt(v, Jv) > 0 for all
t > 0 when v ∈ U . But Σ− U is compact, so on Σ− U , η(v, Jv) is bounded and the last
displayed term is bounded below by a positive constant (since it is positive away from
ker df). It is now clear that for sufficiently small t > 0, ωt(v, Jv) > 0 for all v ∈ Σ, as
required.

3. Characterizing symplectic manifolds

Fiber bundles form an interesting but relatively small class of manifolds. We wish to
find more general structures to which Theorem 2.2 can be applied. We ultimately define
structures with sufficient generality that they can probably be found in any symplectic
manifold, providing our desired topological characterization of manifolds admitting sym-
plectic forms. Such a structure determines an essentially unique symplectic form, and
one should be able to realize a dense subset of all symplectic forms in this manner. This
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could lead to a purely topological way of understanding the set of symplectic structures
on any given manifold.

3.1. Lefschetz pencils

We begin by considering what topological structure can be found on an algebraic
surface X. By definition, X is a holomorphic submanifold of CPN for some N . Let
A ⊂ CPN be a generic linear subspace of complex codimension 2 (so it is a copy of
CPN−2 cut out by two homogeneous linear equations p0(z) = p1(z) = 0). Then A
intersects X transversely in a finite set B called the base locus. The set of all hyperplanes
through A is parametrized by CP1. (They are given by the equations y0p0(z) +y1p1(z) =
0, for (y0, y1) ∈ C2 − {0} up to scale.) These hyperplanes intersect X in a family of
(possibly singular) complex curves {Fy | y ∈ CP1}. Since the hyperplanes fill CPN
and any two intersect precisely in A, we have

⋃
y∈CP1 Fy = X and Fy ∩ Fy′ = B for

y 6= y′. The canonical map CPN − A → CP1 induced by the hyperplanes restricts to a
holomorphic map f : X −B → CP1 determined by the condition f−1(y) = Fy −B. Since
A intersects X transversely, each Fy is smooth near B, and f can be locally identified
with projectivization C2 − {0} → CP1 there. (In fact, the hyperplanes restrict to the
complex lines through 0 on the tangent plane to X at each b ∈ B.) Since A is generic, so
is the function f . This means f is the complex analog of a Morse function, i.e., its critical
points are complex quadratic. The structure we have defined here is called a Lefschetz
pencil on X, and can be generalized from holomorphic to smooth manifolds.

Definition 3.1. A Lefschetz pencil on a 4-manifold X is a finite base locus B ⊂ X and
a map f : X −B → CP1 such that

(1) each b ∈ B has an orientation-preserving local coordinate map to (C2, 0) under
which f corresponds to projectivization C2 − {0} → CP1, and

(2) each critical point of f has an orientation-preserving local coordinate chart in which
f(z1 , z2) = z2

1 + z2
2 for some holomorphic local chart in CP1.

Note that there is no analog of the Morse index, since −z2 = +(iz)2. In the literature,
additional conditions are sometimes imposed. For example, after perturbing f we can
assume that f is injective on the (finite) set of critical points. In addition, our algebraic
prototype has the property that each component of Fy − {critical points} intersects B
(since its closure is a complex curve and hence homologically essential in the correspond-
ing hyperplane); some version of this condition is needed for constructing symplectic
structures (e.g., to rule out the torus bundle f : S3 × S1 → S2).

Like Morse functions in the real-valued setting, Lefschetz pencils determine the topol-
ogy of the underlying 4-manifolds. A useful way to exploit this is to “blow up” the
base locus B, compactifying X − B by one-point compactifying each fiber separately
at each b ∈ B. This changes X by connected summing with a copy of −CP2 for each
b ∈ B. We obtain a singular fibration X #k(−CP2) → CP1 called a Lefschetz fibra-
tion, characterized by having only complex quadratic critical points as above. Explicit
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handle diagrams can be drawn for Lefschetz fibrations, using the fact that each critical
point corresponds to a 2-handle. Alternatively, one can remove the critical values from
CP1 = S2 , and delete the corresponding singular fibers from X, obtaining an honest fiber
bundle over S∗ = S2 − (finite set). The monodromy around each critical value will be a
right-handed Dehn twist of the fiber (assuming f | {critical points} is injective), and the
monodromy representation π1(S∗) → Map(F ) (into the group of orientation-preserving
diffeomorphisms of the fiber up to isotopy) will determine the Lefschetz fibration if the
fiber has genus ≥ 2. Thus, the study of Lefschetz fibrations reduces to a purely combina-
torial problem about the mapping class group Map(F ). A similar reduction can be made
for Lefschetz pencils, using diffeomorphisms of the fiber that fix a point and its tangent
plane for each b ∈ B. (In this case, one must remove an extra point from S∗, around
which the monodromy is nontrivial due to the twisted normal bundles of the exceptional
spheres.) Lefschetz fibrations on 4-manifolds have recently become a particularly active
area of research. For example, many Lefschetz fibrations have been directly constructed
for which the underlying manifold X admits no complex structure. In particular, one
can use monodromy representations to construct Lefschetz fibrations whose fundamental
groups include all finitely presented groups [ABKP]. (Recall that most finitely presented
groups cannot be realized by complex surfaces.) For a recent (but rapidly becoming
outdated) survey of Lefschetz pencils and fibrations, see [GS].

Our construction of Lefschetz pencils on algebraic surfaces can be generalized to alge-
braic manifolds of any dimension. If we continue to require codimCA = 2, we obtain a
map f : X −B → CP1, where B is a submanifold of (complex) codimension 2. The map
f will look like projectivization in the directions normal to B, and the critical points of
f will be locally modeled by f(z1 , . . . , zn) =

∑n
i=1 z

2
i . (These correspond to n-handles.)

Such structures are still called Lefschetz pencils. They were first used by Lefschetz to
study the topology of algebraic manifolds. (See [L].) One can analyze them using the
monodromy representation as in the 4-dimensional case, although at present, little work
has been done on this. For a further generalization, we can allow A to have complex
codimension k + 1 ≥ 2, and consider linear subspaces with codimension k containing A.
We then obtain a map f : X − B → CPk with codimCB = k + 1. (For example, we
can make B finite by setting k = dimCX − 1. For larger k, B vanishes entirely.) The
map f will still be projectivization on normal slices to the manifold B, but critical points
will no longer be isolated and they may require higher degree terms in their local models.
(For example, the k = 2 case can be thought of as a Lefschetz pencil of pencils. A single
Lefschetz pencil has isolated critical points, but these will sweep out sheets as we vary
through a pencil of pencils, and for some values of the parameter, quadratic critical points
will coalesce to form those of higher-degree.) Algebraic geometers call structures of this
more general form linear systems. In principle, one could try to analyze their topology
via monodromies and induction on dimension. Note that if X has a linear system for a
given k, then it has them for all smaller values of k: Simply compose f with the canonical
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projection map CPk − {pt.} → CPk−1. (This corresponds to choosing a new A contain-
ing the old one with codimension 1.) Thus, the information content of a linear system
increases with k.

3.2. Hyperpencils

Linear systems f : X −B → CPk provide the sort of “fibrationlike” structure on a 2n-
manifoldX that allows us to construct symplectic forms by the method of Section 2. Our
present goal is to carefully define such a structure in topological terms, in such a way as to
guarantee the existence of symplectic forms. A plausible starting place would be the k = n
case, where B is empty and f is a sort of singular branched covering. However, it seems
best to start with the weakest possible definition guaranteeing a symplectic structure,
meaning we should use the smallest possible value of k. But if k ≤ n − 2, the fibers
will have (real) dimension > 2, and theorems producing symplectic structures will require
hypotheses guaranteeing that the fibers and transition functions will be symplectic. Thus,
for a theorem without symplectic hypotheses, the optimal case seems to be k = n − 1,
where generic fibers are surfaces and hence are automatically symplectic. We will call
such a structure a hyperpencil , with the prefix indicating that k should be changed from 1
(for a pencil) to complex codimension 1. The definition is analogous to that of Lefschetz
pencils. However, the critical points are necessarily more complicated, so we allow them
to be modeled by any holomorphic function (provided that within each fiber they are
isolated). In fact, the situation is not significantly complicated by taking the function
to be just locally J-holomorphic with respect to almost -complex structures (subject to a
certain technical condition that is automatically satisfied in the holomorphic case or when
n ≤ 3). We allow these almost-complex structures to be C0 rather than smooth, both
for convenience and to emphasize that their primary function is homotopy-theoretic in
nature, controlling monodromies. (For example, if we allow orientation-reversing charts
at critical points in our definition of Lefschetz pencils, so that some monodromies are
given by left-handed Dehn twists, then we can construct such structures on manifolds
admitting no symplectic forms; see e.g. [GS].) As a final generalization, we allow the
almost-complex structure on CPn−1 to be different for different points on a given fiber,
by using locally defined almost-complex structures on the bundle f∗TCPn−1 rather than
on TCPn−1 itself. (The reader can simplify the setup by pretending these are given by the
standard holomorphic structure on CPn−1.) We require these structures to be compatible
with the standard symplectic form ωCPn−1 on CPn−1 (pulled back to a skew-symmetric
pairing on f∗TCPn−1). We then obtain the following definition (which can, and probably
should, be generalized even further).

Definition 3.2. A hyperpencil on a 2n-manifold X is a finite set B ⊂ X and a map
f : X − B → CPn−1 such that

(1) each b ∈ B has an orientation-preserving local coordinate map to (Cn, 0) under
which f corresponds to projectivization Cn − {0} → CPn−1,
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(2) each fiber Fy = c` f−1(y) ⊂ X contains only finitely many critical points of f ,
each locally modeled by a holomorphic map if n ≥ 4, and each critical point has
a neighborhood U with C0 almost-complex structures on U and f∗TCPn−1|U for
which the latter is compatible with ωCPn−1 and f is J-holomorphic, and

(3) each component of Fy − {critical points} intersects B.

The construction of Section 2 can be used to produce a symplectic structure on any
manifold with a hyperpencil. In particular, any 4-manifold with a Lefschetz pencil (with
B 6= ∅) admits a symplectic structure. (While a Lefschetz pencil need not satisfy con-
dition (3) above, the condition is actually unnecessary in this case, provided B 6= ∅; see
[GS]. However, without the condition, we lose both the control of [ω] and the uniqueness
statement given below.) The construction allows us to control the cohomology class [ω].
Recall that H2

dR(CPn−1) ∼= R has a canonical generator h, the hyperplane class, Poincaré
dual to [CPn−2]. The class f∗h is defined on X − B, but H2

dR(X − B) ∼= H2
dR(X) for

n > 1, so we can think of f∗h as a class in H2
dR(X) determined by the hyperpencil. (For

n = 1, it is natural to identify f∗h with the Poincaré dual of [B] ∈ H0(X;R).) The con-
struction allows us to arrange [ω] = f∗h. The form ω is then completely determined by
the construction, up to isotopy. (Two symplectic forms ω0, ω1 on X are isotopic if there
is a diffeomorphism ϕ isotopic to the identity with ϕ∗ω1 = ω0. Thus, isotopic symplectic
forms only differ by a deformation of X.) Furthermore, the isotopy class is unchanged if
we deform the hyperpencil. (A deformation of hyperpencils should be roughly thought of
as a bundle Z over a path connected parameter space S, whose fibers are hyperpencils.
More precisely, we naturally generalize the definition of hyperpencil to this parametrized
setting. For example, the base locus becomes a finite covering B → S, and the local
almost-complex structures at a critical point of X become continuous families of fiber-
wise almost-complex structures defined near a point in Z.) More specifically, we obtain
our main theorem:

Theorem 3.1. A deformation class of hyperpencils uniquely determines an isotopy class
of symplectic forms. This isotopy class is characterized as being the unique class contain-
ing representatives ω for which [ω] = f∗h ∈ H2

dR(X) and ω tames a given hyperpencil in
the deformation class.

We say that ω tames a hyperpencil f : X − B → CPn−1 if there is a C0 almost-complex
structure JCPn−1 compatible with ωCPn−1 on f∗TCPn−1, such that each x ∈ X has a neigh-
borhood with a C0 almost-complex structure tamed by ω and making f J-holomorphic.
It can be shown that if ω tames f then there is a global almost-complex structure J on
X with ω taming J and f J-holomorphic. Similarly, the local almost-complex structures
in (2) of the definition of hyperpencils can be made global. In each case, the global
structures (including JCPn−1 ) can be arranged to be standard near B. Similar statements
apply in the setting of deformations. See [G2] for details.
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3.3. Proof of Theorem 3.1

We sketch the proof; for further details, see [G2]. To prove existence, we fix a hyper-
pencil f : X − B → CPn−1 in the given deformation class, and establish the hypotheses
of Theorem 2.2. As remarked in the previous paragraph, there are global structures
J on X and JCPn−1 on f∗TCPn−1, standard near B, making f J-holomorphic. Let
c = f∗h ∈ H2

dR(X). For each y ∈ CPn−1, we construct the required Wy and ηy: At each
critical point x ∈ Fy, (TxX, J) can be identified with Cn. Thus, the standard linear sym-
plectic form on Cn tames J at x. Extend this to a closed 2-form ηy near x; we can assume
ηy tames J on this neighborhood by openness of the taming condition. Since Fy is a J-
complex curve, ηy|Fy is an area form defined near the singular points of Fy. Extend this to
an area form on all of Fy whose total area on each component Fi of Fy−{critical points}
is 〈f∗h, c` Fi〉 (which is positive since it equals the number of points in Fi ∩B; cf. (3) of
Definition 3.2). Wy and ηy can now be constructed in a manner analogous to the proof
of Theorem 2.1, by pulling back ηy|Fy by a suitable map. By construction, [ηy] = c|Wy.
Also, ηy tames J on each TxX near critical points, and on ker dfx = TxFf(x) elsewhere
(for Wy sufficiently small). (We have ignored minor technical difficulties arising, e.g., if
Fy has nonconelike singularities.) A slight generalization of Theorem 2.2 now gives a
symplectic form ω on X − B taming J . (Note that f : X − B → CPn−1 fails the hy-
potheses of Theorem 2.2 in that the domain is noncompact; this can be fixed by working
relative to a standard symplectic form defined near B.) Unfortunately, ω is singular at B
— it has the form tη + f∗ωCPn−1 , and the second term is singular. Fortunately, we have
an explicit description of ω and J near each b ∈ B (on a neighborhood identified with a
neighborhood of 0 in Cn, with f given by projectivization). This local model shows that
we can dilate X at b and glue in a symplectic ball to make ω smooth everywhere, without
losing the taming condition. (This construction is essentially equivalent to blowing up
B, applying Theorem 2.2 to the resulting singular fibration on a compact manifold, and
blowing back down. However it bypasses some technical difficulties involving working
with the blown-up points.) We now have the desired symplectic form. It obviously tames
f via J , and [ω] = [tη + f∗ωCPn−1 ] = tc + f∗[ωCPn−1 ] = (t + 1)f∗h (since [ωCPn−1 ] = h),
so ω satisfies the required conditions after rescaling.

To prove uniqueness, we start with symplectic forms ω0 and ω1 on X, satisfying the
two conditions in Theorem 3.1 with respect to deformation equivalent pencils f0 and f1,
respectively. We show that ω0 and ω1 are isotopic, completing the proof of the theorem.
We can assume the deformation is parametrized by the interval I = [0, 1]. Each form ωi
is given to tame fi, so as indicated at the end of the previous subsection, we can find
a global C0 almost-complex structure Ji on X making fi Ji-holomorphic, and with ωi
taming Ji. Using the same paragraph (in the parametrized version rel {0, 1} without a
taming ω), we can extend J0, J1 to a continuous family Jt of almost-complex structures,
0 ≤ t ≤ 1, with ft Jt-holomorphic for some family Jt,CPn−1 on f∗t TCP

n−1. (This is
the one place where Definition 3.2 requires the condition for n ≥ 4, and compatibility
with ωCPn−1 rather than taming.) For each hyperpencil ft in the deformation and each

56



GOMPF

structure Jt, construct ωt taming Jt as in the previous paragraph. While the resulting
forms ωt, 0 ≤ t ≤ 1, will be a priori unrelated to each other, we can make the family
smooth by a trick: By openness of the taming condition, each ωt will tame each Js in
some neighborhood of t ∈ I. Thus, we can cover I by neighborhoods Uα on which a single
ωt tames each Js, s ∈ Uα. Using a partition of unity {ρα} on I subordinate to {Uα},
splice together these forms ωt. The resulting smooth family (still called ωt) will consist of
closed forms (since each ρα is constant on each fiber of the deformation), and each ωt will
tame the corresponding Jt (since it is a convex combination of taming forms). Thus, we
have a smooth family of symplectic forms on X. Furthermore, [ωt] = f∗t h is independent
of t (since we can assume B is fixed and invoke homotopy invariance of induced maps).
The theorem now follows from:

Theorem 3.2 (Moser [M]). Let ωt, 0 ≤ t ≤ 1, be a smooth family of symplectic forms
on X, with [ωt] ∈ H2

dR(X) independent of t. Then there is an isotopy ϕt : X → X with
ϕ0 = idX and ϕ∗tωt = ω0.

(The proof of Moser’s Theorem is actually quite short. One simply writes down a suitable
formula for a time-dependent vector field, then integrates to obtain ϕt.)

3.4. Characterization

We now turn to the question of how general the hyperpencil construction of symplectic
structures is, addressing the topological characterization of symplectic manifolds. The
answer lies in work of Donaldson [D] followed by Auroux [A], the roots of which go back
to Kodaira in the holomorphic setting (the Kodaira Embedding Theorem, e.g., [GH]).
If σ0, . . . , σk are sections of a complex line bundle L → X, then because each fiber Lx
is canonically C up to (complex) scale, the vector (σ0(x), . . . , σk(x)) in (Lx)k+1 deter-
mines an element of Ck+1 up to scale. Thus, projectivizing gives a well-defined map
f = [σ0 : . . . : σk] : X − B → CPk, where B is the common zero locus of σ0, . . . , σk.
Kodaira used this idea to characterize which complex manifolds are algebraic (i.e., em-
bed holomorphically in CPN ) in terms of line bundles: Given the existence of a suitable
holomorphic line bundle L over a complex manifold X, one can obtain arbitrarily many
holomorphic sections by taking sufficiently large tensor powers L⊗m of the line bundle,
eventually yielding an embedding f : X ↪→ CPN . It automatically follows that X is
Kähler with symplectic form ω = f∗ωCPN satisfying [ω] = c1(L⊗m) = mc1(L). Don-
aldson’s contribution was to extend this idea to the symplectic setting. Starting with
a symplectic manifold (X, ω) with ω integral (i.e., [ω] ∈ Im(H2(X;Z) → H2

dR(X))), he
chose a compatible almost-complex structure J , and arranged a line bundle L→ X with
Chern class c1(L) = [ω] to be J-holomorphic in a suitable sense. Unfortunately, in this
setting holomorphic sections rarely exist. However, by defining a suitable notion of “ap-
proximately holomorphic” sections and applying hard analysis on the line bundles L⊗m,
Donaldson was able to construct a Lefschetz pencil X − B → CP1 on any integral sym-
plectic manifold. Subsequently, Auroux [A] generalized the method to construct a linear
system X − B → CPk for k = 2, and he is currently extending his work to arbitrary k.
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In particular, the case k = n− 1 should yield a hyperpencil (with particularly nice local
properties) tamed by the original symplectic form ω, and with f∗h = c1(L⊗m) = m[ω] for
any given sufficiently large integer m. (It may be useful to slightly weaken the definition
of a hyperpencil here.) This would complete the proof of the following conjecture, which
currently seems to be established in dimensions ≤ 6 (by the above cases k = 1, 2.)

Conjecture 3.3. For any integral symplectic manifold (X, ω) and sufficiently large m ∈
Z, there is a hyperpencil on X for which the canonical isotopy class of symplectic forms
contains mω.

Now note that the nondegeneracy condition for symplectic forms is open, and H2(X;Q)
is dense in H2

dR(X). Thus, rational symplectic forms on a manifold X are dense in the
space of all symplectic forms. Furthermore, any rational cohomology class can be rescaled
to an integral one. Thus, up to scale, the hyperpencil construction should give a dense
subset of all symplectic forms on any given manifold. That is:

Proposition 3.4. Let P(X) be the set of deformation classes of hyperpencils on a man-
ifold X, S(X) be the set of isotopy classes of rational symplectic structures, and Ω :
P(X) → S(X) be the map given by Theorem 3.1. Suppose that all integral symplectic
structures on X satisfy Conjecture 3.3. Then the induced map Ω : P(X) → S(X)/Q+ is
surjective. Equivalently, there is a surjection Ω̃ : P(X) × Q+ → S(X), where Ω̃(f, q) is
obtained from Ω(f) by rescaling so that [Ω̃(f, q)] is q times a primitive integral class.

Corollary 3.5. In dimensions where Conjecture 3.3 holds (e.g. dimensions ≤ 6), a
manifold admits a symplectic structure if and only if it admits a hyperpencil. A 4-manifold
admits a symplectic structure if and only if it admits a Lefschetz pencil with B 6= ∅.

(For the 4-dimensional version, see also [GS].) Thus, Conjecture 3.3 topologically char-
acterizes those manifolds admitting symplectic structures. From there, to completely
determine, in topological terms, the dense subset S(X) of the space of symplectic forms
on X, we only need to identify the point preimages of Ω̃ (which are the same as for Ω).

Conjecture 3.6. The point preimages of Ω̃ (or equivalently, Ω) can be given by a topo-
logically defined equivalence relation on P(X).

To do this, it may be useful to strengthen the definition of hyperpencils. The main
evidence for this conjecture is that the theorems of Donaldson and Auroux come with
uniqueness statements, up to “stabilization,” or multiplying m by large integers (taking
tensor powers of the relevant line bundle). This suggests that one should be able to
topologically define stabilization maps σk : P(X) → P(X), k ∈ Z+, with σ1 = idP(X),
σk ◦σ` = σk` and Ω◦σk = kΩ, and that the required equivalence relation should be given
by f ∼ g if and only if σk(f) = σ`(g) for some k, ` ∈ Z+. However, these stabilization
maps seem complicated, even in dimension 4.
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