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Lagrangian submanifolds
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1. Introduction

Floer [F1] invented the Floer homology HF (L0, L1) of the pair (L0, L1) of Lagrangian
submanifolds on symplectic manifolds (P, ω) with suitable topological restrictions on the
pair. He defined this by considering the (generalized) Cauchy-Riemann equation{

∂u
∂τ + J ∂u∂t = 0
u(τ, 0) ∈ L0, u(τ, 1) ∈ L1

(1)

for a map u : R× [0, 1]→ P .
One crucial property of HF (L0, L1) for applications to the problems in symplectic

topology, is the invariance property under the Hamiltonian deformations of the pair.
Floer’s original proof [F1] considers the case where L1 = φ1

H(L0) and π2(P, L0) = {e}
where φ1

H : P → P is the time-one map of the Hamiltonian flow of the function H :
P × [0, 1] → R, and involves some combinatorial study of the changes occurring to the
boundary operators when a (generic) degenerate intersection occurs between the pairs
during the deformations. Using the fact that generic types of such degenerate intersections
are either birth-death or death-birth type, he algebraically analyzed the change. However
this study involves a gluing theory of trajectories on degenerate intersections. Although
such a gluing theory is believed to be possible by now, details were only sketched in [F1].

Because Floer’s analysis in [F1] also uses the fact that the action functional is single-
valued in his case (where π2(P, L0) = {e} is assumed), it was not clear to the author at
the time of writing [O1] whether this approach can be generalized to more general cases
where the action functional is not single-valued. More importantly, Floer’s original proof
does not give naturality of the chain map. Motivated by Floer’s approach taken in [F3]
for Hamiltonian diffeomorphisms, the present author [O1] used a variant of (1),{

∂u
∂τ + J ∂u∂t = 0
u(τ, 0) ∈ L, u(τ, 1) ∈ Lρ(τ)

(2)

for the construction of the chain homomorphim from HF (L, L0) to HF (L, L1), where
ρ : R → [0, 1] is a monotonically increasing function with ρ(−∞) = 0 and ρ(+∞) = 1.
Similar constructions have been also used in our more recent papers [O2,KO1,2] in relation
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to a quantization program of the classical homology theory. In these works, naturality
of the chain map is essential for the analysis of change of actions and for the continuity
proof of symplectic invariants constructed therein (see [O2] for details). Another way of
defining the chain homomorphism is to transform (1) into the dynamical version{

∂u
∂τ + J

(
∂u
∂t −XH(u)

)
= 0

u(τ, 0) ∈ L, u(τ, 1) ∈ L0.
(3)

The chain map in this set-up can be defined by making the Hamiltonian H depend on
τ -variable as in [F3].

However for the cases in [O2,KO1,2] where we consider a family of conormal varieties
which are non-compact, or more precisely, where the corresponding Hamiltonian isotopy
is no longer compactly supported, the crucial C0-estimates for the equation turned out
not to be available for general choices of ρ in neither case of (2) nor (3). The proof of the
C0-estimates works for the perturbed Cauchy-Riemann equation with some particular
type of perturbations which are either compactly supported as in the most literature on
the Floer theory or directed in certain particular directions as in [KO2]. In this sense,
the present author’s paper [O2] contains a gap in that he overlooked the failure of the
C0-estimate which is needed for the proof of continuity of Floer homology HF (H, S : M)
under the isotopy of submanifolds S ⊂ M . The proof of this C0-estimate in [Section
3, O2] works for fixed or compactly supported perturbations of conormal bundles ν∗S,
and turns out to work only with a particular choice of the function ρ which should be
determined depending on the solution u, for more general types of perturbation. For
example, ρ cannot be chosen to be constant outside a compact subset unlike in the Floer
theory for compact Lagrangian submanifolds.

One purpose of the present paper is to rectify this gap (see Remark 4.3 (1)) by consid-
ering a suspension of (2). The relevant geometric suspension of Lagrangian submanifolds
is a quite natural operation in symplectic geometry which has been used in the literature
of symplectic topology (see e.g., [A1, Po]). After we used this suspension to construct
the chain map, it became quite apparent to us that the idea of our construction of the
chain map applies to more general circumstances, i.e., to certain Lagrangian cobordisms
in (P, ω). However, constructing the natural chain map

hL : HF∗(L, L0)→ HF (L, L1)

and extending invariance property of the Floer homology to the case when L0 and L1 are
noncompact and the Hamiltonian isotopy L = {Lt}0≤t≤1 is not compactly supported is the
main purpose of the present paper. Surprisingly, this construction involves the notion of
Lagrangian cobordism and singular Lagrangian submanifolds of the type that were used
by Kasturirangan and the present author in [KO1,2]. This kind of conormal varieties were
introduced by mathematicians in the micro-local analysis (see [GM], [KaSc] for example).

For the rest of the paper, we will always assume that (P, ω) is tame: (P, ω) is called
tame if there exists a compatible complex structure J such that the metric gJ := ω(·, J ·)
has bounded sectional curvature and injectivity radius bounded below from zero. We

104



OH

call such almost complex structure J tame. It is easy to see that the set of tame almost
complex structures is contractible if non-empty. We will need a more restricted class of
symplectic manifolds which are Weinstein at infinity whose definition is referred to [EG1]
or to §2 of this paper. The following is the main theorem whose precise statement will be
referred to later sections.

Theorem I. Let (P, ω) be Weistein at infinity. Let L and L = {Lt}0≤t≤1 be a (proper) La-
grangian submanifold and an isotopy of proper Lagrangian submanifolds satisfying “suit-
able” condition at infinity. Suppose L ∩ Lt remain compact for all t ∈ [0, 1]. Then there
exists a canonical isomorphism

hL : HF (L, L0)→ HF (L, L1).

An immediate consequence of the present construction is the following intersection
theorem of the conormal bundles. A similar intersection result was previously obtained
by Eliashberg and Gromov in the name of “deformed conormal bundles” using finite
dimensional approach of generating functions [Theorem 0.3.4.1, EG2].

Theorem II. Let S1, S2 be compact submanifolds of M such that S1 is transverse to S2.
Suppose φ is a Hamiltonian diffeomrorphism on T ∗M of the types or a composition of
them

(1) φ is obtained by a compactly supported Hamiltonian isotopy, or
(2) it is homogeneous symplectomorphic (at infinity) i.e., it is generated by the Hamil-

tonian of the form (q, p) 7→ 〈p,Xt(q)〉 such that S1 is transverse to ft(S2) for all t where
ft : M →M is the flow of Xt, or

(3) it is a fiberwise translation by df where f is a smooth function defined on the base
M .

Then
#(ν∗S1 ∩ φ(ν∗S2)) ≥ rank H∗(S1 ∩ S2)

provided ν∗S1 is transverse to φ(ν∗S2). Here H∗(S1 ∩ S2) is in Z-coefficients in the
oriented case and in Z2-coefficients in general.

We refer to Theorem 7.2 for a more precise statement concerning the Floer homology
of the pair (ν∗S1, ν

∗S2).
A special case S1 = M and S2 = S ⊂ M studied in [Oh2] is of particular interest in

relation to the gap in [Oh2] mentioned in the beginning. For this case, the transversality
hypothesis in Theorem II is automatically satisfied. This leads to complete construction
of the chain map and proof of its continuity property which in turn fills the gap in the
proof of [Theorem 5.4, Oh2]

Corollary [Theorem 5.4, Oh2] Denote by HF∗(S, J : M) the Floer homology between
ν∗S and oM (= ν∗M). Let Sα and Sβ be two isotopic submanifolds of M . Then there is
a canonical isomorphism

hαβ : HF∗(Sα, Jα : M)→ HF∗(Sβ , Jβ : M)
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that preserves the grading.

Next, we like to compare the intersection result in Theorem II or Theorem 7.2 with the
conjecture stated in [GM], whose precise meaning ought to be clarified. The results from
[KO1,2] and the present paper can be considered as some steps towards this direction.

Conjecture [GM]. Let S1 and S2 be two complex stratifications of a complex manifold
X. Assume they are transverse to each other. Let F1 and F2 be perverse sheaves con-
structible with respect to S1 and S2. Let F1 ⊗ F2 be the tensor product of F1 and F2 on
X. Then the global homology groups Hi(X;F1 ⊗ F2) can be computed as Floer homology
of (−1)∗Ch(χF1) and Ch(χF2).

The case considered in Theorem II is a special case of the Fary functors Fi constructible
with respect to the stratifications

Si = {Si,M − Si}
for i = 1, 2 such that their corresponding constructible functions are given by

χFi =
{

1 x ∈ Si
0 x ∈ M − Si.

One can easily check that the characteristic Lagrangian cycle of Fi is nothing but ν∗Si.
Beside the conormal varieties considered in [O2,KO1,2], good examples to which we can

apply the construction of the present paper will be the symplectic manifolds with contact
type boundary and proper Lagrangian submanifolds in them. We refer to §5 [KhSe] for
some relevant discussions of the latter examples which occur naturally in the study of
vanishing cycles of the singularity of holomorphic functions. See also Remark 4.3 of the
present paper where our construction is applied to answer some question raised in [KhSe]
which concerns naturality of certain isomorphism between the Floer homology of non-
compact Lagrangian submanifolds. While this paper was in the stage of completion, we
learned from K. Hori (see [HIV]) that some interesting class of non-compact Lagrangian
cycles (“wave front trajectories” they call), which are closely related to the vanishing
cycles of holomorphic Morse function (“super-potential”), play an important role in the
mirror symmetry of open strings in the context of Landau-Ginzburg model through the
Picard-Lefschez theory.

2. Hamiltonian deformations and C0-estimates

In this section, we review the usual construction [F2,O1,2] of the chain map under
compactly supported Hamiltonian isotopies. Let j = {Jt}0≤t≤1 be a family of almost
complex structures that is t-independent at infinity, say, Jt(x) = J∞(x) at infinity for
some almost complex structure J∞. We denote by Supp j to be the subset

Supp j = ∪t∈[0,1]{x ∈ P | Jt(x) 6= J∞(x)}.
Let {Ls}0≤s≤1 be a Hamiltonian isotopy associated to a compactly supported Hamiltonian

H : P × [0, 1]→ R.
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We choose a cut-off function ρ : R→ [0, 1] such that

ρ =
{

0 for τ ≤ 0
1 for τ ≥ 1

ρ′ ≥ 0,

and ρK (τ ) = ρ
(
τ
K

)
. The construction of Floer’s chain map

h : HF (L, L0)→ HF (L, L1)

is given by considering either{
∂u
∂τ + J(t, u)∂u∂t = 0
u(τ, 0) ∈ L, u(τ, 1) ∈ LρK(τ)

(4)

or {
∂u
∂τ + J(t, u)

(
∂u
∂t −XHρK (τ)(u)

)
= 0

u(τ, 0) ∈ L, u(τ, 1) ∈ L0.
(5)

This construction works as long as (P, ω) is tame and the deformation {Ls}0≤s≤1 can be
realized by an ambient Hamiltonian isotopy associated to compactly supported Hamilton-
ian.

Recall from [EG1] that a symplectic manifold (P, ω) is called convex at infinity if it
carries a vector field X which is complete symplectically dilating at infinity: A vector
field X is complete symplectically dilating if the flow {Xt} of X is complete and satisfies
(Xt)∗ω = etω. We assume that (P, ω) allows an exhausting pluri-subharmonic funtion at
infinity. Following [EG1], we call such manifold Weinstein (at infinity). We choose ϕ an
exhausting pluri-subharmonic function with respect to a tame almost complex structure
J . We also assume that J is invariant under the flow of X outside a compact set. Then
the level set ϕ−1(R) for sufficiently large R carries the induced contact structure (in fact
a CR-structure) on it. The following C0-estimate can be proven by a version of strong
maximum principle (See [EHS]).

Theorem 2.1. Let j = {Jt}0≤t≤1 be a family of almost complex structures such that Jt =
J outside a compact set. Let H : P × [0, 1] → R be a compactly supported Hamiltonian.
Suppose that L0 ∩L1 are compact and Li’s are transverse to the level sets of ϕ at infinity.
Then there exists a compact subset K = K(P, ω, supp j, ϕ) ⊂ P such that

Image u ⊂ K
for all solutions u of (4) or (5).

Proof. Consider the function ϕ ◦ u : R × [0, 1] → R. Since this function is subharmonic
at infinity with respect to the metric induced by J , it has no interior maximum point
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outside of Supp j. Suppose that it has a maximum at a boundary point outside Supp j,
say, at (τ0, 1) and that

R0 := ϕ(u(τ0, 1)) > sup
L0∩L1

ϕ.

By the strong maximum principle, we have

∂

∂t
(ϕ ◦ u)(τ0, 1) > 0 (6)

unless ϕ◦u is constant, which is not possible if R0 > sup{ϕ◦u(∞), ϕ◦u(−∞)}. We note
that

∂u

∂t
(τ0, 1) = J

∂u

∂τ
(τ0, 1) ∈ J · TL1

∂

∂t
(ϕ ◦ u) = dϕ(J

∂u

∂τ
)

On the other hand, we must have

dϕ
(∂u
∂τ

)
(τ0, 1) = 0

at the maximum point (τ0, 1). This implies

∂u

∂τ
(τ0, 1) ∈ TL1 ∩ T (ϕ−1(R0))

where R0 = ϕ(u(τ0, 1)). Since TL1∩T (ϕ−1(R0)) is Legendrian in ϕ−1(R0) with respect to
the induced contact structure (in fact, the induced CR-structure) by the assumption that
L1 is transverse to ϕ−1(R) for sufficiently large R, J ∂u∂τ (τ0, 1) is tangent to the contact
distribution, which implies

∂

∂t
(ϕ ◦ u)(τ0, 1) = dϕ

(∂u
∂t

)
(τ0, 1) = dϕ

(
J
∂u

∂τ

)
(τ0, 1) = 0

This gives rise to contradiction to (2.3).

Examples of convex symplectic manifolds include cotangent bundles of compact man-
ifolds. Products of two convex manifolds are also convex. The sum of (exhausting)
pluri-subharmonic functions will provide an (exhausting) pluri-subharmonic function on
the product.

Note that Theorem 2.1 already takes care of the case when Hamiltonian isotopies
are compactly supported. However in relation to the quantization program illustrated by
[O2] and [KO1,2], one needs to consider certain deformations {Ls}0≤s≤1 of conormal type
which cannot be realized by compactly supported Hamiltonians. For example, consider
an isotopy {Ss}0≤s≤1 of submanifolds Ss ⊂ M . In [O2], we consider the corresponding
deformation of the conormal bundles

{ν∗Ss}0≤s≤1 ⊂ T ∗M.
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This deformation is realized by the Hamiltonian

H(q, p, s) = 〈p,Xs(q)〉 (7)

where Xs is the vector field realizing the isotopy {Ss} i.e. Xs = d
ds

∣∣Ss. Certainly, this
Hamiltonian is not compactly supported. If one naively attempts to do the similar con-
struction using (4) or (5) one would immediately encounter a problem in establishing the
C0-estimate. In the next sections, we will carry out construction of the chain map using
“suspension” which covers this case as a special case. In hindsight, to get the required C0

estimates, one has to use a “good” choice of the function ρ in (2) which itself will enter
in the Cauchy-Riemann equation and should be determined.

3. Lagrangian cobordism

In this section, we introduce an equivalence relation on the space of Lagrangian em-
beddings in a given symplectic manifold (P, ω). Compare with [A1,C].

Definition 3.1. We say that two Lagrangian submanifolds L0 and L1 are Lagrangian
cobordant on (P, ω) if there exists a Lagrangian submanifold

β ⊂ (P, ω)× T ∗R

such that
(i) ∂β = L0 × {(1, 0)} − L1 × {(0, 0)}
(ii) β has flat collars near ∂β, i.e.,

β =
{
L1 × {(s, 0)} for 0 ≤ s ≤ ε
L0 × {(s, 0)} for 1− ε ≤ s ≤ 1.

for some ε > 0. We denote by L0∼
β
L1 if L0 and L1 are Lagrangian cobordant via β.

Note that P × T ∗R with the obvious product symplectic structure is tame if (P, ω) is
so.

Example 3.1.
(1) Let L1 = φ1

H(L0) for some Hamiltonian H : P × [0, 1]→ R. We may re-choose H so
that H ≡ 0 for t near 0 and 1. We define the Lagrangian cobordism

βH ⊂ P × T ∗R
by

βH = {(x, s, a) ∈ P × T ∗R | x ∈ Ls, a = −H(x, s), 0 ≤ s ≤ 1}.
One can easily check that βH is Lagrangian and satisfies both (i) and (ii). Therefore
Hamiltonian isotopies are special cases of Lagrangian cobordism.

109



OH

(2) We would like to separately consider the special case of (1) which was considered in
[O2]. Let {Ss}0≤s≤1 be a smooth family of submanifolds in a smooth manifold M , and
{ν∗Ss}0≤s≤1 be their conormal bundles. We are given an ambient isotopy {ψs}0≤s≤1

such that
Ss = ψs(S0)

and {Xs}0≤s≤1 is its generating vector fields, then the corresponding Lagrangian cobor-
dism is given by

{(q, p, s, a) ∈ T ∗M × T ∗[0, 1] | q ∈ Ss, p ∈ ν∗qSs, a = −〈p,Xs(q)〉 and 0 ≤ s ≤ 1}.

One can easily check that this becomes flat if we choose the isotopy to be constant
near s = 0 and 1. Furthermore, this bordism itself is nothing but the conormal to the
suspension

{(q, s) ∈ M × [0, 1] | q ∈ Ss}
in T ∗(M × [0, 1]).

4. Construction of chain maps

In this section, we attempt to construct the chain map

hβ : HF (L, L0)→ HF (L, L1)

when L0∼
β
L1. In the beginning, we do not impose any condition on L1 or L0. Due to the

assumption of flatness near ∂β, we can smoothly add to β two ends

L0 × (−∞, 0]× {0} q L1 × [1,∞)× {0}.

We again denote the resulting manifold by β. This β will play a role as the boundary
condition at t = 1 for the Cauchy-Riemann equation that we will consider. We still need
the boundary condition at t = 0 which we now describe.

It turns out that the right choice is the following singular Lagrangian submanifold

αL := L ×Ch(1[0,1)) ⊂ P × T ∗R

where Ch(1[0,1)) is the characteristic Lagrangian cycle of the characteristic function 1[0,1)

of [0, 1) on R in the sense of [GK]. In fact, we can prove (see [KO2] for the general case
of standard pairs) that

Ch(1[0,1)) = oR
∣∣
(0,1)
q ν∗−(∂[0, 1])

∣∣
0
q ν∗+(∂[0, 1])

∣∣
1

where

ν∗−(∂[0, 1])
∣∣
0

= {(s, a) ∈ T ∗R | s = 0, a ≥ 0}
ν∗+(∂[0, 1])

∣∣
1

= {(s, a) ∈ T ∗R | s = 1, a ≥ 0}

is the negative and positive part (with respect to the induced orientation) of the conormal
bundle of ∂[0, 1] respectively.
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[0, 1)Ch(1        )

Figure 1. Ch(1[0,1))

In [KO2], we call Ch(1[0,1)) the conormal to the standard pair ([0, 1], {1}) [GM] and
denote it by ν∗([0, 1], {1}). We refer to [GM] or [KO2] for the definition of standard pairs.
Then we consider the following Cauchy-Riemann equation{

∂eu
∂τ

+ J̃
(
∂eu
∂t

)
= 0

ũ(τ, 0) ∈ αL, ũ(τ, 1) ∈ β
(8)

where J̃ = J ⊕ i, ũ = (u, v) ⊂ P × T ∗R where v = (s, a). Since αL is singular, we need
to desingularize αL in a suitable way as in [KO1,2], which we now describe. We consider

αε := L ×Υε ⊂ P × T ∗R

where Υε are approximations of Ch(1[0,1)) drawn as in Figure 2
Since we assume that β is flat near ∂β, we can choose ε > 0 so that

β ∩ αε ∩ {0 < s < ε or 1− ε < s < 1, and a = 0} = ∅.

On the other hand, we have

∂β ∩ αε ∩ {s = 0} = L ∩ L0 × {(0, 0)} (9)
∂β ∩ αε ∩ {s = 1} = L ∩ L1 × {(1, 0)}.

If we assume that L is transverse to both L0 and L1, we can apply Hamiltonian pertur-
bations in P × T ∗R of β away from the sets (9) and make β intersect transversely with
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ε−

ε

Figure 2. Approximation of Ch(1[0,1))

αL. Now for each given x ∈ L ∩ L0 and y ∈ L ∩ L1, we study the equation
∂eu
∂τ + J̃

(
∂eu
∂t

)
= 0

ũ(τ, 0) ∈ αL, ũ(τ, 1) ∈ β
ũ(−∞) = x̃ = (x, 0, 0), ũ(+∞) = ỹ = (y, 1, 0).

(10)

Remark 4.1. Let us disseminate (10) for the case β = βH . In this case, the equation
(10) can be re-written as

∂u
∂τ + J ∂u∂t = 0
u(τ, 0) ∈ L, u(τ, 1) ∈ Ls(τ,1)

u(−∞) = x, u(+∞) = y

∂v = 0
v(τ, 0) ∈ Ch([0, 1)), a(τ, 1) = −H(u(τ, 1), s(τ, 1))
s(−∞) = 0, s(∞) = 1

The first part of this equation is nothing but (2) with ρ(τ ) = s(τ, 1) but s itself must be
solved. Furthermore unlike (2), u and s are coupled to each other. It is rather interesting
and mysterious to us that our effort obtaining the C0-estimates of (2) has led us to
considering the coupled Cauchy-Riemann equation of u and ρ in the suspended space.
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We note that if (P, ω) is Weinstein at infinity, so is (P, ω) × (T ∗R, ω0). If ϕ is an
exhausting pluri-subharmonic function on P , the

ϕ̃(x, s, a) = ϕ(x) +
1
2

(s2 + a2)

will be an exhausting pluri-subharmonic function on (P, ω) × (T ∗R, ω0). Furthermore
both αL and β are fixed Lagrangian submanifolds and αL is transverse to the level sets
of ϕ̃ at infinity. Therefore we have the following a priori C0-estimate for the solutions of
(10) from Corollary 2.2.

Proposition 4.1. Suppose that (P, ω) is Weinstein at infinity. Assume
(1) αL ∩ β is compact
(2) β is transverse to the level sets of ϕ̃ at infinity.

Then for any given x̃, ỹ ∈ αL∩β, there exists a compact subset K = K(x̃, ỹ, β) ⊂ P×T ∗R
such that

Image ũ ⊂ K
for all ũ ∈Mε(J̃ , β : x̃, ỹ).

We now study the moduli-spaceMε(J̃ , β) of solutions of (8) with finite energy. This
is decomposed into

Mε(J̃ , β) = ∪
ex,ey∈αL∩βMε(J̃ , β : x̃, ỹ)

whereMε(J̃ , β : x̃, ỹ) is the set of solutions of (10). Note that there is a natural R-action
onMε(J̃ , β : x̃, ỹ) by translations in the τ -direction. We denote

M̂ε(J̃ , β : x̃, ỹ) =Mε(J̃ , β : x̃, ỹ)/R
and

nε(x, y : β) = #(M̂ε(J̃ , β : x̃, ỹ))
when

dimMε(J̃ , β : x̃, ỹ) = 0.
By the standard compactness theorem and the dimension counting arguments, the zero-
dimensional component of M̂ε(J̃ , H, β : x̃, ỹ) is compact under suitable assumptions on
L, L0, L1 and β. For example, we may assume that L, L0 and L1 are monotone in P and
β is monotone in P ×T ∗R. (See [O1]). We will always assume these conditions from now
on for the simplicity in presenting the main ideas of our construction, although one could
consider more general cases using the sophisticated construction employed in [FOOO].

We define a map

hβ,ε : CF (L, L0 : J, αε)→ CF (L, L1 : J, αε)

by

hβ,ε(x) =
∑
y

nε(x, y : β)y (11)
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and study its chain property.

Definition 4.1. Let (L0, L1) be a pair of Lagrangian submanifolds transverse to L. De-
fine B(L0 , L1) = the set of Lagrangian cobordisms β from L0 to L1

B0(L0, L1 : L) = {β ∈ B(L0 , L1) | β is transverse to αL}.

Lemma 4.2. The set B0(L0, L1 : L) is a residual subset of B(L0, L1) in C1-topology.

Proof. It is enough to consider Hamiltonian perturbations of given β that are fixed near
∂β. The proof of this is standard which we omit.

Example 4.2. Consider a Hamiltonian isotopy from L0 to L1 and its corresponding
Lagrangian cobordism

βH = {(x, s, a) | x ∈ Ls, a = −H(x, s)}.
We call this a Hamiltonian cobordism. In this case, we note that

βH ∩ αL = {(x, s, a) ∈ P × T ∗R | x ∈ L ∩ Ls and a = −H(x, s) = 0}
and βH is transverse to αL if and only if

TxL ⊕ TxLs = TxP,
∂H

∂s
(x, s) 6= 0

at each (x, s, a) ∈ βH ∩αL. However in general, we cannot avoid non-transverse intersec-
tions for a one parameter family {Ls}0≤s≤1, which forces us to look at perturbations of
βH on P × T ∗R to obtain transversal pairs (αL, β) with β close to βH .

As usual in the Floer theory, we examine compactness property of the one-dimensional
component of M̂ε(J̃ , β : x̃, ỹ) to study the chain property of hβ,ε, i.e., the identity

hβ,ε ◦ ∂0 = ∂1 ◦ hβ,ε (12)

We consider one dimensional components of M̂ε(J̃ , β) and study structure of the bound-

ary of each one-dimensional component in its compactification. Standard dimension
counting argument tells us that the boundary of Mε(J̃ , β : x̃, z̃) consists of the cusp-
trajectories of the form ũ1#ũ2 where (ũ1, ũ2) are elements inMε(J̃ , β : x̃, ỹ)×Mε(J̃ , β :
ỹ, z̃). Here, a priori, ỹ could be any element in the intersection set β∩αL,ε, not just in the
hypersurface of s = 0 or 1. This will prevent us from associating a chain homomorphism
to general Lagrangian cobordism. ¿From now on, we will mainly concern the case of
Hamiltonian cobordism.

Let us first examine the condition (1) from Proposition 4.2 that αL ∩ β is compact.
This is certainly the case if L is compact. For the case of Hamiltonian cobordism βH , it
is easy to see that αL ∩ βH is compact if and only if L ∩ Lt is compact for all t ∈ [0, 1].
In general, we introduce the following definition.
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Definition 4.2. Let L = {Lt}0≤t≤1 be a Hamiltonian isotopy. We say that intersections
do not escape to infinity if ∪t∈[0,1](L ∩ Lt) is compact.

Under this condition, we prove the following proposition, which will eliminate those
intersections ỹ away from ∂βH ∩ αL (i.e., away from s = 0 or s = 1) that provide the
obstruction to the existence of chain property.

Lemma 4.3. Let L ⊂ P and L = {Lt} be a Hamiltonian isotopy of L0 such that the
intersections L ∩ Lt do not escape to infinity. Let βH be a Hamiltonian cobordism asso-
ciated to the Hamiltonian isotopy L. Then we can change H to H ′ so that φtH = φtH′ ,
and

βH′ ∩ αL = L ∩ L0 × {(0, 0)}
∐

L ∩ L1 × {(1, 0)} (13)

Proof. We recall

βH ∩ αL = {(x, s, a) ∈ P × T ∗R | x ∈ L ∩ Ls, a = −H(x, s) = 0, s ∈ [0, 1]}
Since ∪s∈[0,1]L∩Ls is compact by hypothesis, Image H |∪s∈[0,1]L∩Ls is compact. Therefore
we can choose a non-negative function

χ : [0, 1]→ R+

so that

(i) χ(s) = 0 for s near 0 or 1.
(ii) χ(s) +H(x, s) > 0 for (x, s) such that x ∈ ∪s∈[δ,1−δ]L ∩ Ls for some small δ > 0.

We just choose H ′(x, s) := H(x, s) + χ(s) as our new Hamiltonian.

¿From now on based on Lemma 4.3 or its proof, we use only the Hamiltonians that
satisfy

H(x, s) > 0 for (x, s) ∈ ∪s∈[δ,1−δ]L ∩ Ls (14)

for the Hamiltonian cobordism βH when we perform construction of the chain map hβH ,ε.
We call such Hamiltonians (positively) admissible to (L,L). The following lemma is easy
to check

Lemma 4.4. Let L and L be as in Lemma 4.3. Consider the Hamiltonian cobordisms
βH associated to (positively) adimissible Hamiltonian H. Then two such Hamiltonian
cobordisms are Hamiltonian isotopic to each other in P × T ∗[0, 1] by an isotopy that is
compactly supported in P × T ∗(0, 1).

We now study the condition (2) from Proposition 4.2 that the Hamiltonian cobordism
βH is transverse to the level sets of ϕ̃ = ϕ + 1

2 (s2 + a2). A typical example of such
Hamiltonians arise in the following way: Let ∂P = M with its induced contact structure
and L0 ⊂ P be a proper Lagrangian submanifold with its boundary R0 ⊂ M . R0 is a
compact Legendrian submanifold of M0. Consider a Hamiltonian isotopy of L0 which
extends a Legendrian isotopy of R0 ⊂ M . We choose Hamiltonians which restrict to
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contact Hamiltonians (see [A2] for the definition) on the collar (1− ε, 1]×M of ∂P , i.e.,
satisfies

H(cm, t) = cH(m, t) for m ∈M, c ∈ R+ (15)

on the symplectic cone attached to ∂P .

Lemma 4.5. Let P be Weinstein at infinity and ϕ be an exhausting pluri-subharmonic
function which is super-quadratic over the radial coordinate. Suppose that H satisfy (15)
and that L0 is transverse to the level sets of ϕ at infinity. Then the induced Hamiltonian
cobordism βH ⊂ P × T ∗R of L0 is transverse to the level sets of ϕ̃ at infinity.

Proof. Since we extend βH so that a = 0 outside 0 ≤ s ≤ 1 which is obviously transverse,
it is enough to check the transversality over 0 ≤ s ≤ 1. In this region, we may consider
the function ϕ+ 1

2a
2 in place of ϕ̃. Recalling

βH = {(x, s, a) ∈ P × T ∗R | x ∈ Ls, a = −H(x, s), 0 ≤ s ≤ 1},
it is easy to check that the tangent space of βH at (x, s,−H(x, s)) is spanned by the
vectors

~v −H(x, s)dH(~v)
∂

∂a
+ c
( ∂
∂s
− ∂H

∂s

∂

∂a

)
where d is the differential for x, ~v ∈ TxLs and c ∈ R. Applying this vector to ϕ + 1

2a
2,

the non-transversal points are characterized by the equation

dϕ(x)
∣∣
Ls

+H(x, s)dH(x, s)
∣∣
Ls

= 0

H(x, s)∂H∂s = 0, a = −H(x, s) (16)

on the collar or on the symplectic cone attached to ∂P . Since dϕ 6= 0, H(x, s) 6= 0 on the
cone. On the other hand, since the growth of H is linear and the growth of ϕ is super-
quadratic over the radial coordinate, the first equation of (16) cannot hold at infinity in
P × T ∗[0, 1]. This finishes the proof.

We now apply Theorem 2.1 to the case L0 = αL and L1 = βH to obtain the C0-
estimate for (10). Once the crucial C0-estimate is obtained, the standard arguments in
the Floer theory prove the following proposition.

Theorem 4.6. Let ∂0 : CF (L, L0) → CF (L, L0) and ∂1 : CF (L, L1) → CF (L, L1)
be the Floer boundary maps on (P, ω). Suppose L,L satisfy the properties required in
Definition 4.2 and let H a Hamiltoian generating L and satisfying (14) and (15). Let
hβH ,ε : CF (L, L0 : αε) → CF (L, L1 : αε) be the map defined in (11). Then the identity
(12) holds and so hβH ,ε’s induce a homomorphism, as ε→ 0,

hβH ,ε : HF (L, L0 : J)→ HF (L, L1 : J).

Furthermore, this homomorphism is independent of the approximations αε and of the
choice of H. We denote the common homomorphim by

hL : HF (L, L0)→ HF (L, L1) (17)
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Proof. Under the hypotheses given in the statement, it follows that

ỹ ∈ ∂β ∩ αL,ε = L ∩ L0 × {(0, 0)} q L ∩ L1 × {(1, 0)}.
Once we have this, the standard argument in the Floer theory proves the chain property
(4.7).

To prove the independence of hβH ,ε on H and ε > 0, it will be enough to prove that the
family of approximations {αε}ε>0 and the change of H ’s satisfying the condition above
can be realized by compactly supported Hamiltonian deformations of one another among
them. But this follows from the construction of the approximation Υε of Ch(1[0,1)). We
refer to [KO1,2] for the details of this limiting argument.

In the next sections, we will prove that our chain map associated to a Hamiltonian
isotopy L is natural and becomes an isomorphism.

Remark 4.3. (1) This will fill the gap present in the construction of the chain isomor-
phism used in [O2], which the author overlooked in applying the strong maximum principle
to get the C0-estimate for the continuity equation (2) or (3). This C0-estimate and the
isomorphism were crucial in the proof of continuity of the invariants S 7→ ρ(H, S) under
the isotopy of submanifolds S (see the proof of Proposition 6.5 [O2]).

(2) The Hamiltonian isotopies considered in Lemma 4.5 includes the positive La-
grangian isotopy of θ-exact Lagrangian subamnifolds considered in [KhSe]. In particu-
lar, we have provided the recipe of curing the “weakness” mentioned therein in that our
construction provides a canonical isomorphism to Lemma 5.11 [KhSe] that was missing
therein.

5. Composition rule

In this section, we will prove the following composition rule,

hβ0#β1 = hβ1 ◦ hβ0 (18)

where L0∼
β0

L1, L1∼
β1

L2 and β0#β1 denotes the obvious composition of Lagrangian cobor-

disms β0 and β1.
We examine how the Lagrangian boundary conditions are involved. At t = 1, we can

just take a small perturbation of the elongated β0#β1. At t = 0, we need to describe
some approximation result for

L× Ch(1[0,1)) ∪ L× Ch(1[1,2)) = L × (Ch(1[0,1)) ∪Ch(1[1,2))).

by a family of Lagrangian submanifolds {Ξε}0<ε<1 as drawn above (See [KO2] for many il-
lustrations of this approximation argument). First, we remark that for any given compact
subset of ε in (0, 1), the corresponding Lagrangian submanifolds L×Ξε are deformations
to one another via compactly supported Hamiltonian isotopies T ∗(M × R). Then some
modification of standard gluing arguments can be applied to prove the following analytical
result (See [KO2] for some relevant discussion).
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ε
1

Ξε

Figure 3. Approximation of the cycle Ch(1[0,1)) ∪ Ch(1[1,2))

Theorem 5.1. There exists sufficiently small ε > 0 such that we have gluing diffeomor-
phisms

M(J̃ , αε, β0)×M(J̃ , αε, β1)→M(J̃ , L× Ξε, β0#β1)
after a modification of the cobordism β0#β1 near s = 1 as described in the proof of Lemma
4.5. In particular, we have the identity,

hβ1,ε ◦ hβ0,ε = hL×Ξε : HF∗(L, L0)→ HF∗(L, L2). (19)

Proof. We will be sketchy in the proof because similar gluing arguments have been used
many times in the literature by now.

Note that β0#β1 is again a Hamiltonian cobordism. We choose a Hamiltonian that
is positively admissible to β0#β1. In fact, by adding a bump function supported in a
neighborhood of the hypersurface s = 1, we can make the corresponding Hamiltonian H
so that Graph H is “above” Ξε as in Figure 4. We glue each given pair u0 ∈ M(J̃ , αε, β0)
and u1 ∈ M(J̃ , αε, β1) with the obvious holomorphic strip in the middle. This gluing is
possible, as long as ε is sufficiently small and so 1

ε
is sufficiently large and the strip is

sufficiently narrow. This finishes the proof.

After this crucial analytical step, we use the fact, which can be easily checked, that the
family {L × Ξε}0<ε<1 are Hamiltonian deformations to one another via compactly sup-
ported Hamiltonian isotopy. Therefore we can apply the standard continuation argument
in the Floer theory to show that the homomorphisms

hL×Ξε : HF∗(L, L0)→ HF∗(L, L1)
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1
ε

Figure 4

are independent of ε > 0. Since we have

h(β0#β1) = lim
ε→0

h(L×Ξε), (20)

we have finished proof of (18) combining (19) and (20).

6. Trivial cobordism

In this section we prove the following theorem. This is the place where the power of
choosing αL as we do for the boundary condition at t = 0 becomes manifest.

Theorem 6.1. Consider the trivial product cobordism

β0 = L0 × [0, 1]× {0} ⊂ P × T ∗R.
Then the induced homomorphism hβ0 : HF∗(L, L0) → HF∗(L, L0) is the identity homo-
morphim.

Proof. Recall αε = L× Ξ. We study the equation{
∂eu
∂τ + J̃

(
∂eu
∂t

)
= 0

ũ(τ, 0) ∈ αε, ũ(τ, 1) ∈ β0

(21)

Since J̃ = J ⊕ i, αε = L× Υε and β0 = L0 × oR all split, (21) splits into{
∂u
∂τ

+ J ∂u
∂t

= 0
u(τ, 0) ∈ L, u(τ, 1) ∈ L0

(22)
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and {
∂v = 0
v(τ, 0) ∈ Υε, v(τ, 1) ∈ oR.

(23)

Noting that (23) has the unique solution with index 1 (up to translations) and with the
asymptotic condition

v(−∞) = (0, 0), v(∞) = (1, 0), (24)

solutions ũ ∈Mε(x̃, ỹ : J̃ , αε, β0) of (21) with index 1 consist of the pairs (u, v) such that
u is a solution u of (22) with index 0 and v is the unique solution of (23) satisfying (24).
In particular, u must be constant. Hence we have proven that

nε(x̃, x̃ : β0) = 1 for all x ∈ L ∩ L0

nε(x̃, ỹ : β0) = 0 if y 6= x

which in turn implies that the chain map

hβ0,ε : CF (L, L0 : J, αε)→ CF (L, L0 : J, αε)

becomes the identity map. This finishes the proof.

One immediate corollary of (18) and Theorem 6.1 is the following

Theorem 6.2. Let H be a positively admissible Hamiltonian to (L,L), and βH be the
Hamiltonian cobordism obtained from the Hamiltonian isotopy φsH(L0) from L0 to L1 =
φ1
H(L0). Then the homomorphism

hβH : HF∗(L, L0)→ HF∗(L, L1)

is an isomorphism. Hence hL : HF∗(L, L0)→ HF∗(L, L1) is an isomorphism.

Proof. We compose βH with βH where

H(x, s) := −H(φsH(x), s)
which generates the isotopy {(φsH)−1(L1)}. It is immediate to check that the composi-
tion βH#βH is Hamiltonian isotopic to the product cobordism between L0 and L0 via
compactly supported Hamiltonian isotopy P × T ∗R. Therefore we can apply the standard
procedure of using (4) to prove the construction of chain isomorphisms between the cases
of the identity cobordism and βH#βH . This proves the theorem.

7. Intersection of conormal bundles

In this section, we apply our extended Floer theory to the special case of conormal
bundles ν∗S1, ν

∗S2 of two smooth submanifolds S1, S2 ⊂ M . We would like to compute
HF∗(ν∗S1, ν

∗S2), when S1 is transverse to S2.
First we note that the intersection of conormals

ν∗S1 ∩ ν∗S2 = oS1∩S2
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is compact and the following types of deformations or compositions of them leave the
intersection set compact:

(1) φt are compactly supported, or
(2) they are homogeneous symplectomorphisms (at infinity), i.e., it is generated by the

Hamiltonian of the form (q, p) 7→ 〈p,Xt(q)〉 such that S1 is transverse to ft(S2) for all t
where ft : M →M is the flow of Xt, or

(3) they are the fiberwise translations by tdf where f is a smooth function defined on
the base M .

One can easily check that any two such Φ = {φt} can be connected by one parame-
ter family {Φs}0≤s≤1 such that intersections of ν∗S1 and φst (S2) remain to be compact.
Therefore it follows from the discussions in the previous sections that there exist a canon-
ical chain isomorphism

h : CF (ν∗S1, φ1(ν∗S2))→ CF (ν∗S1, φ2(ν∗S2))

where, for example, Φi = {φti}0≤t≤1 for i = 1, 2 is a Hamiltonian isotopy of T ∗M of the
above types or a composition of them. Therefore this induces the canonical isomorphism

h : HF (ν∗S1, φ1(ν∗S2))→ HF (ν∗S1 , φ2(ν∗S2)).

We denote by HF (ν∗S1, ν
∗S2) the common group.

The existence of such isomorphisms for the first two cases is immediate from the dis-
cussions in the previous sections. The case (3) follows since we can easily check that the
corresponding Hamiltonian cobordism satisfies the hypotheses (1) and (2) from Proposi-
tion 4.2.

To compute HF∗(ν∗S1, ν
∗S2), we deform ν∗S2 to φf(ν∗S2) where φf is the fiberwise

translations by df , where the function f on M will be suitably chosen. Since we assume
that S1 is transverse to S2, S1 ∩S2 is a smooth submanifold. We choose a smooth Morse
function f̃ : S1∩S2 → R and extend it to M , first quadratically to a tubular neighborhood
and then suitably cutting off outside the neighborhood (See [Pz] or [O2]). We denote the
extension by f : M → R.

Proposition 7.1. Let f and φf described as above. Then we have
(1) ν∗S1 is transverse to φf (ν∗S2)
(2) ν∗S1 ∩ φf(ν∗S2) is finite and all lie in the zero section of T ∗M .

Proof. We first prove (2). Let α1 ∈ ν∗qS1. If α1 ∈ ν∗qS1 ∩ φf (ν∗S2), then we should have

α1 = α2 + df(q) (25)

for some α2 ∈ ν∗qS2 . Since α1 ∈ ν∗qS1, we must have

α2|TS1 = −df(q)|TS1 (26)

Since S1 is transverse to S2 and α2 ∈ ν∗qS2, (7.2) uniquely determines α2 and so α1. It
remains to show that α1 = 0. To show this, it is enough to prove that

α1|TS2/T (S1∩S2) ≡ 0
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because α1|TS1 ≡ 0. On the other hand, this follows from (25) noting that α2|TS2 ≡ 0
and that we have extended the Morse function f̃ on S1 ∩ S2 quadratically to its tubular
neighborhood and so df(q)|TM/T (S1∩S2) ≡ 0. This finishes the proof of (2). Once we
prove this, (1) immediately follows from transversality of intersections of S1 and S2.

With Propostions 7.1 in our hand, we can repeat the computations from [F2], [Pz] or
[O2] to construct one to one correpondence between the moduli spaceM(J, ν∗S1, φf(ν∗S2))
of Floer’s trajectories and the moduli space MMorse(f ;S1 ∩S2) for a suitably chosen al-
most complex structure J (see [F2], [Pz] for the relevant arguments in a different context).
Combining these and construction of orientation of the Floer moduli space from [Oh2],
we have proved the following

Theorem 7.2. Let S1, S2 ⊂M be transversal compact smooth submanifolds and ν∗S1, ν
∗S2

be their conormal bundles. Then there exists a canonical chain isomorphim

CMorse(f ;S1 ∩ S2)→ CF (ν∗S1, φf(ν∗S2))

which induces an isomorphism

h : H∗(S1 ∩ S2;Z2)→ HF (ν∗S1, φf(ν∗S2)) ' HF (ν∗S1, ν
∗S2)

in Z2-coefficients in general. When S1, S2 and M are oriented, then this isomorphism
holds in Z-coefficients.

This combined with the invariance property of the Floer homology under the Hamil-
tonian isotopy of the types, e.g., (1), (2) and (3) above, immediately gives rise to the
following intersection theorem.

Corollary 7.3. Let S1, S2 be as before. Suppose φ is a Hamiltonian diffeomorphism on
T ∗M of the types above or a composition of them. Then

#(ν∗S1 ∩ φ(ν∗S2)) ≥ rank H∗(S1 ∩ S2)

provided ν∗S1 is transverse to φ(ν∗S2). Here H∗(S1 ∩ S2) is in Z-coefficients in the
oriented case and in Z2-coefficients in general.

We would like to compare Theorem 7.2 with the conjecture stated in the end of [GM]. It
would be very interesting to generalize the construction in [KO1,2] to the general stratified
case to give a precise meaning of the statement of the conjecture [GM].

8. Further discussions

In [Po], Polterovich introduced the notion of Lagrangian pseudo-isotopy and in [C],
Chekanov introduced that of (connected) monotone Lagrangian cobordism. If we restrict
to the case of monotone Lagrangian submanifolds for which the Floer homology can
be easily constructed without any sophisticated machinery, the construction we have
carried out in the previous sections also applies to the monotone Lagrangian cobordism,
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in particular to the Lagrangian pseudo-isotopy. Therefore we have proved that for any
monotone Lagrangian cobordism β from L0 and L1, there exists a natural homomorphism

hβ : HF (L, L0)→ HF (L, L1).

For more complicated cobordism, we do not expect such homomorphims but expect only
some “correspondences”.

In fact, this construction works for the case of Lagrangian pseudo-isotopy as long as
the Floer homology HF (L, L0) for the given Lagrangian submanifold L and L0 can be
constructed (We refer to [FOOO] for the most general construction of Floer homology
upto now). Unlike the case of Hamiltonian isotopy, the corresponding chain map is not
expected to be an isomorphism and so can provide an obstruction to Lagrangian pseudo-
isotopy being a Hamiltonian isotopy. It would be an extremely interesting problem to
find a nontrivial Lagrangian pseuo-isotopy, when there is.

One very interesting problem is to study the change of HF (L, L′) when the isotopy
{Lt}0≤t≤1 of L′ undergoes the process of losing the intersections to infinity. A model
case to study will be the one of symplectic manifolds with contact type boundary and
its proper Lagrangian submanifolds. In this case, the corresponding family of boundary
Legendrian submanifolds will have intersections at a finite number of t’s in (0,1) with L.
In particular, it would be interesting to describe the change of HF (ν∗S1, ν

∗St2) at the time
t0, where the intersection pattern of S1 ∩ St2 changes through a degenerate intersection.
This will be a subject of future study.
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