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A partial order on the group of contactomorphisms of
R2n+1 via generating functions

Mohan Bhupal

1. Introduction

In an attempt to find an analogue of the Hofer metric in the contact case, Eliashberg
and Polterovich [4] found that, for certain classes of contact manifolds, the universal
cover of the space of contactomorphisms carried a natural partial order. They proposed
that it should be possible to prove the same result for a large class of contact manifolds
using the idea of contact homology. In this note, we show that, for R2n+1 with the
standard contact structure, the identity component of the group of compactly supported
contactomorphisms, itself, carries a natural partial order. We note that this is the first
time such an existence result for a contactomorphism group has appeared in the literature.
An outline of our construction follows.

Consider R2n+1 endowed with its standard contact structure ξ given as the kernel
of the 1-form α = dz −

∑
i yidxi. Let ψ : R2n+1 → R2n+1 be a compactly supported

contactomorphism and denote by g : R2n+1 → R the logarithm of the factor by which ψ
scales α, that is, ψ∗α = egα. Here ψ is said to be compactly supported if it agrees with
the identity outside of a compact set. We associate with ψ the Legendrian embedding
ιψ : R2n+1 → (R2(2n+1)+1,Ξ) given by

ιψ(p) = (p, ψ(p), g(p)),

where, in coordinates (x, y, z, X, Y, Z, θ) on R2(2n+1)+1, the contact structure Ξ is given
as the kernel of the 1-form

A = eθ
(
dz −

∑
i

yidxi

)
−
(
dZ −

∑
i

YidXi

)
.

Next, let J1R2n+1 = T ∗R2n+1×R denote the 1-jet bundle of R2n+1 and equip it with
its standard contact structure ξ given as the kernel of the 1-form α0 = dw−λcan, where w
denotes the coordinate on R and λcan denotes the canonical 1-form on T ∗R2n+1. Consider
the contact embedding Φ: (R2(2n+1)+1,Ξ)→ J1R2n+1 given by

Φ(x, y, z, X, Y, Z, θ) = (x, Y, z, eθy − Y,X − x, 1− eθ, 〈Y,X − x〉 − Z + z)
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and denote by Γψ ⊂ J1R2n+1 the image of Φ ◦ ιψ.1 Note that Γψ agrees with the
zero-section outside of a compact set, thus we may uniquely extend it to a Legendrian
submanifold, which we denote Γ̃ψ, of J1S2n+1. Here we think of S2n+1 as the one-point
compactification of R2n+1. We identify S2n+1 \ {qs}, where qs denotes the “south pole”,
with R2n+1 via stereographic projection.

Let, next, Cont0 = Cont0(R2n+1) denote the connected component of the identity in
the group of compactly supported contactomorphisms of R2n+1. For ψ ∈ Cont0, we define
c(ψ) = c(1, Γ̃ψ), where c(1, Γ̃ψ) is as defined by Viterbo in [6] (see also Section 2). Note
that, according to Viterbo [6, Proposition 4.2], c(ψ) ≤ 0 for every ψ ∈ Cont0. Proceeding
as in the symplectic case considered by Viterbo [6], we define a relation � on Cont0 as
follows.

Definition 1.1. ψ � φ if c(ψφ−1) = 0.

Theorem 1.1. Let ψ, φ be contactomorphisms in Cont0. The relation� has the following
properties:

(i) ψ � id =⇒ φψφ−1 � id .
(ii) ψ � id and ψ−1 � id ⇐⇒ ψ = id.

(iii) ψ � id and φ � id =⇒ ψφ � id .

Corollary 1.2. The relation � defines a partial order on Cont0.

Suppose, next, that (M, ξ) is an arbitrary contact manifold and let α ∈ Ω1(M) be a
contact 1-form. Given a contact isotopy ψt : M → M (with ψ0 = id), recall that the
associated contact vector field Xt ∈ Vect(M) is given by

∂

∂t
ψt = Xt ◦ ψt,

and the associated contact Hamiltonian Ht : M → R is given by

Ht = −ι(Xt)α.
In [4], Eliashberg and Polterovich call a contact isotopy ψt of a contact manifold (M, ξ)
nonnegative if the associated contact HamiltonianHt satisfies Ht ≥ 0 for every t. Given an
element f in the universal cover of Cont0(M, ξ), they write f ≥ id if f can be represented
by a nonnegative contact isotopy ψt. They show that, for certain classes of closed contact
manifolds, this relation gives rise to a genuine partial order on the universal cover of
the space of contactomorphisms of (M, ξ). The following proposition, inspired by [6,
Proposition 4.6], shows that, in case (M, ξ) is R2n+1 with its standard contact structure,
if ψt is nonnegative, then ψ1 � id.

Proposition 1.3. Let ψt be a contact isotopy of R2n+1 and H : [0, 1]×R2n+1→ R be the
associated contact Hamiltonian. Suppose that H(t, x) ≥ 0 for all (t, x). Then ψH1 � id.

1We remark that, in the terminology of [1], when ψ is C1-close to the identity, the Legendrian
submanifold Γψ is precisely the 1-graph of Vψ where Vψ is the generating function of type V of ψ.
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2. Generating functions

In this section we give a brief introduction to the theory of generating functions and
state the results that will be needed in later sections. For the purposes of this note it will
only be necessary to consider generating functions S : E → R defined on trivial bundles
E = B ×Rk. The definition in this case is as follows.

Assume that 0 is a regular value of the fibre derivative ∂S/∂ξ : B × Rk → Rk so that
the set CS = (∂S/∂ξ)−1(0) is a submanifold of E. Now note that at a point (x, ξ) ∈ CS
the covector dS(x, ξ) ∈ T ∗(x,ξ)E can be identified with a unique covector v∗ ∈ T ∗xB. It can
now easily be checked that the map

CS
ιS−→ J1B : (x, ξ) 7→ (x, v∗, S(x, ξ))

is a Legendrian immersion. In this situation the function S : E → R is called a generating
function for the Legendrian immersion ιS : CS → J1B. More generally, given a Legendrian
immersion f : L → J1B, S : E → R is called a generating function for f if there exists a
diffeomorphism h : L→ CS such that f = ιS ◦ h.

A function S : E → R defined on a vector bundle π : E → B is called quadratic at
infinity if S(x, ξ) = q∞(x, ξ), for |ξ| sufficiently large, where q∞(x, ·) is a nondegenerate
quadratic form for each x ∈ B.

Assume now that B is a closed (that is, compact and boundaryless) manifold and let
Leg = Leg(B) denote the set of Legendrian submanifolds L ⊂ J1B which are isotopic
through Legendrian submanifolds to the zero-section L0. The following theorem is due
to Chekanov [3] (see also [5] and [1]).

Theorem 2.1. Every Legendrian submanifold L ∈ Leg admits a generating function
S : E → R which is quadratic at infinity. Moreover, every family of Legendrian submani-
folds Lt ∈ Leg admits a family of generating functions St : E → R, each member of which
is a quadratic at infinity.

Since we shall only be considering generating functions which are quadratic at infinity,
from now on we omit the phrase “which is quadratic at infinity”.

Suppose now that f : L → J1B is a Legendrian immersion and let S : E → R be a
generating function for f . Then given any fibre preserving diffeomorphism Φ: E → E,
S ◦ Φ will also be a generating function for f . Two generating functions S, S′ : E → R
are called equivalent if they are related in this way. Also, if q : E′ → R is a nondegenerate
quadratic form on the fibres of E′ → B, then the function S̃ : E ⊕ E′ → R given by

S̃(x, ξ, ξ′) = S(x, ξ) + q(x, ξ′)

will be a generating function for f as well. This operation is called stabilisation. The
uniqueness theorem of Viterbo–Theret [6, 5] now states:

Theorem 2.2. If S1 and S2 are two generating functions for a Legendrian submanifold
L ∈ Leg, then after stabilisation they are equivalent.
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Given a function S : E → R which is quadratic at infinity, set

Eλ = {c ∈ E |S(c) ≤ λ}
for λ ∈ R and let D(E−) and S(E−) denote the disc and sphere bundles respectively of the
negative bundle E− associated to q∞. The Thom isomorphism now gives an isomorphism
between the cohomology of B and the cohomology of the pair (D(E−), S(E−)), shifting
the grading by k = rankE−. By homotopy, the cohomology of the latter is the same
as the cohomology of the pair (Eµ, E−µ) for µ sufficiently large. We thus obtain an
isomorphism

T : H∗(B) −→
'
H∗(Eµ, E−µ),

for µ sufficiently large, shifting the grading by k.
Given a cohomology class u ∈ H∗(B), the invariant c(u, S) ∈ R is now defined by

c(u, S) = inf{λ | Tu is nonzero in H∗(Eλ, E−µ)}
for µ sufficiently large. By Lusternik–Schnirelman theory, c(u, S) is a critical value of
S. By the uniqueness theorem, given a Legendrian submanifold L ∈ Leg, c(u, L) may be
defined to be c(u, S) for any S which is a generating function for L.

We now quote some further results from Viterbo’s paper [6], which we state in the
language of Legendrian submanifolds and which will be needed in later sections.

Given a vector bundle π : E → B, denote by Q(E) the space of quadratic-at-infinity
functions S : E → R.

Proposition 2.3 ([6, Proposition 1.2]). For every u ∈ H∗(B), the restriction of c(u, ·)
to Q(E) is continuous with respect to the C0-topology on Q(E).

Let µ ∈ Hn(B) denote the orientation class of B.

Proposition 2.4 ([6, Corollary 2.3]). Let L be a Legendrian submanifold in Leg. Then
c(1, L) = c(µ, L) if and only if L = L0.

Given a Legendrian submanifold L ⊂ J1B, denote by L the image of L under the map
(x, y, z) 7→ (x,−y,−z). Of course, L is again Legendrian. Moreover

Proposition 2.5 ([6, Corollary 2.8]). If L is a Legendrian submanifold in Leg, then c(µ, L)
= −c(1, L).

Legendrian submanifolds may be summed in the following manner.
Let fi = (li, Si) : Li → J1B = T ∗B × R, i = 1, 2 be two Legendrian immersions and

assume that l1× l2 : L1×L2 → T ∗(B×B) is transverse to the submanifold T ∗(B×B)|∆,
where ∆ denotes the diagonal in B × B. As T ∗(B × B)|∆ is coisotropic it admits a
reduction, which may be identified with T ∗B. The corresponding reduction of l1 × l2
is denoted l1]l2 : L1]L2 → T ∗B, where L1]L2 = (l1 × l2)−1T ∗(B × B)|∆. The lift f =
(l1]l2, S) : L1]L2 → J1B, where S is given by composing S1×S2|L1]L2 with the summation
map (z1, z2) 7→ z1 + z2, is denoted f1]f2 and is called the Legendrian sum.
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Note that when L1, L2 are submanifolds of J1B the Legendrian sum is given by

L1]L2 = {(x, y, z) ∈ J1B | y = y1 + y2, z = z1 + z2, (x, y1, z1) ∈ L1, (x, y2, z2) ∈ L2}.

In view of this the Legendrian sum L1]L2 is also denoted L1+L2. By convention L1−L2 =
L1 + L2. Also, note that if Si : Ei → R is a generating function for Li, i = 1, 2, then
S1]S2 : E1 ⊕E2 → R, given by

S1]S2(x, ξ1, ξ2) = S1(x, ξ1) + S2(x, ξ2),

is a generating function for L1]L2.

Proposition 2.6 ([6, Proposition 3.3]). For every u, v ∈ H∗(B),

c(u ∪ v, S1]S2) ≥ c(u, S1) + c(v, S2).

3. Proof of Theorem 1.1

We make use of the following lemma in the proof of Theorem 1.1.

Lemma 3.1. Let ψ be a contactomorphism in Cont0 with ψ∗α = egα and S : E → R be
a generating function for Γψ. Then if c ∈ E is a critical point of S, then ψ(x, y, z) =
(x, y, z − S(c)) and g(x, y, z) = 0, where (x, y, z) = π(c). In particular, if c is a critical
point of S with critical value zero, then π(c) is a fixed point of ψ and g(π(c)) = 0.

Furthermore, suppose that c is a critical point of S with critical value zero, then the
following are equivalent:
(i) c is a nondegenerate critical point of S;
(ii) Γψ intersects the zero-wall, ZR2n+1 , that is, the product of the zero-section of the

T ∗R2n+1 with the real line, transversely at ιS(c);
(iii) the linearised equations dψ(π(c))X = X, dg(π(c))(X) = 0 admit no common non-

trivial solution X ∈ R2n+1.

Proof. Let c be a critical point of ψ. Then, by definition, we have ιS(c) = (π(c), 0, S(c)) ∈
Γψ. Letting π(c) = (x, y, z) and ψ(x, y, z) = (X, Y, Z) and recalling that Γψ = Φ ◦ ιψ we
find that

eθy − Y = 0, X − x = 0, 1− eθ = 0, 〈Y,X − x〉 − Z + z = S(c)

or, equivalently,
θ = 0, X = x, Y = y, −Z + z = S(c).

It follows that ψ(x, y, z) = (x, y, z − S(c)), g(x, y, z) = 0 proving the first part of the
lemma. We now prove the second part of the lemma.

(i) is equivalent to (ii). We use the following elementary fact. Let (V, ω) be a symplectic
vector space and N ⊂ V be a coisotropic subspace. Suppose that Λ0 and Λ1 are two
Lagrangian subspaces of V satisfying

Λ0 ⊂ N, Λ1 ∩Nω = {0},
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where Nω denotes the symplectic complement of N . Then Λ0 is transverse to Λ1 if
and only if, in the quotient, the reduced spaces Λ̄0 and Λ̄1 are transversal. Now set
V = Ta(T ∗E), N = TaNE , Λ0 = TaE0 and Λ1 = Ta(graph(dS)), where a = (c, dS(c)),

NE =
{

(c, η) ∈ T ∗E
∣∣ η ∈ (ker dπ(c))⊥

}
and E0 denotes the zero section of T ∗E.

(ii) is equivalent to (iii). Γψ intersects ZR2n+1 nontransversally at (x, y, z) = ιS(c) if
and only if there exists a nonzero vector (ξ, η, ζ) ∈ R2n+1 such that

eθyΘ + eθη − η′ = 0, ξ′ − ξ = 0, eθΘ = 0,

where θ = g(x, y, z), ξ′ and η′ are defined by (ξ′, η′, ζ′) = dψ(x, y, z)(ξ, η, ζ) and Θ =
dg(x, y, z)(ξ, η, ζ). Since g(x, y, z) = 0, this is equivalent to

ξ′ = ξ, η′ = η, Θ = 0. (1)

Also, using the fact that ψ is a contactomorphism it follows that

ζ′ − 〈Y, ξ′〉 = eθ(ζ − 〈y, ξ〉).
It thus follows that if the equalities in (1) hold, then ζ′ = ζ holds automatically, that is,
(ξ, η, ζ) is a fixed point of dψ(x, y, z) and dg(x, y, z)(ξ, η, ζ) = 0. 2

Proof of Theorem 1.1. (i) Fix a smooth family φt of compactly supported contactomor-
phisms of R2n+1 satisfying φ0 = id, φ1 = φ. For each t, define ψt = φtψφ

−1
t and suppose

that ψ∗tα = egtα. Also, let St : E → R be a smooth family of generating functions for the
associated family Γ̃ψt of Legendrian submanifolds of J1S2n+1. By definition, outside of
some compact set C ⊂ E, which we can assume is away from the fibre over the south pole
qs ∈ S2n+1, all of the functions St are of the form St(q, ξ) = qt,∞(q, ξ), where qt,∞(q, ·)
is a nondegenerate quadratic form for each q ∈ S2n+1. We now prove (i) assuming, to
begin with, that all critical points c ∈ intC of S = S0, with critical value zero, are
nondegenerate.

By Lemma 3.1, away from the fibre over qs, every critical point c ∈ E of S, with
critical value zero, corresponds to a point p ∈ R2n+1 satisfying ψ(p) = p, g(p) = 0, where
g = g0. Also, a point p ∈ R2n+1 satisfies ψ(p) = p, g(p) = 0 if and only if pt = φt(p)
satisfies ψt(pt) = pt, gt(pt) = 0 for every t. Now, if p, and hence also pt = φt(p) for
every t, satisfies the preceding, then, by the nondegeneracy assumption, the linearised
equations dψ(p)X = X, dg(p)(X) = 0, and hence also dψt(pt)X = X, dgt(pt)(X) = 0
for every t, admit no common nontrivial solution X ∈ R2n+1. It follows easily that to
every nondegenerate critical point c ∈ E of S with critical value 0 there corresponds a
smooth family ct, 0 ≤ t ≤ 1, such that, for each t, ct is a nondegenerate critical point of
St with critical value zero. Under the nondegeneracy assumption, (i) now follows from
Proposition 2.3. In general we approximate ψ as follows.

Let U ⊂ E be a sufficiently large open set, with compact closure and away from the
fibre over qs, such that outside U S is of the form S(q, ξ) = q∞(q, ξ). Perturb S in U
so that all critical points in the interior of U become nondegenerate. By adding a small
bump function, now, if necessary, which takes the value ε in U , for some small constant
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ε > 0, and is identically zero outside of some neighbourhood of U , we may assume that
the resulting function S′ satisfies c(1, S′) = 0. Indeed, let ρ be a bump function which
takes the value 1 in U and which is identically zero outside of some neighbourhood of U
and let Sε denote the function obtained by first perturbing S and then adding ερ. The
critical values of this function Sε are given by

critSε = (crit Ŝ + ε) ∪ {0},
where Ŝ denotes the perturbed function. Since crit Ŝ is a totally disconnected set, it is
easy to see that if c(1, Ŝ) < 0, then c(1, Sε) = 0 for some (small) ε > 0.

It follows that, for a sufficiently small perturbation, S′ will be a generating function for
Γ̃ψ′ for some contactomorphism ψ′ C1-close to ψ. A continuity argument now completes
the proof of (i).

For the proof of (ii) and (iii) we require the following result.

Lemma 3.2. For every u ∈ H∗(S2n+1) and ψ ∈ Cont0(R2n+1),

c(u, Γ̃ψ) = 0 =⇒ c(u, Γ̃ψ−1) = 0.

Before proceeding to prove this lemma we introduce some notation.
Let ψ be a contactomorphism of R2n+1 with ψ∗α = egα. Then the map

ψ̃ : R2(2n+1)+1 → R2(2n+1)+1

(p, P, θ) 7→ (p, ψ(P ), g(P ) + θ)

is a contactomorphism of (R2(2n+1)+1,Ξ). Denote by Ψψ the composition Φ ◦ ψ̃ ◦ Φ−1

and extend this to a contactomorphism Ψ̃ψ of a subset of J1S2n+1 containing the zero
section, L0, in the obvious way. Note that Ψ̃ψ satisfies

Ψ̃ψ Γ̃φ = Γ̃ψφ, Ψ̃−1
ψ = Ψ̃ψ−1

for any contactomorphism φ of R2n+1. Lemma 3.2 is now an immediate consequence of
the following.

Lemma 3.3. Assume that U is an open subset of J1S2n+1 containing L0. Let Ψ: U → U
be a contactomorphism which is isotopic to the identity and L ⊂ U be a Legendrian
submanifold which is Legendrian isotopic to L0, then

c(u,Ψ(L)) = 0 =⇒ c(u, L− Ψ−1(L0)) = 0

for any u ∈ H∗(S2n+1).

Proof. Choose a smooth family of contactomorphims Ψt : U → U such that Ψ0 = id, Ψ1 =
Ψ and, for t ∈ [0, 1], when defined, set Λt = Ψ−1

t Ψ(L) − Ψ−1
t (L0). Then

Λ0 = Ψ(L) − L0 = Ψ(L), Λ1 = L− Ψ−1(L0).

Now let St : E → R be a smooth family of generating functions for the Legendrian subman-
ifolds Λt obtained by considering generating functions individually for the families of Leg-
endrian submanifolds Ψ−1

t Ψ(L) and Ψ−1
t (L0). Note that, with this definition, St is defined
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for every t ∈ [0, 1], even when Λt is not defined. The idea of the proof now is to study the
bifurcation diagram of the critical points of St and to show that if c(u,Λ0) = c(u, S0) = 0,
then c(u, St) = 0 for every t and, in particular, that c(u,Λ1) = c(u, S1) = 0.

First note that critical points c ∈ E of St with critical value zero correspond, in a
straightforward way, to points

b ∈ Ψ−1
t Ψ(L) ∩Ψ−1

t (L0)

which in turn correspond to points

b′ = Ψt(b) ∈ Ψ(L) ∩L0.

It follows that every critical point c ∈ E of St with critical value zero belongs to a
continuous family of points ct, 0 ≤ t ≤ 1, such that dSt(ct) = 0, St(ct) = 0 for each t.
This does not, in itself, prove the lemma as one of these families may bifurcate.

Now note that every critical point c ∈ E of St corresponds to a point

a ∈ ΠΨ−1
t Ψ(L) ∩ΠΨ−1

t (L0),

where Π: J1S2n+1 → T ∗S2n+1 denotes the natural projection. Also, if ΠΨ(L) intersects
ΠL0 transversely at Π(b′), where b′ ∈ Ψ(L) ∩ L0, then ΠΨ−1

t Ψ(L) intersects ΠΨ−1
t (L0)

transversely at ΠΨ−1
t (b′). It follows that if Ψ(L) intersects ZS2n+1 transversely and

c(u,Λ0) = c(u, S0) = 0, then c(u, St) = 0 for every t ∈ [0, 1]. The proof is now com-
pleted by approximating L by Legendrian submanifolds Lε such that Ψ(Lε) is transverse
to ZS2n+1 and c(u,Ψ(Lε)) = 0, arguing as in the proof of Theorem 1.1 (i) 2

Proof of Theorem 1.1 continued. (ii) This follows immediately from Lemma 3.2, Propo-
sition 2.4 and Proposition 2.5.

(iii) Set Ψ = Ψ̃φ−1ψ−1 , L = Γ̃ψ. Then

0 = c(1, Γ̃φ) = c(µ, Γ̃φ) = c(µ, Γ̃φ−1) = c(µ,Ψ(L)),

where the second equality follows from Proposition 2.5 and the third equality from
Lemma 3.2. Thus, by Lemma 3.2 and Proposition 2.6,

0 = c(µ, L− Ψ−1(L0)) ≥ c(1, Γ̃ψ) + c(µ,Ψ−1(L0)) = −c(1,Ψ−1(L0)) = −c(1, Γ̃ψφ),

that is, c(ψφ) ≥ 0. This completes the proof of (iii) and the theorem. 2

4. Proof of Proposition 1.3

We first prove the following auxiliary lemma.

Lemma 4.1. Let ψt be a contact isotopy of R2n+1 with ψ∗1α = egα and H : [0, 1] ×
R2n+1 → R be the associated contact Hamiltonian. Then the vector field Xt ∈ Vect(R2n+1)
associated with ψt is given by

ẋi =
∂H

∂yi
, ẏi = −∂H

∂xi
− yi

∂H

∂z
, ż = 〈y, ẋ〉 −H. (2)
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Furthermore,

g(p) =
∫ 1

0

−∂zH(t, ψt(p)) dt

for any p ∈ R2n+1.

Proof. The first part of the lemma is easy. For the second part, fix a point p = (x, y, z) ∈
R2n+1 and consider a curve s 7→ (xs, ys, zs) passing through p at s = 0. Also, set

(xs(t), ys(t), zs(t)) = ψt(xs, ys, zs),

abbreviate (x(t), y(t), z(t)) = (x0(t), y0(t), z0(t)) and denote

(ξ(t), η(t), ζ(t)) =
∂

∂s

∣∣∣∣
s=0

(xs(t), ys(t), zs(t)).

Now consider the expression
żs = 〈ys, ẋs〉 −H.

Differentiate this with respect to s and set s = 0 to obtain

ζ̇ = 〈η, ẋ〉+ 〈y, ξ̇〉 − ∂xHξ − ∂yHη − ∂zHζ
= 〈η, ẋ− ∂yH〉 − 〈ẏ + ∂xH + y∂zH, ξ〉+ 〈y∂zH, ξ〉 − ∂zHζ + ∂t〈y, ξ〉.

Thus, using the first two equations in (2), obtain
d

dt

(
ζ − 〈y, ξ〉

)
= −∂zH

(
ζ − 〈y, ξ〉

)
.

It follows that

ζ(1)− 〈y(1), ξ(1)〉 = e
R 1
0 −∂zH(t,p(t))dt

(
ζ(0) − 〈y(0), ξ(0)〉

)
, (3)

where p(t) = ψt(p). The lemma now follows by comparing (3) with the defining equation
ψ∗1α = egα. 2

Proof of Proposition 1.3. For 0 ≤ λ ≤ 1, let ψλt be the contact isotopy associated to the
contact Hamiltonian Hλ = λH . Also, let Sλ : E → R be a family of generating functions
for the Γ̃ψλ1 . We claim that for every critical point c ∈ E of Sλ

∂Sλ
∂λ

(c) ≥ 0.

This claim will be proved at the end of the proposition.
We now prove the proposition assuming the validity of the claim. To begin with,

we make the stronger assumption that ∂λSλ(c) > 0 for every point c ∈ E satisfying
dSλ(c) = 0. We also assume that the family Sλ is generic, that is, for every λ in the
complement of a finite set, λ0 < λ1 < · · · < λk, Sλ is a Morse function with isolated
critical values. Now, for λ ∈ [λi−1, λi], i = 1, . . . , k, let cλ be the unique critical point of
Sλ such that Sλ(cλ) = c(1, Sλ) and abbreviate c(Sλ) = c(1, Sλ). Then

d

dλ
c(Sλ) =

d

dλ
Sλ(cλ) =

∂Sλ
∂λ

(cλ) > 0,
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where the second equality holds as cλ is a critical point of Sλ. Thus c(Sλ) is strictly
increasing on each segment [λi−1, λi] and, as it is also continuous, it follows that c(S1) ≥ 0,
that is, ψ1 � id. This proves the proposition under the assumption that ∂λSλ(c) > 0
for every point c ∈ E satisfying dSλ(c) = 0 and that the family Sλ is generic. These
assumptions are removed as follows.

The genericity assumption can be removed by approximating Sλ in the C1-topology.
This does not destroy the assumption that ∂λSλ(c) > 0 for every point c ∈ E satisfying
dSλ(c) = 0. The latter in turn can be removed by replacing Sλ by Sλ+ελρ for ε sufficiently
small, where ρ is a suitable cut-off function. All that remains now is to prove the claim.

Assume now that cλ, λ ∈ I, for some interval I ⊂ [0, 1], is a family of points in E
such that dSλ(cλ) = 0 for each λ. By Lemma 3.1, to the family of points cλ ∈ E there
corresponds a family of points pλ = (xλ, yλ, zλ) ∈ R2n+1 such that

ψλ1 (xλ, yλ, zλ) = (xλ, yλ, zλ − Sλ(cλ)), gλ(xλ, yλ, zλ) = 0

for each λ, where gλ is defined by ψλ1
∗
α = egλα.

Set, now,

pλ(t) = (xλ(t), yλ(t), zλ(t)) = ψλt (xλ, yλ, zλ)

and denote

(ξλ(t), ηλ(t), ζλ(t)) =
∂

∂λ
(xλ(t), yλ(t), zλ(t)).

In this notation the critical values of the Sλ are given by

Sλ(cλ) = −zλ(1) + zλ(0).

Also
∂Sλ
∂λ

(cλ) =
d

dλ
Sλ(cλ) = −ζλ(1) + ζλ(0). (4)

Consider now the expression

żλ = 〈yλ, ẋλ〉 −Hλ.

By the same calculation as in the proof of Lemma 4.1, with varying Hλ = λH , we have
d

dt

(
ζ − 〈y, ξ〉

)
= −∂zHλ

(
ζ − 〈y, ξ〉

)
−H.

Here the argument λ has been suppressed, when this leads to no confusion. It follows
that

ζ(1) − 〈y(1), ξ(1)〉 = e
R 1

0 −∂zHλ(t,p(t))dt
(
ζ(0)− 〈y(0), ξ(0)〉

)
−
∫ 1

0

e
R 1
s
−∂zHλ(t,p(t))dtH(s, p(s)) ds.

Now from Lemma 4.1

0 = g(p(0)) =
∫ 1

0

−∂zHλ(t, p(t)) dt.
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Also, y(0) = y(1) and ξ(0) = ξ(1). It follows, using (4), that

∂Sλ
∂λ

(cλ) = −ζ(1) + ζ(0) =
∫ 1

0

e
R 1
s
−∂zHλ(t,p(t))dtH(s, p(s)) ds ≥ 0

for every λ ∈ I. This proves the claim and the proposition. 2
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