
Turk J Math
25 (2001) , 245 – 261.
c© TÜBİTAK

Induced Cat1-groups

Murat Alp

Abstract

In this paper we define the pullback cat1-group and show that this Pullback

has a right adjoint which is the induced cat1-group. Later we show that this right

adjoint is a pushout of category of cat1-groups. We calculate the Peiffer subgroups

to find a finite group of the source of induced cat1-groups. The generating set of

Peiffer subgroups are also given in this paper. All results are corrected by a GAP[13]

program package in [4]. This paper also contains the some computational examples

which are the calculation-induced cat1-group and comparative times between the

induced crossed modules and induced cat1-groups.

Key Words: Pullback, Crossed module, Cat1-group, induced crossed modules,

induced cat1-groups, Peiffer commutators, cocomplete, GAP.

1. Introduction

We begin by considering the possibility of implementing functions for doing calculations
with crossed modules, derivations, actor crossed modules, cat1-groups, sections, induced
crossed modules and induced cat1-groups in GAP[13].

To this end, we first explain the importance of crossed modules. The general points
are:

• crossed modules may be thought of as 2-dimensional groups;

• a number of phenomena in group theory are better seen from a crossed module
point of view;

• crossed modules occur geometrically as π2(X,A) → π1A when A is a subspace of
X or as π1F → π1E where F → E → B is a fibration;

1991 A.M.S.C.: 13D99, 16A99, 17B99, 17D99, 18D35.
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• crossed modules are usefully related to forms of double groupoids.

Particular constructions, such as induced crossed modules, are important for the appli-
cations of the 2-dimensional Van-Kampen Theorem of Brown and Higgins [6], and so for
the computation of homotopy 2-types.

For all these reasons, the facilitation of the computations with crossed modules should
be advantageous. It should help to solve specific problems, and it should make it easier
to construct examples and see relations with better known theories.

The powerful computer algebra system GAP[13] provides a high level programming
language with several advantages for the coding of new mathematical structures. The
GAP system has been developed over the last 15 years at RWTH in Aachen. Some of its
most exciting features are:

• it has a highly developed, easy to understand programming language incorporated;

• it is especially powerful for group theory;

• it is portable to a wide variety of operating systems on many hardware platforms.

• it is public domain and it has a lively forum, with open discussion. These make it
increasingly used by the mathematical community.

On the other hand, GAP has some disadvantages, too:

• the built in programming language is an interpreted language, which makes GAP
programs relatively slow compared to compiled languages such as C or Pascal. GAP
source can not be compiled.

• the demands on system resources are quite high for serious calculations.

However, the advantages outweigh the disadvantages, and so GAP was chosen.
Our aim in this paper is to describe a share package XMOD [4] for the GAP group

theory language which enables computations with the equivalent notions of finite, per-
mutation crossed modules and cat1-groups.

The term crossed module was introduced by J. H. C. Whitehead in [15]. Most of
crossed modules references state the axioms of a crossed module using left actions, but
we shall use right actions since this is the convention used by most computational group
packages.

A crossed module X = (∂ : S → R) consists of a group homomorphism ∂, called the
boundary of X , together with an action α : R → Aut(S) satisfying, for all s, s′ ∈ S and
r ∈ R,

XMod 1: ∂(sr) = r−1(∂s)r
XMod 2: s∂s

′
= s′

−1
ss′.
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The kernel of ∂ is abelian.
Standard constructions for crossed modules include the following:

1. A conjugation crossed module is an inclusion of a normal subgroup S�R, where R
acts on S by conjugation.

2. A central extension crossed module has as boundary a surjection ∂ : S → R with
central kernel, where r ∈ R acts on S by conjugation with ∂−1r.

3. An automorphism crossed module has as range a subgroup R of the automorphism
group Aut(S) of S which contains the inner automorphism group of S. The
boundary maps s ∈ S to the inner automorphism of S by s.

4. An R-Module crossed module has an R-module as source and ∂ is the zero map.

5. The direct product X1×X2 of two crossed modules has source S1×S2 , range R1×R2

and boundary ∂1 × ∂2, with R1, R2 acting trivially on S2, S1, respectively.

A morphism between two crossed modules X1 and X2 is a pair (σ, ρ), where σ : S1 →
S2 and ρ : R1 → R2 are homomorphisms satisfying

∂2σ = ρ∂1, σ(sr) = (σs)ρr .

When X2 = X1 and σ, ρ are automorphisms then (σ, ρ) is an automorphism of X1. The
group of automorphisms is denoted by Aut(X1).

In [11] Loday reformulated the notion of a crossed module as a cat1-group, namely
a group G with a pair of homomorphisms t, h : G → G having a common image R and
satisfying certain axioms. We find it convenient to define a cat1-group C = (e; t, h : G→
R) as having source group G, range group R, and three homomorphisms: two surjections
t, h : G→ R and an embedding e : R → G satisfying:

Cat 1: te = he = idR,
Cat 2: [ker t, kerh] = {1G}.

The maps t, h are usually referred to as the source and target, but we choose to call them
the tail and head of C, because source is the GAP term for the domain of a function.

A morphism C1 → C2 of cat1-groups is a pair (γ, ρ) where γ : G1 → G2 and
ρ : R1 → R2 are homomorphisms satisfying

h2γ = ρh1, t2γ = ρt1, e2ρ = γe1. (1)
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Induced crossed modules were introduced by Brown and Higgins in [6]. Later, induced
catn-group structures were defined by Brown and Loday in [7]. In this paper, they gave
some applications of catn-groups. They also showed that the H-module f∗M induced
from a G-module M by a morphism f : G→ H is given by f∗M = M ⊗ZG ZH. Thus f∗
is a left adjoint to the pull-back functor

f∗ : (H −modules)→ (G−modules).

In the case of crossed modules, the inducing functor

f∗ : (crossed H−modules)→ (crossed G−modules)

is the left adjoint of the pull-back functor

f∗ : (crossed H −modules)→ (crossed G−modules).

In addition, they used the notion of induced crossed square and the corresponding notion
for catn-groups. See the historical background given by Brown in [5] for further details.
The pull-back crossed modules were defined in [9] and [10]. In section 2, we describe the
construction of pullback crossed modules and induced crossed modules. We also define
pullback and induced cat1-groups. Section 3 contains an outline algorithm for computing
induced cat1-groups and a table of sample execution times.

The author wishes to thank R. Brown and T. Porter for many profitable discussions
concerning the mathematics. Considerable help with the implementation has been given
by many members of the GAP team at Aachen, led by J. Neubüser, and by D. F. Holt
who is the appointed editor for the package.

2. Pull-back crossed modules and Pull-back Cat1-groups

Let X = (∂ : S → R) be a crossed R-module and ι : Q → R be a morphism of groups.
Then ι∗∗X = (∂• : ι∗∗S → Q) is the pullback of X by ι, where ι∗∗S = {(q, s) ∈ Q× S |
ιq = ∂s} and ∂•(q, s) = q. The action of Q on ι∗∗S is given by

(q1, s)q = (q−1q1q, s
ιq). (2)

Proposition 2.1 [6] The functor ι∗∗ : XM/R→ XM/Q has a right adjoint ι∗∗.

The universal property of induced crossed modules and the proof of above proposition
can be found in [9].
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A pullback cat1-group is defined as follows.

ι∗∗G

t∗∗

��

π

  A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

h∗∗ // Q

EDGF
e∗∗

��

ι

��
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

Q

ι

  B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

@A

GF

e∗∗

oo

G
h //

t

��

R

EDGF
e

��

R

@A

GF
e

//

Let C = (e; t, h : G→ R) be a cat1-group and let ι : Q→ R be a group homomorphism.
Define ι∗∗C = (e∗∗; t∗∗, h∗∗ : ι∗∗G→ Q) to be the pullback of G where

ι∗∗G = {(q1, g, q2) ∈ Q×G×Q | ιq1 = tg, ιq2 = hg},

t∗∗(q1, g, q2) = q1, h
∗∗(q1, g, q2) = q2 and e∗∗(q) = (q, eιq, q). Multiplication in ι∗∗G

is componentwise. The pair (π, ι) is a morphism of cat1-groups where π : ι∗∗G →
G, (q1, g, q2) 7→ g. The verifications of the Cat1-group axioms and the universal property

of induced Cat1-groups can be found in [1].

Proposition 2.2 The category of cat1-groups is cocomplete.

We recall the definition of pushouts in a general category. Suppose we are given a
commutative diagram of morphisms in a category C. Then

X0
i1 //

i2

��

X1

v1

��

X2 v2
// X.
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Recall [12] that (v1, v2) is pushout of (i1, i2), and also that the above square is a pushout
square, if the following property holds: if f1 : X1 → H, f2 : X2 → H are morphisms such
that f1i1 = f2i2 then there is a unique map f : X → H such that fv1 = f1, fv2 = f2.

As usual, this property characterizes the pair (v1, v2) up to an automorphism of X.
For this reason, it is common to coin an abuse of language and refer to X as the pushout
of (i1, i2). In such case, we write

X = X2 ∗X0 X1,

where ∗X0 denotes a free product with amalgamation over X0.

Proposition 2.3 The functor ι∗∗ : Cat1Grp/U → Cat1Grp/R has a left adjoint ι∗∗ :

Cat1Grp/R→ Cat1Grp/U.

Proof. The proof of proposition can be found in [2]. 2

We now include some basic properties of commutators which we shall need to obtain
some relations between the Peiffer subgroup P = [ker t, kerh] and P∗∗ = [ker t∗∗, kerh∗∗].

Proposition 2.4 The following identities are easily verified.

(ia) [ab, c] = [a, c]b [b, c]
(ib) [a, bc] = [a, c][a, b]c

(iia) [a1a2 . . . an, c] = [a1, c]a2...an [a2, c]a3...an . . . [an−1, c]an[an, c]
(iib) [a, c1c2 . . . cn] = [a, cn][a, cn−1]cn . . . [a, c2]c3...cn [a, c1]c2...cn

Proposition 2.5 The Peiffer subgroup P = [ker t, kerh] is normal in G and R-invariant.

Proof. If a ∈ ker t, c ∈ kerh and g ∈ G then [a, c]g = [ag, cg] ∈ P. Since r ∈ R acts on
G by conjugation with er, it follows that [a, c]r ∈ P. 2

Proposition 2.6 Let Xt, Xh be generating sets for ker t, kerh, closed under conjugation
in G. The Peiffer subgroup [ker t, kerh] of G has generating set

{[x, y] | x ∈ Xt, y ∈ Xh}.

Proof. An element of [ker t, kerh] has the form

z =
∏
i

[ai, ci],
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where ai = xi1xi2 . . . xiri ∈ ker t, xij ∈ Xt, and ci = yi1yi2 . . . yisi ∈ kerh, yij ∈ Xh, so

z =
∏
i

[xi1xi2 . . . xiri , yi1yi2 . . . yisi ].

¿From Proposition 2.4, z is a product of generating commutators. 2

To any pre-cat1-group P there is a canonically associated a cat1-group C, obtained
by quotienting the source group by the Peiffer subgroup [ker t, kerh]. The corresponding
functor is denoted

ass : (pre− cat1−groups) → (cat1 − groups) (3)

and is clearly the identity when restricted to cat1-groups [7].
Our aim now is to find a convenient generating set for [ker t∗∗, kerh∗∗]. To this end

we define, for an arbitrary pre-cat1-group P = (e; t, h, : G→ R), projections

πt : G → ker t, g 7→ (etg−1)g,
πh : G → ker h, g 7→ (ehg−1)g.

The maps πt, πh are respectively derivations for the conjugation crossed modules (inc :
ker t→ G) and (inc : kerh→ G).

Since πtg = g when g ∈ ker t and πhg = g when g ∈ ker h, both πt and πh are
surjective. The following proposition gives values for πt, πh and their inverses in some
special cases.

Proposition 2.7 The following identities are easily verified:

(ia) πt(ab) = (πta)tb(πtb)
(ib) πh(cd) = (πhc)hd(πhd)
(iia) (πta)−1 = (πta−1)ta

(iib) (πhc)−1 = (πhc−1)hc

(iiia) πt(a1 . . . an) = (πta1)t(a2...an)(πta2)t(a3...an) . . . (πtan−1)tan(πtan)
(iiib) πh(c1 . . . cn) = (πhc1)h(c2...cn)(πhc2)h(c3...cn) . . . (πhcn−1)hcn(πhcn).

Proof. We first verify (ia) :

πt(ab) = et(ab)−1ab

= (etb−1)(eta−1)ab

= (etb−1)(πta)(etb)(etb−1)b
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= (πta)etb(πtb)

= (πta)tb(πtb)

by definition of the action of R on G. Then (iia) follows by setting a = b−1 and (iiia)
follows by induction. Identities (ib),(iib) and (iiib) can be proved in a similar way. 2

A second set of identities, but with the order of the factors reversed, may be proved
in a similar way.

Proposition 2.8

(ia) πt(ab) = (πtb)(πta)b

(ib) πh(bc) = (πhc)(πhb)c

(iia) (πta)−1 = (πta−1)a

(iib) (πhc)−1 = (πhc−1)c

(iiia) πt(a1 . . . an) = (πtan)(πtan−1)an . . . (πta1)a2...an

(iiib) πh(c1 . . . cn) = (πhcn)(πhcn−1)cn . . . (πhc1)c2...cn .

We now obtain two pairs of identities expanding commutators containing terms πt(ab) or
πh(bc).

Proposition 2.9

(i) [πt(ab), πhc] = [(πta)tb, (πhc)]
πtb[πtb, πhc]

(ii) [πta, πh(bc)] = [πta, πhc][πta, (πhb)(hc)]
πhc

.

Proof. Using the Proposition 2.7,
(i)

[πt(ab), (πhc)] = [(πta)tb(πtb), (πhc)]

= (πtb)−1((πta)tb)
−1

(πhc)−1(πta)tb(πtb)(πhc)

= (πtb)−1((πta)tb)
−1

(πhc)−1(πta)tb(πhc)(πtb)(πtb)−1(πhc)−1(πtb)(πhc)

= [(πta)tb, (πhc)]
(πtb)[(πtb), (πhc)]

= [(πta)(tb)(πtb), (πhc)(πtb)][(πtb), (πhc)]

= [(πta)b, (πhc)(πtb)][(πtb), (πhc)].
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(ii)

[πt(a), πh(bc)] = [(πta), (πhb)hc(πhc)]

= (πta)−1(πhc)−1(πhb)hc
−1

(πta)(πhb)hc(πhc)

= (πta)−1(πhc)−1(πta)(πhc)(πhc)−1(πta)(πhb)hc
−1

(πta)(πhb)hc(πhc)

= [(πta), (πhc)][(πta), (πhb)(hc)]
(πhc)

.

2

Proposition 2.10

(i) [πt(ab), πhc] = [πtb, πhc]
(πta)b [(πta)b, πhc]

(ii) [πta, πh(bc)] = [πta, (πhb)c][πta, πhc](πhb)
c

.

Proof. The proof is similar to the previous proof, but uses Proposition 2.8. 2

Proposition 2.11 The maps πt and πh preserve the action of U.
Proof.

πt(gu) = (et(gu))−1(gu)

= (et((eu)−1g(eu)))−1(geu)

= ((eteu)−1(etg)(eteu))−1(eu)−1g(eu)

= (eu)−1(etg)−1g(eu)

= ((etg)−1)g)eu

= (πtg)u

The proof for πh is similar. 2

Let C = (e; t, h : G→ R) be a cat1-group and let ι : R → U be an inclusion. Denote

by U ,R the identity cat1-groups on U and R. Let ι∗∗C = (e∗∗; t∗∗, h∗∗ : ι∗∗G → U) be

the pushout of the pre-cat1-group morphisms (ι, ι) : R → U and (e, 1) : R → C. The
elements of ι∗∗G are words of the form κ = g1u1g2u2 . . . gkuk, and the identity element
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is the empty word λ. We make no notational distinction between elements g ∈ G, u ∈ U
and there images under the inclusions ι∗∗ : G→ ι∗∗G, e∗∗ : U → ι∗∗G. Thus

R

��
@
@
@
@
@
@
@

1
1 ��@

@
@
@
@
@
@

e

��

ι // U

""E
E
E
E
E
E
E
E

1
1 ""E

E
E
E
E
E
E
E

e∗∗

��

R
ι //

1
��

U

1

��

G

��
?
?
?
?
?
?
?
?

h
t ��?

?
?
?
?
?
?
?

ι∗∗ // ι∗∗G

""D
D
D
D
D
D
D
D

h∗∗
t∗∗ ""D

D
D
D
D
D
D
D

R ι
// U.

Proposition 2.12 The pushout ι∗∗C = (e∗∗; t∗∗, h∗∗ : ι∗∗G → U) is a pre-cat1-group,
with tail t∗∗ and head h∗∗ given on words of length 1 by

h∗∗g = ιhg, h∗∗u = u, t∗∗g = ιtg, t∗∗u = u,

and extended componentwise to longer words, while e∗∗u = u.

Proof.

R
ι //

e

��

U

e∗∗

��
1

��
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

G
ι∗∗ //

ιt
((Q

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ ι∗∗G

t∗∗
D
D
D

!!D
D
D

U

Since the above diagram is commutative and a pushout of groups then there is a unique
homomorphism t∗∗ such that t∗∗e∗∗ = 1. Similarly, there is a unique h∗∗ such that
h∗∗e∗∗ = 1. So the condition is satisfied. 2

To turn this pre-cat1-group into a cat1-group we must find the Peiffer subgroup
P∗∗ = [ker t∗∗, kerh∗∗]. For this situation we denote the maps πt and πh by πt∗∗ and
πh∗∗ so

πt∗∗ : G ∗R U → G ∗R U, κ 7→ (e∗∗t∗∗κ−1)κ
πh∗∗ : G ∗R U → G ∗R U, κ 7→ (e∗∗h∗∗κ−1)κ.

The following proposition gives values for πt∗∗ and πh∗∗ in some special cases.
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Proposition 2.13 The following identities hold for any g ∈ G, u ∈ U :

e∗∗t∗∗g = etg

e∗∗h∗∗g = ehg

πt∗∗g = πtg

πt∗∗u = λ

πt∗∗(gu) = (πtg)u

πt∗∗(ug) = πtg

πt∗∗(g1u1g2u2) = (πtg1)u1(tg2)u2(πtg2)u2

πt∗∗(g1u1 . . . gnun) = (πtg1)u1(tg2)u2...(tgn)un . . . (πtgn−1)un−1(tgn)un(πtgn)un .

Proof. Using the Proposition 2.12 and ι∗∗ : G→ ι∗∗G,

e∗∗t∗∗g = e∗∗ιtg = ι∗∗etg = etg.

Also using the definition of πt∗∗ ,

πt∗∗g = (e∗∗t∗∗g−1)g = (etg−1)g = πtg,

πt∗∗u = (e∗∗t∗∗u−1)u = u−1u = λ,

πt∗∗(gu) = (πt∗∗g)
(t∗∗u)(πt∗∗u)

= (πt∗∗g)
uλ

= (πtg)u

πt∗∗(ug) = (πt∗∗u)(t∗∗g)(πt∗∗g)

= (πt∗∗g)
= πtg.

Applying Proposition 2.7,

πt∗∗(g1u1g2u2) = πt∗∗(g1u1)(t∗∗g2u2)(πt∗∗g2u2)

= [πt∗∗(g1)t∗∗u1πt∗∗(u1)](t∗∗g2u2)πt∗∗(g2)(t∗∗u2)πt∗∗(u2)

= (πtg1)u1(tg2)u2(πtg2)u2 .

The final identity follows from proposition 2.7 (iiia). 2

255



ALP

Proposition 2.14 The following identities hold for any g ∈ G, u ∈ U :

πh∗∗g = πhg,

πh∗∗u = λ,

πh∗∗(gu) = (πhg)u,

πh∗∗(ug) = πhg,

πh∗∗(g1u1g2u2) = (πhg1)u1(hg2)u2(πhg2)u2 ,

πh∗∗(g1u1 . . . gnun) = (πhg1)u1(hg2)u2...(hgn)un . . . (πhgn)un .

The following two pairs of identities, which expand commutators containing πt∗∗(ab) or
πh∗∗(bc) follows immediately.

Corollary 2.15

[πt∗∗(ab), (πh∗∗c)] = [(πta)tb, (πhc)]
(πtb)[(πtb), (πhc)]

= [(πtb), (πhc)]
(πta)b [(πta)b, (πhc)]

[πt∗∗(a), πh∗∗(bc)] = [(πta), (πhc)][(πta), (πhb)(hc)]
(πhc)

= [(πta), (πhb)c][(πta), (πhc)]
(πhb)

c

.

Let XS be a generating set for S = ker t, let YS = XR
S = {g1, . . . , gn} be the closure of

XS under the action of R, and let T = {c1 = (), c2, . . . , cm} be a transversal for the right
cosets U/R.

Proposition 2.16 The kernels ker t∗∗ and ker h∗∗ have generating sets

Zt∗∗ = {(1, gi)cj | gi ∈ YS , cj ∈ T},

Zh∗∗ = {(∂g−1
i , gi)cj | gi ∈ YS , cj ∈ T},

where ∂ is an inclusion morphism.

Proof. In the cat1-group (C = e; t, h : G → R), where G = R n S, we have

t(r, s) = r, h(r, s) = r∂s, e(r) = (r, 1), πt(r, s) = (1, s) and πh(r, s) = (∂s−1, s). Using
Proposition 2.12, t∗∗(r, s) = ιt(r, s) = r, h∗∗(r, s) = ιh(r, s) = r∂s and e∗∗r = (r, 1S). We
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also have t∗∗u = h∗∗u = e∗∗u = u, πt∗∗(r, s) = r−1(r, s) = (1R, s), πt∗∗u = λ, πh∗∗(r, s) =

∂s−1r−1(r, s) = ∂s−1(1R, s) and πh∗∗u = λ. Now πt∗∗ is onto and, by Proposition 2.13,

πt∗∗((r1, s1)u1 . . . (r`, s`)u`) = (1, s1)u1(r2,1)u2...(r`,1)u` . . . (1, s`−1)u`−1(r`,1)u`(1, s`)u`

= (1, s1)u1r2u2 . . . (1, s`)u`

= (1, s1)u
′
1 . . . (1, s`)u

′
` ,

so every element of ker t∗∗ has the form

(1, s1)u1 . . . (1, s`)u` , si ∈ S, ui ∈ U.

Since

(1, s1s2 . . . s`)u = ((1, s1) . . . (1, s`))u = (1, s1)u . . . (1, s`)u,

we need only take a generating set for S. Furthermore, since u = rc for some r ∈ R and
coset representation c ∈ U,

(1, s)u = (1, s)rc = (1, sr)c.

So ker t∗∗ has a generating set

{(1, gi)cj | gi ∈ YS , cj ∈ T}

and similarly kerh∗∗ has a generating set

{(∂g−1
i , gi)cj | gi ∈ YS , cj ∈ T}.

2

Proposition 2.17 The Peiffer commutator subgroup P∗∗ = [ker t∗∗, kerh∗∗] has normal
generating set

ZP∗∗ = {[(1, gi)cj , (∂g−1
k , gk)] | gi, gk ∈ YS , cj ∈ T}.

Proof. Since ker t∗∗ is generated by Zt∗∗ and kerh∗∗ is generated by Zh∗∗ it follows
that P∗∗ is normally generated by {[x, y] | x ∈ Zt∗∗ , y ∈ Zh∗∗}. Also,

[x, y] = [(1, gi)cj , (∂g−1
k , gk)c` ]

= [(1, gi)cjc
−1
` , (∂g−1

k , gk)]c`

= [(1, gri )
c′ , (∂g−1

k , gk)]c` ,
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where cjc−1
` = rc′, r ∈ R, c′ ∈ T. 2

A smaller generating set may be obtained if we relax the requirement that the elements
y are closed under the action of R.

Proposition 2.18 The Peiffer commutator subgroup P∗∗ has a normal generating set

Z′P∗∗ = {[(1, gi)cj , (∂g−1
k , gk)] | gi ∈ YS , cj ∈ T, gk ∈ XS}.

Proof. Suppose gk = srkk where sk ∈ XS , rk ∈ R. Then

[(1, gi)cj , (∂g−1
k , gk)c` ] = [(1, gi)cj , ((∂s−1

k )rk , srkk )c` ]

= [(1, gi)cjr
−1
k
c−1
` , (∂s−1

k , sk)]rkc`

= [(1, gr
′

i )c
′
, (∂s−1

k , sk)]rkc` .

2

3. Algorithm for Induced Cat1-groups

The induced cat1-group ι∗∗C may be obtained by using XModCat1 to construct X ,
then InducedXMod to construct ι∗X and then Cat1XMod. An alternative procedure
is to calculate the induced cat1-group ι∗∗G = (G ∗R U)/P∗∗ directly. This has been
implemented for the case when C = (e; t, h : G→ R) and ι : R→ U is an inclusion.

3.1. Record Structure for InducedCat1

The record structure for an induced cat1-group contains, in addition to the usual fields
for a cat1-group,

IC.cat1, the cat1-group C,
IC.name, written as IC(name of C),
IC.morphism, the morphism 〈ι∗∗, ι〉 : C → ι∗∗C,
IC.isInducedCat1, a boolean flag normally true.

3.2. Algorithm for InducedCat1

The function InducedCat1 is called as:
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gap> InducedCat1( G, R, U );

gap> InducedCat1( C, iota );

The function requires as data a conjugation cat1-group C = (e; t, h : G → R) and an
inclusion morphism ι : R → U. The data may be specified using either of the two
forms shown, where the first form requires G ≥ R ≥ U. As output, the function returns
ι∗∗C = (e∗∗; t∗∗, h∗∗ : ι∗∗G→ U) together with a morphism 〈ι∗∗, ι〉 : C → ι∗∗C.

Step 1 Check the argument: if the argument is a collection of groups then
call ConjugationCat1(G, R); to construct C, and
call InclusionMorphism(R, U); to construct ι.
Otherwise, G:= C.source; R := C.range;
and iota is the second argument.

Step 2 Obtain finitely presented groups G′, U ′ isomorphic to G and U.
Step 3 Construct a free F whose rank is the total length of the

generating sets of G and U.
Step 4 Map the relators for G′, U ′ into words in F and,

for each generator r of R, add the relation (r ∈ G′) = (r ∈ U ′).
Step 5 Obtain coset representatives for U/R.
Step 6 Construct generators for the Peiffer subgroup P∗∗.
Step 7 Construct the finitely presented group IG′ = F/rels

where rels is the set of relators constructed in steps 4 and 6.
Step 8 Obtain a faithful permutation representation IG of IG′.
Step 9 Construct homomorphisms tstar, hstar and estar.
Step 10 Call Cat1(IG, tstar, hstar, estar); to construct ι∗∗C.
Step 11 Use Cat1Morphism to construct 〈ι∗∗, ι〉.
Step 12 Add the fields described in section 3.1

3.3. Comparative timing

The following table gives timing in miliseconds for the calculation of some induced crossed
modules and induced cat1-groups. Computations were performed on a Digital Alpha 64-
bit workstation using 20M memory.
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Conjugation time
cat1-group C IC
crossed module X IX | I | iota
k4 → c2 124 2605 36 c2 → s3
c2 → c2 59 1207 6
a4a4 → a4 9429 107322 864 a4 → s4
a4 → a4 1705 7328 36
c4c4 → c4 733 4395 128 c4 → d8
c4 → c4 152 2273 16
c4c4 → c4 248 5135 128 c4 → c4c2
c4 → c4 150 1777 16
c3c3 → c3 683 9789 288 c3 → a4
c3 → c3 116 3719 24
d8d8 → d8 4131 89649 512 d8 → d8c2
d8 → d8 756 21317 32
q8q8 → q8 4604 229838 512 q8 → q8c2
q8 → q8 1073 19663 32
c4c2c4c2→c4c2 723 6802340 1024 c4c2 → d8y4
c4c2 → c4c2 532 10183 64
c32c32 → c32 726 6227880 1458 c32 → c32 n c2
c32 → c32 551 10813 81

Table 1. Sample timings for induced crossed modules and cat1-groups
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