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On the Expansions in Eigenfunctions of Hill’s

Operator

F. Aras and G. Sh. Guseinov

Abstract

In this paper we show how one can deduce the Titchmarsh expansion formula in
eigenfunctions of Hill’s operator from the Gel’fand expansion formula.
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1. Introduction

Consider the second-order differential equation

−[p(x)y′]
′
+ q(x)y = λρ(x)y (−∞ < x <∞), (1)

where λ is a complex parameter (spectral parameter), the coefficients p(x), q(x),and ρ(x)
are real-valued measurable functions defined on (−∞,∞) and periodic with the period
ω > 0:

p(x+ ω) = p(x), q(x+ ω) = q(x), ρ(x + ω) = ρ(x).

In addition, we assume that p(x) > 0 and ρ(x) > 0 almost everywhere, and∫ ω

0

dx

p(x)
<∞,

∫ ω

0

|q(x)|dx <∞,
∫ ω

0

ρ(x)dx <∞ . (2)

Notice that we do not assume the differentiability and even the continuity of p(x). A
function y = y(x) is called a solution of the equation (1) if its first derivative y′(x) exists,
p(x)y′(x) is absolutely continuous and (1) is satisfied almost everywhere on (−∞,∞).
Let us set
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y[1](x) = p(x)y′(x).

This is the so-called quasi-derivative of y(x). For any solution y(x) and any point
a ∈ (−∞,∞) the value y(a) is finite, whereas the value y′(a) may be infinite. However,
the value

y[1](a) = limx→a p(x)y′(x)

certainly will be finite. Under condition (2) the existence and uniqueness theorem for
solution y(x) of the equation (1) satisfying the initial conditions

y(a) = c0, y[1](a) = c1

is valid (See, for example, [12, Kapitel 5].)

For the results relating to eigenvalue and eigenfunction theory of periodic differential
equations we refer to [1, 2, 11, 14].

Denote by

µ+
0 < µ−2 ≤ µ+

2 < µ−4 ≤ µ+
4 < ... < µ−2j ≤ µ+

2j < ...

the eigenvalues of the periodic boundary value problem (BVP) generated on the segment
0 ≤ x ≤ ω by Equation (1) and the boundary conditions

y(0) = y(ω), y[1](0) = y[1](ω), (3)

and by

µ−1 ≤ µ+
1 < µ−3 ≤ µ+

3 < ... < µ−2j+1 ≤ µ+
2j+1 < ...

the eigenvalues of the semi-periodic (or anti-periodic) BVP generated on the segment
0 ≤ x ≤ ω by the equation (1) and the boundary conditions

y(0) = −y(ω), y[1](0) = −y[1](ω). (4)

In the above inequalities the equality holds in the case of double eigenvalue. These values
occur in the order
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µ+
0 < µ−1 ≤ µ+

1 < µ−2 ≤ µ+
2 < µ−3 ≤ µ+

3 < µ−4 ≤ µ+
4 < ... .

Furthermore, denote by H the minimal closed operator generated in the Hilbert space

L2
ρ(−∞,∞) = {f : (−∞,∞)→C |

∫ ∞
−∞

ρ(x)|f(x)|2dx <∞}

by the differential expression

1
ρ(x)

{
− d

dx
p(x)

d

dx
+ q(x)

}
.

The operator H , which is called the Hill operator is selfadjoint, its spectrum is continuous
and consists of the sequence of segments

[µ+
0 , µ

−
1 ], [µ+

1 , µ
−
2 ], ..., [µ+

j−1, µ
−
j ],... ,

which are separated from each other by the gaps

(−∞, µ+
0 ), (µ−1 , µ

+
1 ), ..., (µ−j , µ

+
j ), ... .

An important role in the spectral analysis of the operator H is played by the so-called
t-periodic BVP defined on the segment 0 ≤ x ≤ ω by Equation (1) and the boundary
conditions

y(ω) = eity(0) , y[1](ω) = eity[1](0), (5)

where t is an arbitrary fixed number that belongs to [−π, π].

We denote by θ(x, λ) and ϕ(x, λ) the solutions of Equation (1) satisfying the conditions

θ(0, λ) = ϕ[1](0, λ) = 1 , θ[1](0, λ) = ϕ(0, λ) = 0. (6)

These solutions and their first quasi-derivatives with respect to x are entire functions of
the variable λ ∈C and are real-valued for real values of λ . Let us set

F (λ) = θ(ω, λ) + ϕ[1](ω, λ). (7)

Then the eigenvalues of the t - periodic BVP (1), (5) coincide with the roots λ of the
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equation

F (λ) = 2 cos t. (8)

The BVP (1), (5) is self adjoint and possesses a countable set of real eigenvalues with
the accumulation point at +∞, and the corresponding eigenfunctions form an orthogonal

basis of L2
ρ[0, ω]. Denote by λj(t), j = 1, 2, ...,the eigenvalues of the problem (1), (5)

numerated with regard of their multiplicity and in increasing order, so that λj(t) for any
j be a continuous function of the variable t. Let ψj(x, t), j = 1, 2, ..., be the corresponding
orthonormal eigenfunctions.

Extending each of the functions ψj(x, t) to the whole axis −∞ < x <∞ as a solution

of Equation (1) with λ = λj(t), we arrive at the functional equation

ψj(x+ ω, t) = eitψj(x, t) (−∞ < x <∞).

With this, we obtain a set of solutions of the equation (1)

ψj(x, t), j = 1, 2, ... , t ∈ [−π, π],

bounded with respect to variable x ∈ (−∞,∞). These functions are called generalized
or Bloch eigenfunctions of the Hill operator H .

In the work of Gel’fand [3] (see also [13]) the following theorem is proved.

Theorem 1 For an arbitrary function f ∈ L2
ρ(−∞,∞) there exist limit functions

αj(t) = limr→∞

∫ r

−r
ρ(x)f(x)ψj (x, t) dx, j = 1, 2, ..., (9)

and the Parceval identity

∫ ∞
−∞

ρ(x)|f(x)|2dx =
1

2π

∞∑
j=1

∫ π

−π
|αj(t)|2dt (10)

and the expansion formula
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f(x) =
1

2π

∞∑
j=1

∫ π

−π
αj(t)ψj(x, t)dt (11)

hold. The limit in (9) is taken with respect to the metric of L2[−π, π]. The bar over a
function here and below indicates complex conjugation; and the series (11) converges with

respect to the metric of L2
ρ(−∞,∞).

In the monograph of Titchmarsh [14, Chap. XXI] the Parceval identity and the
expansion formula are obtained in other terms: that is the following theorem is proved.

Theorem 2 For an arbitrary real-valued function f ∈ L2
ρ(−∞,∞) with compact support,

the Parceval identity

∫ ∞
−∞

ρ(x)f2(x)dx =
1
π

(
∞∑
j=1

∫ µ−2j−1

µ+
2j−2

−
∞∑
j=1

∫ µ−2j

µ+
2j−1

){ϕ(ω, λ)g2(λ)

−θ[1](ω, λ)h2(λ) + [ϕ[1](ω, λ) − θ(ω, λ)]g(λ)h(λ)}η(λ)dλ (12)

and the expansion formula

f(x) =
1
π

(
∞∑
j=1

∫ µ−2j−1

µ+
2j−2

−
∞∑
j=1

∫ µ−2j

µ+
2j−1

){ϕ(ω, λ)g(λ)θ(x, λ) − θ[1](x, λ)h(λ)ϕ(x, λ)+

1
2
[ϕ[1](ω, λ)− θ(ω, λ)][h(λ)θ(x, λ) + g(λ)ϕ(x, λ)]}η(λ)dλ (13)

hold, where

g(λ) =
∫ ∞
−∞

ρ(x)f(x)θ(x, λ)dx, h(λ) =
∫ ∞
−∞

ρ(x)f(x)ϕ(x, λ)dx (14)

and

η(λ) = {4− [θ(ω, λ) + ϕ[1](ω, λ)]2}−1/2 (15)

is a positive on the interval (µ+
0 , µ

−
1 ) branch of the root.

Note that Theorem 2, in contrast to Theorem 1, tells us much about the structure
of the spectral matrix of the operator H . The proof of this theorem as given in [14,
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Chapter.XXI] is (as it seems to us) rather heavy and is constructed by means of a resolvent
method via using a contour integral of the Green function.

At the same time, the proof of Theorem 1 is more elementary (for the detailed proof
of this theorem see [8]).

In this paper we show that Theorem 2 may be deduced from Theorem 1 using
some simple tools. Such a way unlike the resolvent method can be applied also to the
multiparameter differential and difference equations with periodic coefficients (see [4, 7,
8 ])to which the resolvent method has not yet been developed. This way was exploited
by the one of the authors in [5, 6, 9].

2. Deduction Theorem 2 from Theorem 1

First, we study some needed properties of the eigenvalue λj(t) as the function of
variable t.

Since the eigenvalues of the t-periodic BVP (1), (5) coincide with the roots of Equation
(8), for all j = 1, 2, ... we have

F (λj(t)) = 2 cos t. (16)

By (7) the function F (λ) is holomorphic in the complex plane C.

It is easily verified (see [1, p. 216]) that

dF (λ)
dλ

=
∫ ω

0

{θ[1](ω, λ)ϕ2(x, λ)− ϕ(ω, λ)θ2(x, λ)

+[θ(ω, λ) − ϕ[1](ω, λ)]θ(x, λ)ϕ(x, λ)}ρ(x)dx . (17)

Denote G = {λ ∈ (−∞,∞) : |F (λ)| < 2}. From the continuity of the function F (λ),
it follows that G is an open subset of (−∞,∞).

Lemma 1 If λ ∈ G, then
dF (λ)
dλ

6= 0

Proof. First of all, we observe that if λ ∈ (−∞,∞) and |F (λ)| < 2, then ϕ(ω, λ)

and θ[1](ω, λ) are nonzero and have opposite signs. Indeed, by the definition (7) of the
function F (λ), and by the identity
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θ(ω, λ)ϕ[1](ω, λ) − θ[1](ω, λ)ϕ(ω, λ) = 1 (18)

(which follows from the constancy of the Wronskian), the inequality F 2(λ) < 4 is
equivalent to

[θ(ω, λ)− ϕ[1](ω, λ)]2 < −4θ[1](ω, λ)ϕ(ω, λ),

which implies the desired assertion.
Since for λ ∈ G we have ϕ(ω, λ) 6= 0, formula (17) can be rewritten in the form

dF (λ)
dλ

= −ϕ(ω, λ)
∫ ω

0

{
[θ(x, λ)− θ(ω, λ) − ϕ[1](ω, λ)

2ϕ(ω, λ)
ϕ(x, λ)]2+

4− F 2(λ)
4ϕ2(ω, λ)

ϕ2(x, λ)
}
ρ(x)dx.

This implies the lemma.

Lemma 2 If t ∈ (0, π), then λj(t) 6= λ`(t) for j 6= `. In other words, the eigenvalues of

the t-periodic BVP (1), (5) are simple for t ∈ (0, π).

Proof. Suppose the contrary: λj(t) = λ`(t) , j 6= `, for some t ∈ (0, π). This means

that λj(t) is a multiple eigenvalue of the t-periodic BVP (1), (5). Then for λ = λj(t) the

BVP (1), (5) will have two linearly independent solutions ψ(x) and ψ̃(x). Hence for this
λ any solution y(x) of Equation (1), being a linear combination of the solutions ψ(x) and

ψ̃(x), will satisfy boundary conditions (5). In particular, θ(x, λ) and ϕ(x, λ) will satisfy
these conditions. Hence

F (λ) = θ(ω, λ) + ϕ[1](ω, λ) = eitθ(0, λ) + eitϕ[1](0, λ) = 2eit.

On the other hand, the eigenvalue λ of the problem (1), (5) should satisfy Equation

(8). Thus, we arrive at eit = cos t. Obviously, the latter is possible only for t = mπ

(m = 0,±1,±2, ...). But by the condition of the lemma , 0 < t < π: the contradiction
proves the lemma.

Lemma 3 For any j = 1, 2, ... the function λj(t) is real-analytic (R-analytic) in the

interval (0, π) and continuous in the its closure [0, π].
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Proof. Take an arbitrary point t0 ∈ (0, π) and set λ0 = λj(t0), where j is fixed. Since

the inclusion t0 ∈ (0, π) implies | cos t0| < 1, it follows from (16) that |F (λ0)| < 2. Hence

λ0 ∈ G.
The function Φ(λ, t) = F (λ) − 2 cos t of two arguments λ and t is R-analytic in R2;

and Φ(λ0, t0) = 0. Moreover, by Lemma 1

∂Φ(λ, t)
∂λ

=
dF (λ)
dλ

6= 0,

for λ ∈ G. By the implicit function theorem applied to analytic equations, in a neigh-
bourhood of the point (λ0, t0) ∈ G × (0, π) the equation Φ(λ, t) = 0 determines λ as a
single-valued function of t : λ = ϕ(t), and, moreover the function ϕ is R-analytic.

These arguments together with (16) imply that the function λj(t) is R-analytic in

(0, π).

From the variational principles for the eigenvalues applied to the BVP (1), (5) it fol-
lows that the function λj(t) depends continuously on t ∈R. The lemma is proved. 2

Since by Lemma 3 the function λj(t) is differentiable for 0 < t < π, differentiating

the identity (16) with respect to t, we get

dF (λ)
dλ
|λ=λj(t) ·

dλj(t)
dt

= −2 sin t (19)

for t ∈ (0, π).

It follows from (19) that the function
dλj(t)
dt

is nonzero for t ∈ (0, π). Hence, by

continuity, it is of constant sign (but depending on j ).

Let Sj be the image of the interval [0, π] under the mapping λj(·) : [0, π] −→ R,

Sj = {λj(t) : t ∈ [0, π]}.

Since from (19) we have

dλj(t)
dt

6= 0 for t ∈ (0, π),
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it follows by the inverse mapping theorem that

λj(·) : (0, π) −→ int Sj

is a one-to-one bicontinuous mapping and, moreover, the inverse of it is also R-analytic.
The latter implies that the boundary points of [0, π] correspond to the boundary points
of Sj and conversely. Hence Sj is a bounded and closed interval of R.

Lemma 4 The intervals Sj (j = 1, 2, ...) do not overlap, i.e., no two of them have
common interior points.

Proof. Suppose the contrary. Then for some t, τ ∈ (0, π) and j 6= ` the equality

λj(t) = λ`(τ ) =def µ will be valid. By Lemma 2 we have t 6= τ . The functions

ψj(x, t) = y(x) and ψ`(x, τ) = z(x) are solutions of Equation (1) for λ = µ satisfying the
boundary conditions

y(ω) = eity(0) , y[1](ω) = eity[1](0)

(20)

z(ω) = eiτz(0) , z[1](ω) = eiτz[1](0).

One can easily see that the solutions y(x) and z(x) are linearly independent. Indeed,
if not, then from the boundary conditions (20) we would obtain t − τ = 2mπ for some
integer m, which is impossible since t, τ ∈ (0, π) and t 6= τ .

From the linear independence of the solutions y(x) and z(x) it follows that the
Wronskian

Wx(y, z) = y(x)z[1](x) − y[1](x)z(x)

is not zero. Since the Wronskian does not depend on x, it has the same value for x = ω

and x = 0. Hence by (20) we obtain exp{i(t+τ )} = 1, which implies that t+τ = 2mπ for
same integer m. The latter cannot be true since t, τ ∈ (0, π). The contradiction proves
the lemma. 2
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Lemma 5 For each j (j = 1, 2, ...) as the parameter t increases continuously from zero to

π, the function λ2j−1(t) increases continuously from the value µ+
2j−2 to the value µ−2j−1

while λ2j(t) decreases continuously from µ−2j to µ+
2j−1. So, if t runs over the segment

[0, π] from 0 to π, then λj(t) strictly monotonically runs over the segment [µ+
j−1, µ

−
j ].

In addition, for the odd j the motion of λj(t) starts from the left edge of the segment

[µ+
j−1, µ

−
j ] while for the even j from the right edge of this segment.

Proof. For a fixed t ∈ (0, π) we consider the function Φ(λ) = F (λ) − 2 cos t. Since

F (µ±j ) = (−1)j · 2, the values of Φ(λ) at the edges of the segment [µ+
j−1, µ

−
j ] are

Φ(µ+
j−1) = (−1)j−1 · 2− 2 cos t = −2[(−1)j + cos t]

Φ(µ−j ) = (−1)j · 2− 2 cos t = 2[(−1)j − cos t].

Obviously, these values have opposite sign. Hence, by the continuity, in the segment

[µ+
j−1, µ

−
j ] there is at least one root of the function Φ(λ), i.e., at least one eigenvalue

of the t-periodic BVP (1), (5). Since F (λ) is monotonic on [µ+
j−1, µ

−
j ], there must be

exactly one. Consequently, the numbers λj(t) (j = 1, 2, ...) lie one each in the segments

[µ+
j−1, µ

−
j ] (j = 1, 2, ...) :

µ+
j−1 < λj(t) < µ−j , t ∈ (0, π), j = 1, 2, ... (21)

The cases t = 0 and t = π of the t-periodic BVP (1), (5) are the periodic and semi-
periodic problems (1), (3) and (1), (4) respectively. Therefore, λj(0) are the eigenvalues

of the periodic BVP and λj(π) are the eigenvalues of the semi-periodic BVP. This yields,

by (21), that

λ2j−1(0) = µ+
2j−2, λ2j−1(π) = µ−2j−1

(22)

λ2j(0) = µ−2j, λ2j(π) = µ+
2j−1

It is known (see [2, p.27] and [14, Chap.XXI]) that

dF (λ)
dλ

< 0 for µ+
2j−2 < λ < µ−2j−1,
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dF (λ)
dλ

> 0 for µ+
2j−1 < λ < µ−2j.

Consequently, by (19) and (21), we get

dλ2j−1(t)
dt

> 0 ,
dλ2j(t)
dt

< 0 , for 0 < t < π.

From the latter inequalities and (21), (22) follow the statements of the lemma. 2

Ending the analysis of λj(t) we now proceed to describe the functions ψj(x, t) and
αj(t) presented in (10) and (11).

Since θ(x, λ) and ϕ(x, λ) form a fundamental system of solutions of Equation (1),
taking the initial conditions (6) into account we have

ψj(x, t) = ψj(0, t)θ(x, λj(t)) + ψ
[1]
j (0, t)ϕ(x, λj(t)). (23)

Let f ∈ L2
ρ(−∞,∞) be a real function with compact support. By (9) and (23) we obtain

αj(t) =
∫ ∞
−∞

ρ(x)f(x)ψj (x, t)dx = ψj(0, t)g(λj(t)) + ψ
[1]
j (0, t)h(λj(t)),

where g(λ) and h(λ) are defined by (14). Therefore,

|αj(t)|2 = |ψj(0, t)|2g2(λj(t)) + |ψ[1]
j (0, t)|2h2(λj(t))

+[ψj(0, t)ψ
[1]
j (0, t) + ψj(0, t)ψ

[1]
j (0, t)]g(λj(t))h(λj(t)), (24)

αj(t)ψj(x, t) = |ψj(0, t)|2g(λj(t))θ(x, λj(t)) + |ψ[1]
j (0, t)|2h(λj(t))ϕ(x, λj(t))

+ψj(0, t)ψ
[1]
j (0, t)h(λj(t))θ(x, λj(t)) + ψj(0, t)ψ

[1]
j (0, t)g(λj(t))ϕ(x, λj(t)). (25)

Further, from (23) and the equality ψj(ω, t) = eitψj(0, t) we get

ψ
[1]
j (0, t) =

eit − θ(ω, λj(t))
ϕ(ω, λj(t))

ψj(0, t). (26)

Note that, by (16), ϕ(ω, λj(t)) 6= 0 for t ∈ (0, π) (cf. the proof of Lemma1). Therefore,
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taking into account the relation

θ(ω, λj(t)) + ϕ[1](ω, λj(t)) = 2 cos t, (27)

which follows from (16), we find

ψj(0, t)ψ
[1]
j (0, t) + ψj(0, t)ψ

[1]
j (0, t) = 2

cos t− θ(ω, λj(t))
ϕ(ω, λj(t))

|ψj(0, t)|2

=
ϕ[1](ω, λj(t)) − θ(ω, λj(t))

ϕ(ω, λj(t)
|ψj(0, t)|2, (28)

|ψ[1]
j (0, t)|2 =

1− 2θ(ω, λj(t)) cos t+ θ2(ω, λj(t))
ϕ2(ω, λj(t))

|ψj(0, t)|2

=
1− θ(ω, λj(t))ϕ[1](ω, λj(t))

ϕ2(ω, λj(t))
|ψj(0, t)|2 = −θ

[1](ω, λj(t))
ϕ(ω, λj(t))

|ψj(0, t)|2. (29)

In the latter equality we used the identity (18). Substitution of (28), (29) in (24), (25)
yields

|αj(t)|2 = {ϕ(ω, λj(t))g2(λj(t)) − θ[1](ω, λj(t))h2(λj(t))

+[ϕ[1](ω, λj(t)) − θ(ω, λj(t))]g(λj (t))h(λj(t))}
|ψj(0, t)|2
ϕ(ω, λj(t))

, (30)

αj(t)ψj(x, t) = {ϕ(ω, λj(t))g(λj(t))θ(x, λj(t)) − θ[1](ω, λj(t))h(λj(t))ϕ(x, λj(t))

+[e−it−θ(ω, λj(t))]h(λj(t))θ(x, λj(t)) + [eit−θ(ω, λj(t))]g(λj(t))ϕ(x, λj(t))}
|ψj(0, t)|2
ϕ(ω, λj(t))

.

(31)

Let us now show that

|ψj(0, t)|2
ϕ(ω, λj(t))

= η(λj(t))
dλj(t)
dt

(32)

for t ∈ (0, π), where the function η(λ) is defined by (15). Indeed, using the formulas (23),
(28), (29), and (17), we have
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1 =
∫ ω

0

ρ(x)|ψj(x, t)|2dx =
∫ ω

0

ρ(x){|ψj(0, t)|2θ2(x, λj(t)) + |ψ[1]
j (0, t)|2ϕ2(x, λj(t))

+[ψj(0, t)ψ
[1]
j (0, t) + ψj(0, t)ψ

[1]
j (0, t)]θ(x, λj(t))ϕ(x, λj(t))}dx

= |ψj(0, t)|2.
∫ ω

0

ρ(x){θ2(x, λj(t)) −
θ[1](ω, λj(t))
ϕ(ω, λj(t))

ϕ2(x, λj(t))

+
ϕ[1](ω, λj(t)) − θ(ω, λj(t))

ϕ(ω, λj(t))
θ(x, λj(t))ϕ(x, λj(t))}dx = − |ψj(0, t)|

2

ϕ(ω, λj(t))
· dF (λj(t))

dλ
.

So, we have established the identity

− |ψj(0, t)|
2

ϕ(ω, λj(t))
· dF (λj(t))

dλ
= 1. (33)

On the other hand, since by (27) and (15) we have for t ∈ (0, π),

2 sin t = {4− (2 cos t)2}1/2 = {4− [θ(ω, λj(t)) + ϕ[1](ω, λj(t))]2}1/2 =
1

η(λj(t))
,

we get from (19) that

dF (λj(t))
dλ

· dλj(t)
dt

= − 1
η(λj(t))

. (34)

Now, comparing (33) with (34) we obtain (32).

Substituting (32) in (30), (31) and taking into account that by (27)

Re[e−it − θ(ω, λj(t))] = Re[eit − θ(ω, λj(t))] = cos t− θ(ω, λj(t))

=
1
2

[θ(ω, λj(t))+ϕ[1](ω, λj(t))]−θ(ω, λj (t)) =
1
2

[ϕ[1](ω, λj(t))−θ(ω, λj (t)],

we get

|αj(t)|2 = {ϕ(ω, λj(t))g2(λj(t))− θ[1](ω, λj(t))h2(λj(t))

+[ϕ[1](ω, λj(t))− θ(ω, λj(t))]g(λj(t))h(λj(t))}η(λj(t))
dλj(t)
dt

, (35)
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Re[αj(t)ψj(x, t)] = {ϕ(ω, λj(t))g(λj(t))θ(x, λj (t))− θ[1](ω, λj(t))h(λj (t))ϕ(x, λj(t))

+
1
2

[ϕ[1](ω, λj(t)) − θ(ω, λj (t))][h(λj(t))θ(x, λj(t)) + g(λj(t))ϕ(x, λj(t))]}η(λj(t))
dλj(t)
dt

.

(36)

Further, note that comparing the two cases of t-periodic BVP (1), (5) in which t = τ

and t = −τ (0 < τ < π), we see that the eigenvalues are the same in the two cases but the
eigenfunctions in one case are the complex conjugates of those in the other. Consequently,

we may assume that ψj(x, t) = ψj(x,−t). Because of this, in the case of real function

f(x) the formulas (10) and (11) can be written as

∫ ∞
−∞

ρ(x)f(x)2dx =
1
π

∞∑
j=1

∫ π

0

|αj(t)|2dt, (37)

f(x) =
1
π

∞∑
j=1

∫ π

0

Re[αj(t)ψj(x, t)]dt. (38)

Now we represent the right-hand side of (37) as

1
π

∞∑
j=1

∫ π

0

|α2j−1(t)|2dt+
1
π

∞∑
j=1

∫ π

0

|α2j(t)|2dt

and then replace the function |αj(t)|2 by its expression (35). Next make the change of

variable λj(t) = λ for each j. Using Lemma 5 we get (12). Similarly from (38) and (36)

we get (13).
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