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Remarks on the Paper “on the Commutant of the
Ideal Centre”
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Abstract

We continue with the work started in [4] and give a new sufficient condition on

Riesz spaces having topologically full centres for Z∼(E)C = Orth(E∼) to hold.

If E is a Riesz space E∼, the order dual of E will be the Riesz space of all order
bounded linear functionals on E. Riesz spaces considered in this note are assumed to
have separating order duals. Z(E) will denote the ideal centre, Orth (E) , will denote the
orthomorphisms of E. If E is a topological Riesz space E′ will denote continuous dual of
E. When T : E → F is an order bounded operator between two Riesz spaces, the adjoint
of T carries F∼ into E∼ and it will be denoted by T∼. In all undefined terminology
concerning Riesz spaces we will adhere to the definitions in [1], [5] and [8].

When the order dual E∼ separates the points of the Riesz space E, an order bounded
operator T : E → E is an orthomorphism if and only if its adjoint T∼ : E∼ → E∼ is an
orthomorphism. Moreover, the operator ψ : Orth(E) → Orth(E∼);ψ(T ) = T∼ is a one
to one Riesz homomorphism [1]. The image under ψ of the centre Z(E) will be denoted
by Z∼(E).Z∼(E) is a Riesz subspace of Z(E∼).
Definition A Riesz space E, is said to have topologically full centre if, for each pair x, y
in E with 0 ≤ y ≤ x, there exists a net (πα) in Z(E) with 0 ≤ πα ≤ I for each α, such
that παx→ y in σ(E,E∼).

Banach lattices with topologically full centre were initiated in [7]. These spaces were
also studied in [2],[3], [4] and [6]. The class of Riesz spaces and the class of Banach spaces
have topologically full centres are quite large. σ-Dedekind complete Riesz spaces have
topologically full centres. However, not all Riesz spaces have topologically full centres.

Order bounded maps on the Riesz space E will be denoted by Lb(E).Z(E)C will
denote the commutant of Z(E) in Lb(E). That is, Z(E)C = {T ∈ Lb(E) : Tπ = πT

for each π ∈ Z(E)}. The Riesz space Orth (E) under composition is an Archimedean
f-algebra and therefore it is commutative. Hence Orth (E) ⊂ Z(E)C .
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We have studied the commutant Z(E)C of the ideal centre Z(E) in the order bounded
operators Lb(E) [4]. If E is a Riesz space with topologically full centre, we have identified
Z(E)C with Orth (E).

If E has topologically full centre, it was claimed that Z∼(E)C = Orth (E∼). However,
as Arenson has pointed out, part of the proof of this claim contains an error. If E = C(K),
then we can embed E′ into E′′′ = C(K)′′′ in two different ways. One of these embeddings
is the usual embedding of a Banach space into its bidual as: µ ∈ E′ → µ̂ ∈ E′′′. Let

Ê′ denote the image of E′ in E′′′. For ψ ∈ E′′′, we consider µ = ψ |E∈ Ê′. For each
ψ ∈ E′′′, ψ − µ̂ ∈ Eo ⊂ E′′′ with µ = ψ |E . Thus, ψ = (ψ − µ̂) + µ̂ implies that

E′′′ = Ê′ ⊕ Eo. The correspondence ψ → µ̂ is a positive operator which fails to be a
lattice homomorphism.

On the other hand, Ê′ can be identified with the space of order continuous linear

functionals on E′′ = C(K)′′. Consequently, Ê′ is a band in E′′′ and there exists an order

projection P : E′′′ → Ê′.P is an orthomorphism and E′′′ = Ê′ ⊕ (I − P )E′′′. However,
Eo 6= (I − P )E′′′ and Pψ 6= ψ |E as it was erroneously claimed in [4].

The next example of Arenson’s (private communication) explains the situation even
better.
Example: (Arenson) Let K be a compact Hausdorff space with no isolated points and
E be C(K). Then Z(E) = E and E∼ = Z(E)′ is the space of measures on K. If Q is the
Stone compact space of the Banach lattice Z(E)′, we identify Z(E∼) with C(Q). Since
Z(E) and Z∼(E) are isometrically isomorphic, we are able to identify Z∼(E) with C(K).

Let us note that Z(E∼) = C(Q) and Z∼(E)′′ = C(K)′′. Therefore we have Z(E∼)′ =
C(Q)′ = C(K)′′′ = Z∼(E)′′′. Let j be the natural embedding of Z∼(E)′ = C(K)′ into

C(K)′′′ = Z(E∼)′ and let H1 = j(Z∼(E)′), H2 = Hd
1 .H1 is a band of Z(E∼)′ as Z∼(E)′

is an AL-space. Therefore Z(E∼)′ = C(Q)′ = H1 ⊕H2. It is well known that H1 is the
class of order continuous functionals on C(Q) and therefore:

(1) If µ ∈ H1 then the support of µ is a closed and open subset of Q;

(2) If the support of µ ∈ C(Q)′ is nowhere dense then µ ∈ H2.

Under this circumstances {Z∼(E)0}d = {0} and P = 0. To see this, let S(µ) =
j(µ |Z∼(E)) S : H2 → H1 be the restriction map. If ϑ is a nonzero measure in H2 then

the measure µ = ϑ− S(ϑ) is in Z∼(E)0 and |µ| ∧ |ϑ| = |ϑ| 6= 0. Therefore P (ϑ) = 0. If µ
is a non-zero measure in H1, then by the following lemma, there exists a measure ϑ ∈ H2

with S(ϑ) = µ. The measure η = ϑ− µ is an element of Z∼(E)0 and |η| ∧ |µ| = |µ| 6= 0.
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Therefore P (µ) = 0.
Let us note that if Q1 is a nowhere dense closed subset of Q then C(Q1)′ (considered

as the space of measures on Q whose supports are contained in Q1) is contained in H2.

To complete the proof of (Z∼(E)◦)d = 0 we only need to prove the following lemma.
Lemma 1. There exists a nowhere dense closed subset Q1 of Q such that S(C(Q1)′) =
H1.
Proof. Let ϕ : Q → K be the continuous surjection which gives rise the natural
embedding π → π · ϕ of C(K) into C(Q).

For each t ∈ K, let δt be the point evaluation at t. i.e, δt is : π → π(t) on C(K).
Similarly, for each q ∈ Q, let ∆q be the functional π → π(q) on C(Q). If t = ϕ(q), then

∆q |C(K)= δt.

For each t ∈ K, there is a unique point in Q, say ψ(t), such that j(δk) = ∆ψ(t).ψ(t) is

an isolated point of Q and ψ : K → Q is discontinuous and maps K onto an open subset

V = ψ(K) of Q. Let Q1 = V \V . Q1 is nowhere dense and closed. To prove the lemma,
it suffices to show that ϕ(Q1) = K. Let t ∈ K. As there are no isolated points in K,
there exists a net {ta}, tα 6= t for each α in K with t = lim

α
tα. Let q be a cluster point of

the net {ψ(tα)}. Then q ∈ Q1 and ϕ(q) = t as tα = ϕ{ψ(tα)} for each α. 2

Let us mote that the conclusion Z∼(E)C = Orth(E∼) remains valid for Arenson’s
example. The details are below.

We now give a sufficient condition for Z∼(E)C = Orth(E∼). We first give a lemma
that will be needed.
Lemma 2. Let E be a Riesz space with topologically full centre and satisfying (E∼)∼ =
(E∼)∼n . Then the bilinear map

(f, F )→ ψf,F of E∼ × (E∼)∼ → Z∼(E)∼ defined by ψf,F (π̃) = F (π̃f)

is a bi-lattice homomorphism.

Proof. For each f ∈ E∼+ , the map ψf : (E∼)∼ → Z∼(E)∼ defined by F → ψf,F is

positive. Hence we have ψf (F )+ ≤ ψf (F+) for each F ∈ (E∼)∼. Let π̃ ∈ Z∼(E)+ be
arbitrary, then

ψf (F+)(π̃) = ψf,F+(π̃) = F+(π̃f) = sup{F (g) : 0 ≤ g ≤ π̃f}

If 0 ≤ g ≤ π̃f , we claim there exists {πα} in Z(E) satistying 0 ≤ πα ≤ I for each α and
π̃α(π̃f) → g in σ(E∼, (E∼)∼). As E∼ is Dedekind complete, we can find S ∈ Z(E∼)
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with 0 ≤ S ≤ I and S(π̃f) = g. The Arens homomorphism m : Z(E)′′ → Z(E∼) is
surjective and continuous when the domain is equipped with σ(Z(E)′′, Z(E)′) and the
range has the σ(E∼, (E∼)∼n ) operator topology [6]. Therefore there exists F in Z(E)′′

with 0 ≤ F ≤ I satisfying m(F ) = S. Using the fact that Z(E) is σ(Z(E)′′, Z(E)′)
dense in Z(E)′′, we can find a net {πα} in Z(E) satisfying 0 ≤ πα ≤ I for each α

and πα → F in σ(Z(E)′′, Z(E)′). Continuity of the map m : Z(E)′′ → Z(E∼) imply
that m(πα) = π̃α → m(F ) = S in σ(E∼, (E∼)∼n ) operator topology. This is to say
G(π̃αh)→ G(Sh) for each h ∈ E∼ and G ∈ (E∼)∼n . Thus π̃α(πf) → g in σ(E∼, (E∼)∼n ).

0 ≤ π̃α(π̃f) ≤ π̃(f) for each α, so that F (π̃α(π̃f)) ≤ ψf (F )+(π̃)
which yields

F (g) ≤ ψf (F )+ for each g with 0 ≤ g ≤ π̃f. Hence ψf (F+) ≤ ψf (F )+.

We now show that ψF : E∼ → Z∼(E)∼ is a lattice homomorphism for an arbitrary
F in (E∼)∼+. Let f ∧ g = 0 in E∼. As I is a strong order unit in Z∼(E), it suffices to

show [ψF (f) ∧ ψF (g)](I) = 0.

[ψF (f) ∧ ψF (g)](I) = (ψf,F ∧ ψg,F )(I)

= inf{ψf,F (π1) + ψg,F (π2) : π1, π2 ∈ Z∼(E)+; π1 + π2 = I}

= inf{F (π1f) + F (π2g) : π1, π2 ∈ Z∼(E)+; π1 + π2 = I}

As E∼ is Dedekind complete, the principal band generated by f, Bf is a projection

band and let Pf : E∼ → Bf be this projection. Pf ∈ Z(E∼), Pf(g) = 0, (I − Pf )(f) = 0

and (I − Pf) + Pf = I. Arguing as above, we can find a net (πα) in Z(E), 0 ≤ πα ≤ I

and π̃α → Pf in σ(E∼, (E∼)∼n ) operator topology.
Thus,

[ψF (f) ∧ ψF (g)](I) ≤ F (I − π̃α)f + F (π̃αg) for each α

≤ F (I − Pf)f + F (Pfg) = 0.

Proposition. Let E be a Riesz space with (E∼)∼ = (E∼)∼n and having topologically full
centre. Then Z∼(E)C = Orth(E∼).

Proof. Let T ∈ Z∼(E)C be arbitrary; let f, g ∈ E∼ satisfying f ⊥ g. For each F,G

in (E∼)∼, we have ψf,F ⊥ ψg,G [3].

Thus for f ∈ E∼ and F ∈ (E∼)∼,
ψTf,F (π̃) = F (π̃(Tf)) = F (T (π̃f)) = T̃ (F )(π̃f) = ψf,T̃ f

which yields |ψTf,F | ∧ |ψg,F | = ψ|Tf|∧g,F = 0. Therefore F (|Tf | ∧ |g|) = 0 for each

F ∈ (E∼)∼+ which gives Tf ⊥ g and T is an orthomorphism. 2
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