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On Modified Baskakov Operators on Weighted Spaces∗

Nurhayat İspir

Abstract

The author presents a modification of the Baskakov operator for the intervals

[0, bn], where bn is an increasing sequence of positive numbers with either finite

or infinite limit. Convergence properties of such an operator for continuous and
differentiable functions in weighted space are established.
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1. Introduction

Baskakov [2] introduced the sequence of linear operators {Ln},
Ln : C[0,∞)→ C[0, A], defined by

Ln(f, x) =
∞∑
k=0

f

(
k

n

)
ϕ(k)
n (x)

(−x)k

k!
. (1)

Many results on convergence of these operators are known. Moreover, there are some
in which the derivatives of the Baskakov operator converge to the derivatives of functions.
But all of them are convergence conditions on a finite interval (for example, [1], [7], [8] ).

The aim of this paper is to study convergence properties of the modified Baskakov
operators in weighted spaces when the interval of convergence grows as n→∞. For this
we will use the weighted Korovkin type theorems, proved by A. D. Gadzhiev [3], [4]. Now,
we give Gadzhiev’s results in weighted spaces. We use the same notation as in [3].
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Let ρ(x) = 1 + x2,−∞ < x < ∞ and Bρ be the set of all functions f defined on the

real axis satisfying the condition |f(x)| ≤ Mfρ(x), where Mf is a constant depending

only on f. Bρ is a normed space with the norm ||f ||ρ = sup
x∈R

|f(x)|
ρ(x)

, f ∈ Bρ. Cρ denotes the

subspace of all continuous functions in Bρ and Ckρ denotes the subspace of all functions

f ∈ Cρ with lim
|x|→∞

f(x)/ρ(x) = k, where k is a constant depending on f.

Theorem A. Let {Tn} be a sequence of linear positive operators taking Cρ into Bρ and
satisfying the conditions

lim
n→∞

‖Tn(tν , x)− xν‖ρ = 0, ν = 0, 1, 2.

Then, for any function f ∈ Ckρ ,

lim
n→∞

‖Tnf − f‖ρ = 0,

and there exists a function f∗ ∈ Cρ\Ckρ such that

lim
n→∞

‖Tnf∗ − f∗‖ρ ≥ 1.

Applying Theorem A to the operators

Tn(f ; x) =
{
Vn(f ; x), x ∈ [0, an]
f(x), x 6∈ [0, an]

one then also has the following theorem.
Theorem B ([5]). Let {an} be a sequence with lim

n→∞
an = ∞ and {Vn} be a sequence

of linear positive operators taking Cρ,[0,an] into Bρ,[0,an]. If for ν = 0, 1, 2

lim
n→∞

‖Vn(tν , x)− xν‖ρ,[0,an] = 0,

then for any function f ∈ Ckρ,[0,an]

lim
n→∞

‖Vnf − f‖ρ,[0,an] = 0,

where Bρ,[0,an], Cρ,[0,an] and Ckρ,[0,an] denote the same as Bρ, Cρ and Ckρ , respectively, but

the functions are taken on [0, an] instead of real axis R and the norm is taken as

‖f‖ρ,[0,an] = sup
0≤x≤an

|f(x)|
ρ(x)

.
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We now give a modification of the Baskakov operator.
Let {bn} be a sequence of positive numbers which has finite or infinite limit and {ϕn}

be a sequence of functions ϕn satisfying the following conditions.
(i) ϕn is analytic on the interval [0, bn] for each positive integer n;
(ii) ϕn(0) = 1 for every positive n;

(iii) (−1)kϕ(k)
n (x) ≥ 0 for every positive integer n, x ∈ [0, bn] and for every nonnegative

integer k;
(iv) There exists an integer m such that for all positive integers k and for some

nonnegative integer n +m

ϕ(k)
n (x) = −nϕ(k−1)

n+m (x)(1 + αk,n(x))

where

αk,n(0) = O(
1
nk

), k = 1, 2, .... (2)

and

ϕ
(k)
n (0)
nk

= (−1)k +O(
1
n

). (3)

If we replace the interval [0, A] by [0, bn] in (1) and take ϕn’s satisfying (i)-(iv) then we
call Ln the modified Baskakov operator.

Note that, if lim
n→∞

bn = A, then we obtain the Baskakov operators, defined in [2].

2. Convergence in Weighted Spaces

Theorem 1 For any f ∈ Ckρ,[0,bn] we have ‖Lnf − f‖ρ,[0,bn] → 0 as n→∞.

Proof. Since the Baskakov operators Ln satisfy

Ln(1; x) = 0, Ln(t; x) = −xϕ
′

n(0)
n

, Ln(t2; x) =
1
n2

(
x2ϕ

′′

n(0) − xϕ
′

n(0)
)
, x ≥ 0,

we have |Ln(ρ; x)| ≤ Mρ(x),where M is a constant. Thus ‖Ln(f, x)‖ρ,[0,bn]is uniformly

bounded on [0, bn]. Hence {Ln} is the sequence of linear positive operators taking Cρ,[0,bn]

into Bρ,[0,bn].
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Clearly, we can write

lim
n→∞

‖Ln(1, x)− 1‖ρ,[0,bn] = 0.

Using properties (iv) and (ii) we get

Ln(t, x) = 1
n(−xϕ′n(0))

= xϕn+m(0)(1 + α1,n(0))

= x(1 + α1,n(0)),

and by (2)

sup
x∈[0,bn]

|Ln(t, x)− x|
1 + x2

= α1,n(0) sup
x∈[0,bn]

x

1 + x2

= O(
1
n

) sup
x∈[0,bn]

x

1 + x2
.

Hence we obtain

lim
n→∞

‖Ln(t, x)− x‖ρ,[0,bn] = 0.

Also, the properties (iv) and (ii) show that

Ln(t2, x) = 1
n2

(
x2ϕ

′′

n(0)− xϕ′n(0)
)

= n+m
n x2(1 + α1,n+m(0)(1 + α2,n(0))

+ 1
nx(1 + α1,n(0)).

From (2) we can write

sup
x∈[0,bn]

|Ln(t2,x)−x2|
1+x2 =

∣∣n+m
n − 1

∣∣ sup
x∈[0,bn]

x2

1+x2

+n+m
n
O( 1

n
) sup
x∈[0,bn]

x2

1+x2

+O( 1
n ) sup

x∈[0,bn]

x
1+x2 .
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Thus

lim
n→∞

∥∥Ln(t2, x)− x2
∥∥
ρ,[0,bn]

= 0.

Therefore, the desired result follows from Theorem B. 2

We now want to find the rate of convergence of the sequence of operators {Ln(f ; x)}.
It is known that the usual first modulus of continuity ω(δ) does not tend to zero, as
δ → 0, on infinite interval. Now, we define a weighted modulus of continuity Ωn(f, δ)
which tends to zero as δ → 0 on infinite interval. A similar definition of the modulus of
continuity can be found in [6].

Let

Ωn(f ; δ) = sup
|h|≤δ,x∈[0,bn]

|f(x + h) − f(x)|
(1 + h2)(1 + x2)

,

for each f ∈ Ckρ,[0,bn]. We call Ωn(f ; δ) the weighted modulus of continuity of the function

f on the space Ckρ,[0,bn] . Since f ∈ Ckρ,[0,bn], there exists a positive real number x0 such

that

Ωn(f, δ) ≤ sup
0≤x≤x0,|h|≤δ

|f(x + h) − f(x)|

+ sup
x0≤x≤bn

∣∣∣ f(x+h)
1+(x+h)2 − k

∣∣∣
+ δk sup

x0≤x≤bn

2x+δ
1+x2

+ sup
x0≤x≤bn

∣∣∣ f(x)
1+x2 − k

∣∣∣
< ω(f, δ) + 2δk + ε,

where ω(f ; δ) is the usual first modulus of continuity of f on the interval [0, x0] and
lim
δ→0

ω(f ; δ) = 0 since f is uniformly continuous on [0, x0]. Consequently,

lim
δ→0

Ωn(f ; δ) = 0, for every f ∈ Ckρ,[0,bn].

It is easily seen that

Ωn(f ;mδ) ≤ 2m(1 + δ2)Ωn(f ; δ)for any positive integer m.
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Thus for any λ > 0, Ωn(f ; λδ) ≤ 2(1 + λ)(1 + δ2)Ωn(f ; δ). This property of weighted

modulus of continuity Ωn(f, δ) and its definition show that for every f ∈ Ckρ,[0,bn] and

x, t ∈ [0, bn]

|f(t) − f(x)| ≤ (1 + x2)(1 + (t− x)2)Ωn(f ; |t− x|)

and consequently

|f(t) − f(x)| ≤ 2
(
|t− x|
δn

+ 1
)

(1 + δ2
n)Ωn(f ; δn)(1 + x2)(1 + (t − x)2). (4)

Theorem 2 If f ∈ Ckρ,[0,bn], then the inequality

sup
x∈[0,bn]

|L(f ; x) − f(x)|
(1 + x2)3

≤ KΩn
(
f ;n−1/4

)
(5)

holds for a sufficiently large n, where K is a constant independent of n.

Proof. Denoting ϕ(k)
n (x) (−x)k

k! by Pk,n(x) we get

Ln(f, x)− f(x) =
∞∑
k=0

[
f

(
k

n

)
− f(x)

]
Pk,n(x)

since

∞∑
k=0

Pk,n(x) = 1.

From (4) we can write

|Ln(f, x)− f(x)| ≤ 2(1 + x2)(1 + δ2
n)Ωn(f ; δn)

∞∑
k=0

Pk,n(x)S(x) (6)

where S(x) =
(

1 + |x−
k
n |

δn

)(
1 +

(
x− k

n

)2)
. Since

S(x) ≤
{

2(1 + δ2
n) if

∣∣ k
n − x

∣∣ ≤ δn
2(1 + δ2

n) ( kn−x)
4

δ4
n

if
∣∣ k
n − x

∣∣ ≥ δn
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we obtain for all x ∈ [0, bn] and k
n ∈ [0,∞)

S(x) ≤ 2(1 + δ2
n)

{
1 +

(
k
n
− x
)4

δ4
n

}
. (7)

Using the inequality (7) in (6) we obtain

|Ln(f, x)− f(x)| ≤ 16(1 + x2)Ωn(f, δn)

×
{

1 + 1
δ4
n

∞∑
k=0

Pk,n(x)
(
k
n − x

)4}
.

(8)

Since

∞∑
k=0

Pk,n(x)
(
k
n − x

)4
= x4

(
ϕ(4)
n (0)
n4 − 4ϕ

′′′
n (0)
n3 + 6ϕ

′′
n(0)
n2 − 4ϕ

′
n(0)
n + 1

)
−x3

(
6ϕ
′′′
n (0)
n4 + 12ϕ

′′
n(0)
n3 + 6ϕ

′
n(0)
n2

)
− x2

(
6ϕ
′′
n(0)
n4 − 4ϕ

′
n(0)
n3

)
+ 2xϕ

′
n(0)
n4 ,

and considering the properties (iv) and (ii) and by simple calculations, this can be written
in the form

∞∑
k=0

Pk,n(x)
(
k

n
− x

)4

= A4
k,nx

4 +A3
k,nx

3 +A2
k,nx

2 +A1
k,nx, (9)

where

A4
k,n = n(n+m)(n+2m)(n+3m)

n4 (1 + α4,n(0))(1 + α3,n+m(0))

×(1 + α2,n+2m(0))(1 + α1,n+3m(0))

−4n(n+m)(n+2m)
n3 (1 + α3,n(0))(1 + α2,n+m(0))(1 + α1,n+2m(0))

−4n(n+m)(n+2m)
n3 (1 + α3,n(0))(1 + α2,n+m(0))(1 + α1,n+2m(0))

A3
k,n = 6n(n+m)(n+2m)

n4 (1 + α3,n(0))(1 + α2,n+m(0))

6n(n+m)(n+2m)
n4 (1 + α3,n(0))(1 + α2,n+m(0))

×(1 + α1,n+m(0)) + 6 (1+α1,n(0))
n2 + 6 (1+α1,n(0))

n
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A2
k,n = 9

n+ m

n3
(1 + α2,n(0))(1 + α1,n+m(0)) + 8

1 + α1,n(0)
n2

A1
k,n = 13

1 + α1,n(0)
n3

+ 12
1 + α1,n(0)

n2
.

Using condition (2) we see that

Ajk,n = O(
1
n

), j = 1, 2, 3 and 4.

Substituting the equality (9) in (8) we get

|Ln(f, x)− f(x)| ≤ 16(1 + x2)Ωn(f ; δn)
{

1 +
1
δ4
n

O(
1
n

)
(
x4 + x3 + x2 + x

)}
.

Choosing δn = n−1/4 we can write

|Ln(f, x)− f(x)| ≤ 16(1 + x2)Ωn(f ; δn)
{

1 + x4 + x3 + x2 + x
}
.

Therefore, we obtain sup
x∈[0,bn]

|Ln(f;x)−f(x)|
(1+x2)3 ≤ KΩn

(
f, n−1/4

)
. 2

Remark 1 As it is seen in Theorem 1, Ln(f ; x) converges to f(x) in the weighted

space, Cρ,[0,bn], whose weight function is (1 + x2). But, in Theorem 2 we obtained

the rate of convergence for the modified Baskakov operator only in the weighted space
Cρ3,[0,bn], ρ(x) = 1 + x2. Hence it is still an open problem to obtain rate of convergence

in the case of the weight function (1 + x2)α, 1 ≤ α < 3 without any extra condition on
function f.

3. Approximation by the derivatives L(r)
n (f ; x)

Let C(r)
ρ [0,∞) denotes the set of r times continuously differentiable function on [0,∞)

belonging to Cρ,[0,bn].
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If ϕn(x)’s satisfy (i)-(iv) and f ∈ C(r)
ρ [0,∞), then obviously the series

∞∑
k=0

f

(
k

n

)
ϕ(k)
n (x)

(−x)k

k!

is infinitely differentiable on [0, bn] and

L
(r)
n (f, x) =

∞∑
k=0

(−1)r4rn−1f
(
k
n

)
ϕ

(k+r)
n (x) (−x)k

k! (10)

where ∆n−1 denotes the difference operator of the function f with step 1/n and ∆r
n−1 is

the r-th iterate of this operator [7].
By the mean-value theorem, we can write

∆rf

(
k

n

)
=

1
nr
f(r)

(
k + θkr

n

)
, 0 < θk < 1.

Then, the series (10) has the form

L(r)
n (f, x) =

∞∑
k=0

(−1)rf(r)

(
k + θkr

n

)
ϕ(k+r)
n (x)

(−x)k

k!
. (11)

Theorem 3 Let {ϕn} be a sequence of functions satisfying (i)-(iv). If f ∈ C(r−1)
ρ [0,∞)

and its r-th derivative, f(r), belongs to the Lipschitz class with exponent α and the constant

M this is denote by f(r) ∈ LipαM , that is∣∣∣f(r)(x)− f(r)(t)
∣∣∣ ≤M |x− t|α , 0 < α ≤ 1 for any x, t ≥ 0,

then

lim
n→∞

sup
x∈[0,bn]

∣∣∣L(r)
n (f ; x)− f(r)(x)

∣∣∣
1 + xα

= 0.

Proof. Let L(r)
n (f, x) be the operators defined in (11). Consider the inequality∣∣∣L(r)

n (f ; x) − f(r)(x)
∣∣∣ ≤ ∞∑

k=0

∣∣f(r)
(
k+θkr
n

)
− f(r)(x)

∣∣ (−1)r

nr ϕ
(k+r)
n (x) (−x)k

k!

+
∣∣∣ (−1)r

nr ϕ
(r)
n (0)− 1

∣∣∣ ∣∣f(r)(x)
∣∣ . (12)
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Since f(r) ∈ LipαM , we get∣∣∣∣f(r)

(
k + θkr

n

)
− f(r)(x)

∣∣∣∣ ≤M ∣∣∣∣k + θkr

n
− x

∣∣∣∣α
and ∣∣∣f(r)(x)

∣∣∣ ≤ max
(
M,
∣∣∣f(r)(0)

∣∣∣) (1 + xα)

= Mf (1 + xα)

where Mf is a constant depending on f . Thus, we have∣∣∣L(r)
n (f ; x) − f(r)(x)

∣∣∣ ≤ M
∞∑
k=0

∣∣k+θkr
n
− x
∣∣α (−1)r

nr
ϕ

(k+r)
n (x) (−x)k

k!

+ Mf

∣∣∣ (−1)r

nr ϕ
(r)
n (0)− 1

∣∣∣ (1 + xα).

Applying the Hölder’s inequality, we obtain

∣∣∣L(r)
n (f ; x) − f(r)(x)

∣∣∣ ≤ M

( ∞∑
k=0

(
k+r
n − x

)2 (−1)r

nr ϕ
(k+r)
n (x) (−x)k

k!

)α/2
+ Mf

∣∣∣ (−1)r

nr ϕ
(r)
n (0)− 1

∣∣∣ (1 + xα).

Using property (iv) we can write∣∣∣L(r)
n (f ; x)− f(r)(x)

∣∣∣ ≤M (−1)r

nr

[
x
n (1 + α2,n(0))

+m+n
n (1 + α2,n(0))(1 + α1,n+m(0))x2

]α/2
+Mf

∣∣∣ (−1)r

nr ϕ
(r)
n (0)− 1

∣∣∣ (1 + xα).

Therefore, considering the conditions (3) and (2), we obtain the result. 2

As a consequence of this theorem we also have the following theorem.

Theorem 4 Let f ∈ C(r−1)
ρ [0,∞) and let f(r) ∈ LipαM . Then

sup
x∈[0,bn]

∣∣∣L(r)
n (f ; x)− f(r)(x)

∣∣∣
1 + xα

= O

(
1
n

)
, 0 < α ≤ 1

holds for a sufficiently large n.
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