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Abstract

The aim of this paper is to study the properities of the extended centroid of

the prime Γ-rings. Main results are the following theorems: (1) Let M be a simple

Γ-ring with unity. Suppose that for some a 6= 0 in M we have aγ1xγ2aβ1yβ2a =

aβ1yβ2aγ1xγ2a for all x, y ∈ M and γ1, γ2, β1, β2 ∈ Γ. Then M is isomorphic

onto the Γ-ring Dn,m, where Dn,m is the additive abelian group of all rectangular

matrices of type n×m over a division ring D and Γ is a nonzero subgroup of the

additive abelian group of all rectangular matrices of type m× n over a division ring

D. Furthermore M is the Γ-ring of all n × n matrices over the field CΓ . (2) Let

M be a prime Γ-ring and CΓ the extended centroid of M . If a and b are non-zero

elements in S = MΓCΓ such that aγxβb = bβxγa for all x ∈ M and β, γ ∈ Γ,

then a and b are CΓ-dependent. (3) Let M be prime Γ-ring, Q quotient Γ-ring

of M and CΓ the extended centroid of M . If q is non-zero element in Q such

that qγ1xγ2qβ1yβ2q = qβ1yβ2qγ1xγ2q for all x, y ∈ M , γ1, γ2, β1, β2 ∈ Γ then S

is a primitive Γ-ring with minimal right ( left ) ideal such that eΓS, where e is

idempotent and CΓΓe is the commuting ring of S on eΓS.

Key Words: Γ-division ring, Γ-field, extented centroid, central closure.

1. Introduction

Nobusawa [11] introduced the notion of a Γ-ring, more general than a ring. Barnes

[1] weakened slightly the conditions in the definition of Γ-ring in the sense of Nobusawa.
2000 Mathematics Subject Classification. Primary 16N60, 16Y30, 16A76, 16Y99.
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Barnes [1], Luh [7] and Kyuno [4] studied the structure of Γ-rings and obtained various

generalizations analogous of corresponding parts in ring theory. Öztürk and Jun [12]

studied the extended centroid of a prime Γ-ring. As a continuation of [12], in this paper,

we study further properities of the extended centroid of the prime Γ-rings.

2. Preliminaries

Let M and Γ be two abelian groups. If for all x, y, z ∈ M and all α, β ∈ Γ the

conditions

(i) xαy ∈M,

(ii) (x+ y)αz = xαz+ yαz, x(α+ β)z = xαz+ xβz, xα(y + z) = xαy+ xαz,

(iii) (xαy)βz = xα(yβz)

are satisfied, then we call M a Γ-ring. By a right (resp. left) ideal of a Γ-ring M we mean

an additive subgroup U of M such that UΓM ⊆ U (resp. MΓU ⊆ U). If U is both a

right and a left ideal, then we say that U is an ideal of M . For each a of a Γ-ring M the

smallest right ideal containing a is called the principal right ideal generated by a and is

denoted by 〈a〉r . Similarly we define 〈a〉l (resp. 〈a〉), the principal left (resp. two sided)

ideal generated by a. An ideal P of a Γ-ring M is said to be prime if for any ideals A

and B of M , AΓB ⊆ P implies A ⊆ P or B ⊆ P . An ideal Q of a Γ-ring M is said to be

semi-prime if for any ideal U of M , UΓU ⊆ Q implies U ⊆ Q. A Γ-ring M is said to be

prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime).

Theorem 2.1 ([4, Theorem 4]). If M is a Γ-ring, the following conditions are

equivalent:

(i) M is a prime Γ-ring.

(ii) If a, b ∈M and aΓMΓb = (0), then a = 0 or b = 0.

(iii) If 〈a〉 and 〈b〉 are principal ideals in M such that 〈a〉Γ〈b〉 = (0), then a = 0 or b = 0.

(iv) If A and B are right ideals in M such that AΓB = (0), then A = (0) or B = (0).

(v) If A and B are left ideals in M such that AΓB = (0), then A = (0) or B = (0).
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A Γ-ring M is said to be simple if MΓM 6= 0 and M has no ideals other 0 and M

itself. When a Γ-ring M has the descending (resp. ascending) chain condition for right

ideals, it is abbreviated to M has min-r condition (resp. max-r condition). The terms

min-l condition or max-l condition on a Γ-ring M are likewise defined. Let M be a Γ-ring

and let F be the free group generated by Γ×M . Then

A = {
∑
i

ni(γi, xi) ∈ F | a ∈M ⇒
∑
i

niaγixi = 0}

is a subgroup of F . Let R = F/A be the factor group, and denote the coset (γ, x) + A

by [γ, x]. Clearly, every element of R can be expressed as a finite sum
∑

i[γi, xi]. Also it

can be verified easily that [α, x] + [α, y] = [α, x+ y] and [α, x] + [β, x] = [α+ β, x] for all

α, β ∈ Γ and x, y ∈M . We define a multiplication on R by∑
i

[αi, xi]
∑
j

[βj , yj] =
∑
i,j

[αi, xiβjyj].

Then R forms a ring. If we define a composition on M × R into M by

a
∑
i

[γi, xi] =
∑
i

aγixi, ∀a ∈M, ∀
∑
i

[γi, xi] ∈ R

then M is a right R-module, and we call R the right operator ring of M . Similarly, we can

define the left operator ring L of M . A Γ-ring M is said to be right (resp. left) primitive

if it satisfies:

(i) the right (resp. left) operator ring of M is a right (resp. left) primitive ring

(ii) MΓx = 0 (resp. xΓM = 0) implies x = 0.

A Γ-ring M is said to be two-sided primitive (or simply, primitive) if it is both right

and left primitive.

Theorem 2.2 ([7, Theorem 3.4]). If M is a Γ-ring possessing minimal left (resp.

right) ideal, then M is primitive if and only if it is prime.

Theorem 2.3 ([7, Theorem 3.6]). For a Γ-ring M with min-l condition, the following

are equivalent:

(i) M is prime,
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(ii) M is primitive,

(iii) M is simple.

Theorem 2.4 ([7, Theorem 4.2]). If M is a simple Γ-ring possessing minimal left

(resp. right) ideals, then M is a direct sum of minimal left (resp. left) ideals.

Theorem 2.5 ([5, Theorem 3.23]). Let M be a semi-prime Γ-ring with min-r

condition and let M = I1 ⊕ I2 ⊕ · · · ⊕ Im = J1 ⊕ J2 ⊕ · · · ⊕ Jn, where I1, I2, · · · ,
Im, J1, J2, · · · , Jn are minimal right ideals. Then m = n.

The integer m = n in Theorem 2.5 is called the right dimension of the semi-prime

Γ-ring with min-r condition and denoted by dim(MR). One can define the left dimension

of a Γ-ring in a similar way. If M is simple, then M is semi-prime (see [5]). For an

additive group G, denote by Gm,n the additive group of all matrices over G. Let M be

a Γ-ring M and let Mm,n and Γn,m denote, respectively, the sets of m× n matrices with

entries from M and of n×m matrices with entries from Γ. For (aij), (bij) ∈ Mm,n and

(γij) ∈ Γn,m, define (aij)(γij)(bij) = (cij), where cij =
∑

p

∑
q aipγpqbqj. Then Mm,n

forms a Γn,m-ring.

Theorem 2.6 ([6, Theorem 4.2]). Let M be a simple Γ-ring with min-r and min-

l conditions and Γ0 = Γ/κ, where κ := {γ ∈ Γ | MγM = 0}. Then the Γ0-ring

M is isomorphic to the Γ′-ring Dn,m, where Dn,m is the additive abelian group of all

rectangular matrices of type n×m over a division ring D and Γ′ is a nonzero subgroup

of the additive abelian group of all rectangular matrices of type m×n over a division ring

D and m = dim(ML) and n = dim(MR).

Lemma 2.7 ([12, Lemma 3]). Let M be a prime Γ-ring such that MΓM 6= M and

quotient Γ-ring Q of M . Then, for each non-zero q ∈ Q there is a non-zero ideal U of

M such that q(U) ⊂M .

Lemma 2.8 ([12, p. 476]). Let M be a prime Γ-ring such that MΓM 6= M and

CΓ the extended centroid of M . If ai and bi are non-zero elements of M such that∑
aiγixβibi = 0 for all x ∈ M and γi, βi ∈ Γ, then the ai’s ( also ai’s ) are linearly

dependent over CΓ. Moreover, if aγxβb = bγxβa for all x ∈ M and γ, β ∈ Γ where

a(6= 0), b ∈M are fixed, then there exists λ ∈ CΓ such that b = λαa for all α ∈ Γ.
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3. Centroids

Let M be a prime Γ-ring such that MΓM 6= M . Denote

M := {(U, f) | U(6= 0) is an ideal of M and

f : U →M is a right M -module homomorphism}.

Define a relation ∼ on M by (U, f) ∼ (V, g) if and only if ∃W (6= 0) ⊂ U ∩ V such that

f = g on W . Since M is a prime Γ-ring, it is possible to find a non-zero W and so “∼”

is an equivalence relation. This gives a chance for us to get a partition of M. We then

denote the equivalence class by Cl(U, f) = f̂ , where f̂ := {g : V → M |(U, f) ∼ (V, g)},
and denote by Q the set of all equivalence classes. Now we define an addition “+” on Q

as follows:

f̂ + ĝ = Cl(U, f) + Cl(V, g) = Cl(U ∩ V, f + g)

where f + g : U ∩ V → M is a right M -module homomorphism. Then Q is an additive

abelian group (see [12]). Since MΓM 6= M and since M is a prime Γ-ring, MΓM (6= 0) is

an ideal of M . We can take the homomorphism 1MΓ : MΓM → M as a unit M -module

homomorphism. Note that MβM 6= 0 for all 0 6= β ∈ Γ so that 1Mβ : MβM → M is

non-zero M -module homomorphism. Denote

N := {(MβM, 1Mβ) | 0 6= β ∈ Γ},

and define a relation “≈” on N by (MβM, 1Mβ) ≈ (MγM, 1Mγ) if and only if ∃W :=

MαM(6= 0) ⊂MβM ∩MγM such that 1Mβ = 1Mγ on W . We can easily check that “≈”

is an equivalence relation on N . Denote by Cl(MβM, 1Mβ) = β̂ the equivalence class

containing (MβM, 1Mβ) and by Γ̂ the set of all equivalence classes of N with respect to

≈, that is,

β̂ := {1Mγ : MγM →M | (MβM, 1Mβ) ≈ (MγM, 1Mγ)}

and Γ̂ := {β̂ | 0 6= β ∈ Γ}. Define an addition “+” on Γ̂ as follows:

β̂ + δ̂ = Cl(MβM, 1Mβ) +Cl(MδM, 1Mδ)

= Cl(MβM ∩MδM, 1Mβ + 1Mδ)
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for every β(6= 0), δ(6= 0) ∈ Γ. Then (Γ̂,+) is an abelian group. Now we define a mapping

(−,−,−) : Q× Γ̂×Q→ Q, (f̂ , β̂, ĝ) 7→ f̂ β̂ĝ, as follows:

f̂ β̂ĝ = Cl(U, f)Cl(MβM, 1Mβ)Cl(V, g)

= Cl(V ΓMβMΓU, f1Mβg)

where

V ΓMβMΓU = {
∑

viγimiβniαiui | vi ∈ V, ui ∈ U,mi, ni ∈M and αi, γi ∈ Γ}

is an ideal of M and f1Mβg : V ΓMβMΓU →M which is given by

f1Mβg(
∑

viγimiβniαiui) = f(
∑

g(vi)γimiβniαiui)

is a right M -module homomorphism. Then Q is a Γ̂-ring with unity. Noticing that the

mapping ϕ : Γ→ Γ̂ defined by ϕ(β) = β̂ for every 0 6= β ∈ Γ is an isomorphism, we know

that the Γ̂-ring Q is a Γ-ring (see [12]). For purposes of convenience, we use q instead of

q̂ ∈ Q.

Definition 3.1. Let M be a Γ-ring with unity. An element u in M is called a unit

of M if it has a multiplicative inverse in M . If every nonzero emenet of M is a unit, we

say that M is a Γ-division ring. A Γ-ring M is called a Γ-field if it is a commutative

Γ-division ring.

Definition 3.2. The set

CΓ := {g ∈ Q | gγf = fγg for all f ∈ Q and γ ∈ Γ}

is called the extended centroid of a Γ-ring M .

Lemma 3.3. Let M be a prime Γ-ring. Then the extended centroid CΓ of M is a

Γ-field.

Proof. Noticing that CΓ is a commutative ring with unity, it is sufficient to show that

every nonzero element of CΓ is invertible. If c(6= 0) ∈ CΓ, then c = Cl(U, µ). Thus, by

Lemma 2.7., there is a nonzero ideal U of M such that µ(U) ⊂M . Clearly, 0 6= V = µ(U)

is an ideal of M . Since UΓM ⊂ U , therefore µ(U)ΓM ⊂ µ(U). Hence we can define a

mapping f : µ(U) → M by f(µ(u)) = u for all u ∈ U , and this is a right M -module
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homomorphism. In fact, let v1, v2 ∈ V = µ(U) and so there exists u1, u2 ∈ U such that

v1 = µ(u1) and v2 = µ(u2). It follows that

f(v1 + v2) = f(µ(u1) + µ(u2))

= f(µ(u1 + u2)) = u1 + u2

= f(µ(u1)) + f(µ(u2))

= f(v1) + f(v2).

Now, for any v ∈ V , m ∈M and γ ∈ Γ, we have

f(vγm) = f(µ(u)γm) = f(µ(uγm)) = uγm = f(µ(u))γm = f(v)γm.

Finally, considering d = Cl(V, f), we get

dγc = Cl(V, f)Cl(MγM, 1Mγ)Cl(U, µ)

= Cl(UΓMγMΓV, f1Mγµ)

= Cl(UΓMγMΓµ(U), 1) = I.

This completes the proof. 2

Definition 3.4. For the extended centroid CΓ of a prime Γ-ring M , we say that

S := MΓCΓ is the central closure of M .

Remark 3.5. For a, b ∈ S, if aΓSΓb = 0 then aΓMΓCΓb = 0 and so aΓMΓbΓMΓaΓCΓb =

0. Since M is a prime Γ-ring, it follows that aΓMΓb = 0 or aΓCΓb = 0 so a = 0 or b = 0.

Thus S is a prime Γ-ring.

If M has a unit element, then CΓ = Z(S), the centre of S. If M is a simple Γ-ring

with unity, then Q = S = M . Because the only non-zero ideal of M is M itself. In this

case; M is its own central closure.

Throughout, we shall use M as a prime Γ-ring such that MΓM 6= M .

Theorem 3.6. Let CΓ be the extended centroid of a prime Γ-ring M . If a is a

nonzero element of M such that aγ1xγ2aβ1yβ2a = aβ1yβ2aγ1xγ2a for all x, y ∈ M ,

γ1 , γ2, β1, β2 ∈ Γ then S = MΓCΓ is a primitive Γ-ring with minimal right (left) ideal

and the commuting ring of S on this right (left) ideal is merely CΓ itself.

Proof. Let fixed aγ1xγ2a element in the relation (aγ1xγ2a)β1yβ2a = aβ1yβ2(aγ1xγ2a) =

0 then, from Lemma 2.8 we get aγ1xγ2a = λ(x)αa, where λ(x) ∈ CΓ and α ∈ Γ and for
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all x ∈ M . Similarly we also get aβ1yβ2a = λ(y)άa, where λ(y) ∈ CΓ and ά ∈ Γ

and for all y ∈ M . Thus, since aβ1yβ2a = λ(y)άa ∈ CΓΓa we get aΓSΓa ⊂ CΓΓa.

Since a 6= 0 and S is prime Γ-ring, there is some yo ∈ S such that aβ1yoβ2a 6= 0

for some β1, β2 ∈ Γ. Thus, aβ1yoβ2a = λ(yo)άa, where 0 6= λ(yo) ∈ CΓ. Simi-

larly we get aγ1xoγ2a = λ(xo)αa, where 0 6= λ(xo) ∈ CΓ. If xo = λ−1(yo)αyo, then

aγ1xoγ2a = aγ1λ
−1(yo)αyoγ2a = λ−1(yo)αaγ1yoγ2a = λ−1(yo)αλ(yoαa = a. Thus, let

e = aγ1xo. eγ2e = (aγ1xo)γ2(aγ1xo) = (aγ1xoγ2a)γ1xo = aγ1xo = e. From this we

will have e idempotent. In this case; eΓSΓe = (aγxo)ΓSΓ(aγxo) ⊂ CΓΓ(aγxo) = CΓγe.

Thus eΓS is a minimal right ideal of S and CΓΓe is the commuting ring of S on eΓS by

Lemma 3.3. Since S is prime Γ-ring and has a minimal right ideal. S is primitive Γ-ring

by Theorem 2.2. 2

Theorem 3.7. Let M be a simple Γ-ring with unity. Suppose that for some a 6= 0

in M we have aγ1xγ2aβ1yβ2a = aβ1yβ2aγ1xγ2a for all x, y ∈ M and γ1 , γ2, β1, β2 ∈ Γ.

Then M is isomorphic onto the Γ-ring Dn,m, where Dn,m is the additive abelian group of

all rectangular matrices of type n×m over a division ring D and Γ is a nonzero subgroup

of the additive abelian group of all rectangular matrices of type m×n over a division ring

D. Furthermore M is the Γ-ring of all n× n matrices over the field CΓ.

Proof. Since M is simple Γ-ring we have M = S and from Theorem 3.6 we get M

has a minimal right ( left ) ideal of M . In this case, M is the sum of minimal right (

left ) ideals by Theorem 2.4, that is, M is the sum of minimal right ideals Ni, where

Ni = xiΓN ( N is a non-zero minimal right ideal of M ) for some xi ∈ M . Also, since

M has unit ( 1 ∈ M ), 1 ∈ N1 + ...+ Nn for some n, we get M = N1 + ...+ Nn and so

M is the sum of a finite number of minimal right ideals, each of which is an irredicible

right M -module. Thus M , as a M - module, has a composition serises. Thus M has min-r

condition and so M is primitive Γ-ring by Theorem 2.3. In this case, by Theorem 3.6, the

commuting ring of M on an irreducible module is CΓ = Z(M), the center of M . Thus,

this finishes the proof of the theorem by Theorem 2.6. 2

Theorem 3.8. Let M be prime Γ-ring and CΓ the extended centroid of M . If a and

b are non-zero elements in S = MΓCΓ such that aγxβb = bβxγa for all x ∈ M and

γ, β ∈ Γ, then a and b are CΓ-dependent.

Proof. Firstly, we assume that a 6= 0 and b 6= 0. Let U be a non- zero ideal of
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M such that aΓU ⊆ M and aΓU ⊆ M , and set V = UΓaΓU = {
∑
xiγiaβiyi | xi, yi ∈

U, γi, βi ∈ Γ}. We define a mapping f : V →M defined by v 7→ f(v) = f(
∑
xiγiaβiyi) =∑

xiγibβiyi, for all xi, yi ∈ U and γi, βi ∈ Γ. We suppose that
∑
xiγiaβiyi = 0. Then,

0 = bαimσi
∑

xiγiaβiyi =
∑

bαi(mσixi)γiaβiyi

=
∑

aαi(mσixi)γibβiyi = aαimσi
∑

xiγibβiyi

Thus, we get, for all xi, yi ∈ U and γi, βi ∈ Γ

aΓMΓ(
∑

xiγibβiyi) = 0

and so since a 6= 0 and M is prime Γ-ring we get
∑
xiγibβiyi = 0. Therefore, f is well

defined. Also, specially f((xγaβy)αm) = xγbβyαm = f(xγaβy)αm for all x, y ∈ U and

m ∈ M and γ, β, α ∈ Γ and so f is a M -module homomorphism. Let q denote the element

of Q determined by f , that is, q = Cl(V, f). Let p be any element of Q with p(W ) ⊆M
for some non-zero ideal W of M by Lemma 2.7. In this case,

(f1Mαp)(
∑

wiγ́imiαniβ́ixiγiaβiyi)

= f(
∑

p(wi)γ́imiαniβ́ixiγiaβiyi)

=
∑

p(wi)γ́imiαniβ́ixiγibβiyi

= p(
∑

wiγ́imiαniβ́ixiγibβiyi)

= p(1Mαf(
∑

wiγ́imiαniβ́ixiγiaβiyi))

= (p1Mαf)(
∑

wiγ́imiαniβ́ixiγiaβiyi)

and so qαp = Cl(WΓMαMΓV, f1MαP ) = Cl(WΓMαMΓV, P 1Mαf) = pαq. Thus, we

get q ∈ CΓ. For γ, β, α ∈ Γ,

qγ(xαaβy) = Cl(V, f)Cl(MγM, 1Mγ)Cl(V́ , xαaβy)

= Cl(V́ ΓMγMΓV, f1Mγ(xαaβy))

= Cl(V́ ΓMγMΓV, xαaβy)

= xαbβy,
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Hence we have (xγqαa− xαb)βy = 0 for all x, y ∈ U and γ, β, α ∈ Γ. Therefore, since M

is prime Γ -ring we get xγqαa−xαb = 0 for all x, y ∈ U and γ, α ∈ Γ. Now writing α+γ

for in the previous equation we get, xγ(qγa− b) = 0 for all γ,∈ Γ and x ∈ U . Thus, since

M is prime Γ-ring, we get, qγa = b for all γ ∈ Γ and so this completes the proof. 2

Theorem 3.9. Let M be prime Γ-ring, Q quotient Γ-ring of M and CΓ the extended

centroid of M . If q is non-zero element in Q such that qγ1xγ2qβ1yβ2q = qβ1yβ2qγ1xγ2q

for all x, y ∈ M , γ1, γ2, β1, β2 ∈ Γ then S is a primitive Γ-ring with minimal right (left)

ideal such that eΓS, where e is idempotent and CΓΓe is the commuting ring of S on eΓS.

Proof. If q ∈ M , then the proof finishes from Theorem 3.6. If q ∈ Q then one can

pick a ∈M such that q́ = qαa is a non-zero element of M by Lemma 2.7. Also, q́ satisfies

q́γ1xγ2q́β1yβ2 q́ = q́β1yβ2 q́γ1xγ2q́ for all x, y ∈M , γ1, γ2, β1, β2 ∈ Γ and so this completes

the proof. 2
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[12] Öztürk, M. A., Jun, Y. B.: On the centroid of the prime gamma rings, Comm. Korean

Math. Soc. 15(3) (2000), 469-479.

M. Ali ÖZTÜRK
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