On the Centroid of the Prime Gamma Rings II

M. Ali Öztürk and Young Bae Jun

Abstract

The aim of this paper is to study the properities of the extended centroid of the prime Γ -rings. Main results are the following theorems: (1) Let M be a simple Γ -ring with unity. Suppose that for some $a \neq 0$ in M we have $a\gamma_1x\gamma_2a\beta_1y\beta_2a =$ $a\beta_1y\beta_2a\gamma_1x\gamma_2a$ for all $x, y \in M$ and $\gamma_1, \gamma_2, \beta_1, \beta_2 \in \Gamma$. Then M is isomorphic onto the Γ -ring $D_{n,m}$, where $D_{n,m}$ is the additive abelian group of all rectangular matrices of type $n \times m$ over a division ring D and Γ is a nonzero subgroup of the additive abelian group of all rectangular matrices of type $m \times n$ over a division ring D. Furthermore M is the Γ -ring of all $n \times n$ matrices over the field C_{Γ} . (2) Let M be a prime Γ -ring and C_{Γ} the extended centroid of M. If a and b are non-zero elements in $S = M\Gamma C_{\Gamma}$ such that $a\gamma x\beta b = b\beta x\gamma a$ for all $x \in M$ and $\beta, \gamma \in \Gamma$, then a and b are C_{Γ} -dependent. (3) Let M be prime Γ -ring, Q quotient Γ -ring of M and C_{Γ} the extended centroid of M. If q is non-zero element in Q such that $q\gamma_1x\gamma_2q\beta_1y\beta_2q = q\beta_1y\beta_2q\gamma_1x\gamma_2q$ for all $x, y \in M, \gamma_1, \gamma_2, \beta_1, \beta_2 \in \Gamma$ then Sis a primitive Γ -ring with minimal right (left) ideal such that $e\Gamma S$, where e is idempotent and $C_{\Gamma}\Gamma e$ is the commuting ring of S on $e\Gamma S$.

Key Words: Γ-division ring, Γ-field, extented centroid, central closure.

1. Introduction

Nobusawa [11] introduced the notion of a Γ -ring, more general than a ring. Barnes [1] weakened slightly the conditions in the definition of Γ -ring in the sense of Nobusawa. 2000 Mathematics Subject Classification. Primary 16N60, 16Y30, 16A76, 16Y99.

Barnes [1], Luh [7] and Kyuno [4] studied the structure of Γ -rings and obtained various generalizations analogous of corresponding parts in ring theory. Öztürk and Jun [12] studied the extended centroid of a prime Γ -ring. As a continuation of [12], in this paper, we study further properities of the extended centroid of the prime Γ -rings.

2. Preliminaries

Let M and Γ be two abelian groups. If for all $x, y, z \in M$ and all $\alpha, \beta \in \Gamma$ the conditions

- (i) $x\alpha y \in M$,
- (ii) $(x+y)\alpha z = x\alpha z + y\alpha z, x(\alpha+\beta)z = x\alpha z + x\beta z, x\alpha(y+z) = x\alpha y + x\alpha z,$
- (iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$

are satisfied, then we call $M ext{ a } \Gamma$ -ring. By a right (resp. left) ideal of a Γ -ring M we mean an additive subgroup U of M such that $U\Gamma M \subseteq U$ (resp. $M\Gamma U \subseteq U$). If U is both a right and a left ideal, then we say that U is an ideal of M. For each a of a Γ -ring M the smallest right ideal containing a is called the principal right ideal generated by a and is denoted by $\langle a \rangle_r$. Similarly we define $\langle a \rangle_l$ (resp. $\langle a \rangle$), the principal left (resp. two sided) ideal generated by a. An ideal P of a Γ -ring M is said to be prime if for any ideals Aand B of M, $A\Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. An ideal Q of a Γ -ring M is said to be semi-prime if for any ideal U of M, $U\Gamma U \subseteq Q$ implies $U \subseteq Q$. A Γ -ring M is said to be prime (resp. semi-prime) if the zero ideal is prime (resp. semi-prime).

Theorem 2.1 ([4, Theorem 4]). If M is a Γ -ring, the following conditions are equivalent:

- (i) M is a prime Γ -ring.
- (ii) If $a, b \in M$ and $a\Gamma M\Gamma b = (0)$, then a = 0 or b = 0.
- (iii) If $\langle a \rangle$ and $\langle b \rangle$ are principal ideals in M such that $\langle a \rangle \Gamma \langle b \rangle = (0)$, then a = 0 or b = 0.
- (iv) If A and B are right ideals in M such that $A\Gamma B = (0)$, then A = (0) or B = (0).
- (v) If A and B are left ideals in M such that $A\Gamma B = (0)$, then A = (0) or B = (0).

A Γ -ring M is said to be *simple* if $M\Gamma M \neq 0$ and M has no ideals other 0 and M itself. When a Γ -ring M has the descending (resp. ascending) chain condition for right ideals, it is abbreviated to M has *min-r* condition (resp. max-r condition). The terms *min-l* condition or max-l condition on a Γ -ring M are likewise defined. Let M be a Γ -ring and let F be the free group generated by $\Gamma \times M$. Then

$$A = \{\sum_{i} n_i(\gamma_i, x_i) \in F \mid a \in M \Rightarrow \sum_{i} n_i a \gamma_i x_i = 0\}$$

is a subgroup of F. Let R = F/A be the factor group, and denote the coset $(\gamma, x) + A$ by $[\gamma, x]$. Clearly, every element of R can be expressed as a finite sum $\sum_i [\gamma_i, x_i]$. Also it can be verified easily that $[\alpha, x] + [\alpha, y] = [\alpha, x + y]$ and $[\alpha, x] + [\beta, x] = [\alpha + \beta, x]$ for all $\alpha, \beta \in \Gamma$ and $x, y \in M$. We define a multiplication on R by

$$\sum_{i} [\alpha_i, x_i] \sum_{j} [\beta_j, y_j] = \sum_{i,j} [\alpha_i, x_i \beta_j y_j].$$

Then R forms a ring. If we define a composition on $M \times R$ into M by

$$a\sum_{i}[\gamma_{i}, x_{i}] = \sum_{i}a\gamma_{i}x_{i}, \, \forall a \in M, \,\, \forall \sum_{i}[\gamma_{i}, x_{i}] \in R$$

then M is a right R-module, and we call R the right operator ring of M. Similarly, we can define the left operator ring L of M. A Γ -ring M is said to be right (resp. left) primitive if it satisfies:

- (i) the right (resp. left) operator ring of M is a right (resp. left) primitive ring
- (ii) $M\Gamma x = 0$ (resp. $x\Gamma M = 0$) implies x = 0.

A Γ -ring M is said to be *two-sided primitive* (or simply, *primitive*) if it is both right and left primitive.

Theorem 2.2 ([7, Theorem 3.4]). If M is a Γ -ring possessing minimal left (resp. right) ideal, then M is primitive if and only if it is prime.

Theorem 2.3 ([7, Theorem 3.6]). For a Γ -ring M with min-l condition, the following are equivalent:

(i) M is prime,

- (ii) M is primitive,
- (iii) M is simple.

Theorem 2.4 ([7, Theorem 4.2]). If M is a simple Γ -ring possessing minimal left (resp. right) ideals, then M is a direct sum of minimal left (resp. left) ideals.

Theorem 2.5 ([5, Theorem 3.23]). Let M be a semi-prime Γ -ring with min-r condition and let $M = I_1 \oplus I_2 \oplus \cdots \oplus I_m = J_1 \oplus J_2 \oplus \cdots \oplus J_n$, where $I_1, I_2, \cdots, I_m, J_1, J_2, \cdots, J_n$ are minimal right ideals. Then m = n.

The integer m = n in Theorem 2.5 is called the *right dimension* of the semi-prime Γ -ring with min-r condition and denoted by $dim(M_R)$. One can define the left dimension of a Γ -ring in a similar way. If M is simple, then M is semi-prime (see [5]). For an additive group G, denote by $G_{m,n}$ the additive group of all matrices over G. Let M be a Γ -ring M and let $M_{m,n}$ and $\Gamma_{n,m}$ denote, respectively, the sets of $m \times n$ matrices with entries from M and of $n \times m$ matrices with entries from Γ . For $(a_{ij}), (b_{ij}) \in M_{m,n}$ and $(\gamma_{ij}) \in \Gamma_{n,m}$, define $(a_{ij})(\gamma_{ij})(b_{ij}) = (c_{ij})$, where $c_{ij} = \sum_p \sum_q a_{ip} \gamma_{pq} b_{qj}$. Then $M_{m,n}$ forms a $\Gamma_{n,m}$ -ring.

Theorem 2.6 ([6, Theorem 4.2]). Let M be a simple Γ -ring with min-r and minl conditions and $\Gamma_0 = \Gamma/\kappa$, where $\kappa := \{\gamma \in \Gamma \mid M\gamma M = 0\}$. Then the Γ_0 -ring M is isomorphic to the Γ' -ring $D_{n,m}$, where $D_{n,m}$ is the additive abelian group of all rectangular matrices of type $n \times m$ over a division ring D and Γ' is a nonzero subgroup of the additive abelian group of all rectangular matrices of type $m \times n$ over a division ring D and $m = \dim(M_L)$ and $n = \dim(M_R)$.

Lemma 2.7 ([12, Lemma 3]). Let M be a prime Γ -ring such that $M\Gamma M \neq M$ and quotient Γ -ring Q of M. Then, for each non-zero $q \in Q$ there is a non-zero ideal U of M such that $q(U) \subset M$.

Lemma 2.8 ([12, p. 476]). Let M be a prime Γ -ring such that $M\Gamma M \neq M$ and C_{Γ} the extended centroid of M. If a_i and b_i are non-zero elements of M such that $\sum a_i \gamma_i x \beta_i b_i = 0$ for all $x \in M$ and $\gamma_i, \beta_i \in \Gamma$, then the a_i 's (also a_i 's) are linearly dependent over C_{Γ} . Moreover, if $a\gamma x\beta b = b\gamma x\beta a$ for all $x \in M$ and $\gamma, \beta \in \Gamma$ where $a(\neq 0), b \in M$ are fixed, then there exists $\lambda \in C_{\Gamma}$ such that $b = \lambda \alpha a$ for all $\alpha \in \Gamma$.

3. Centroids

Let M be a prime Γ -ring such that $M\Gamma M \neq M$. Denote

$$\mathcal{M} := \{ (U, f) \mid U(\neq 0) \text{ is an ideal of } M \text{ and} \\ f : U \to M \text{ is a right } M \text{-module homomorphism} \}.$$

Define a relation \sim on \mathcal{M} by $(U, f) \sim (V, g)$ if and only if $\exists W (\neq 0) \subset U \cap V$ such that f = g on W. Since M is a prime Γ -ring, it is possible to find a non-zero W and so " \sim " is an equivalence relation. This gives a chance for us to get a partition of \mathcal{M} . We then denote the equivalence class by $Cl(U, f) = \hat{f}$, where $\hat{f} := \{g : V \to M | (U, f) \sim (V, g)\}$, and denote by Q the set of all equivalence classes. Now we define an addition "+" on Q as follows:

$$\hat{f} + \hat{g} = Cl(U, f) + Cl(V, g) = Cl(U \cap V, f + g)$$

where $f + g : U \cap V \to M$ is a right *M*-module homomorphism. Then *Q* is an additive abelian group (see [12]). Since $M\Gamma M \neq M$ and since *M* is a prime Γ -ring, $M\Gamma M \ (\neq 0)$ is an ideal of *M*. We can take the homomorphism $1_{M\Gamma} : M\Gamma M \to M$ as a unit *M*-module homomorphism. Note that $M\beta M \neq 0$ for all $0 \neq \beta \in \Gamma$ so that $1_{M\beta} : M\beta M \to M$ is non-zero *M*-module homomorphism. Denote

$$\mathcal{N} := \{ (M\beta M, 1_{M\beta}) \mid 0 \neq \beta \in \Gamma \},\$$

and define a relation " \approx " on \mathcal{N} by $(M\beta M, 1_{M\beta}) \approx (M\gamma M, 1_{M\gamma})$ if and only if $\exists W := M\alpha M (\neq 0) \subset M\beta M \cap M\gamma M$ such that $1_{M\beta} = 1_{M\gamma}$ on W. We can easily check that " \approx " is an equivalence relation on \mathcal{N} . Denote by $Cl(M\beta M, 1_{M\beta}) = \hat{\beta}$ the equivalence class containing $(M\beta M, 1_{M\beta})$ and by $\hat{\Gamma}$ the set of all equivalence classes of \mathcal{N} with respect to \approx , that is,

$$\hat{\beta} := \{ 1_{M\gamma} : M\gamma M \to M \mid (M\beta M, 1_{M\beta}) \approx (M\gamma M, 1_{M\gamma}) \}$$

and $\hat{\Gamma} := \{\hat{\beta} \mid 0 \neq \beta \in \Gamma\}$. Define an addition "+" on $\hat{\Gamma}$ as follows:

$$\hat{\beta} + \hat{\delta} = Cl(M\beta M, 1_{M\beta}) + Cl(M\delta M, 1_{M\delta})$$
$$= Cl(M\beta M \cap M\delta M, 1_{M\beta} + 1_{M\delta})$$

for every $\beta \neq 0$, $\delta \neq 0 \in \Gamma$. Then $(\hat{\Gamma}, +)$ is an abelian group. Now we define a mapping $(-, -, -): Q \times \hat{\Gamma} \times Q \to Q$, $(\hat{f}, \hat{\beta}, \hat{g}) \mapsto \hat{f}\hat{\beta}\hat{g}$, as follows:

$$\hat{f}\hat{\beta}\hat{g} = Cl(U, f)Cl(M\beta M, 1_{M\beta})Cl(V, g)$$
$$= Cl(V\Gamma M\beta M\Gamma U, f1_{M\beta}g)$$

where

$$V\Gamma M\beta M\Gamma U = \{\sum v_i \gamma_i m_i \beta n_i \alpha_i u_i \mid v_i \in V, u_i \in U, m_i, n_i \in M \text{ and } \alpha_i, \gamma_i \in \Gamma\}$$

is an ideal of M and $f1_{M\beta}g:V\Gamma M\beta M\Gamma U \to M$ which is given by

$$f1_{M\beta}g(\sum v_i\gamma_i m_i\beta n_i\alpha_i u_i) = f(\sum g(v_i)\gamma_i m_i\beta n_i\alpha_i u_i)$$

is a right *M*-module homomorphism. Then *Q* is a $\hat{\Gamma}$ -ring with unity. Noticing that the mapping $\varphi : \Gamma \to \hat{\Gamma}$ defined by $\varphi(\beta) = \hat{\beta}$ for every $0 \neq \beta \in \Gamma$ is an isomorphism, we know that the $\hat{\Gamma}$ -ring *Q* is a Γ -ring (see [12]). For purposes of convenience, we use *q* instead of $\hat{q} \in Q$.

Definition 3.1. Let M be a Γ -ring with unity. An element u in M is called a *unit* of M if it has a multiplicative inverse in M. If every nonzero emenet of M is a unit, we say that M is a Γ -division ring. A Γ -ring M is called a Γ -field if it is a commutative Γ -division ring.

Definition 3.2. The set

$$C_{\Gamma} := \{ g \in Q \mid g\gamma f = f\gamma g \text{ for all } f \in Q \text{ and } \gamma \in \Gamma \}$$

is called the *extended centroid* of a Γ -ring M.

Lemma 3.3. Let M be a prime Γ -ring. Then the extended centroid C_{Γ} of M is a Γ -field.

Proof. Noticing that C_{Γ} is a commutative ring with unity, it is sufficient to show that every nonzero element of C_{Γ} is invertible. If $c \neq 0 \in C_{\Gamma}$, then $c = Cl(U, \mu)$. Thus, by Lemma 2.7., there is a nonzero ideal U of M such that $\mu(U) \subset M$. Clearly, $0 \neq V = \mu(U)$ is an ideal of M. Since $U\Gamma M \subset U$, therefore $\mu(U)\Gamma M \subset \mu(U)$. Hence we can define a mapping $f : \mu(U) \to M$ by $f(\mu(u)) = u$ for all $u \in U$, and this is a right M-module

homomorphism. In fact, let $v_1, v_2 \in V = \mu(U)$ and so there exists $u_1, u_2 \in U$ such that $v_1 = \mu(u_1)$ and $v_2 = \mu(u_2)$. It follows that

$$f(v_1 + v_2) = f(\mu(u_1) + \mu(u_2))$$

= $f(\mu(u_1 + u_2)) = u_1 + u_2$
= $f(\mu(u_1)) + f(\mu(u_2))$
= $f(v_1) + f(v_2).$

Now, for any $v \in V$, $m \in M$ and $\gamma \in \Gamma$, we have

$$f(v\gamma m) = f(\mu(u)\gamma m) = f(\mu(u\gamma m)) = u\gamma m = f(\mu(u))\gamma m = f(v)\gamma m.$$

Finally, considering d = Cl(V, f), we get

$$d\gamma c = Cl(V, f)Cl(M\gamma M, 1_{M\gamma})Cl(U, \mu)$$

= $Cl(U\Gamma M\gamma M\Gamma V, f1_{M\gamma}\mu)$
= $Cl(U\Gamma M\gamma M\Gamma \mu(U), 1) = I.$

This completes the proof.

Definition 3.4. For the extended centroid C_{Γ} of a prime Γ -ring M, we say that $S := M \Gamma C_{\Gamma}$ is the *central closure* of M.

Remark 3.5. For $a, b \in S$, if $a\Gamma S\Gamma b = 0$ then $a\Gamma M\Gamma C_{\Gamma}b = 0$ and so $a\Gamma M\Gamma b\Gamma M\Gamma a\Gamma C_{\Gamma}b = 0$. Since M is a prime Γ -ring, it follows that $a\Gamma M\Gamma b = 0$ or $a\Gamma C_{\Gamma}b = 0$ so a = 0 or b = 0. Thus S is a prime Γ -ring.

If M has a unit element, then $C_{\Gamma} = Z(S)$, the centre of S. If M is a simple Γ -ring with unity, then Q = S = M. Because the only non-zero ideal of M is M itself. In this case; M is its own central closure.

Throughout, we shall use M as a prime Γ -ring such that $M\Gamma M \neq M$.

Theorem 3.6. Let C_{Γ} be the extended centroid of a prime Γ -ring M. If a is a nonzero element of M such that $a\gamma_1 x\gamma_2 a\beta_1 y\beta_2 a = a\beta_1 y\beta_2 a\gamma_1 x\gamma_2 a$ for all $x, y \in M$, $\gamma_1, \gamma_2, \beta_1, \beta_2 \in \Gamma$ then $S = M\Gamma C_{\Gamma}$ is a primitive Γ -ring with minimal right (left) ideal and the commuting ring of S on this right (left) ideal is merely C_{Γ} itself.

Proof. Let fixed $a\gamma_1 x\gamma_2 a$ element in the relation $(a\gamma_1 x\gamma_2 a)\beta_1 y\beta_2 a = a\beta_1 y\beta_2 (a\gamma_1 x\gamma_2 a) = 0$ then, from Lemma 2.8 we get $a\gamma_1 x\gamma_2 a = \lambda(x)\alpha a$, where $\lambda(x) \in C_{\Gamma}$ and $\alpha \in \Gamma$ and for

all $x \in M$. Similarly we also get $a\beta_1y\beta_2a = \lambda(y)\dot{\alpha}a$, where $\lambda(y) \in C_{\Gamma}$ and $\dot{\alpha} \in \Gamma$ and for all $y \in M$. Thus, since $a\beta_1y\beta_2a = \lambda(y)\dot{\alpha}a \in C_{\Gamma}\Gamma a$ we get $a\Gamma S\Gamma a \subset C_{\Gamma}\Gamma a$. Since $a \neq 0$ and S is prime Γ -ring, there is some $y_o \in S$ such that $a\beta_1y_o\beta_2a \neq 0$ for some $\beta_1, \beta_2 \in \Gamma$. Thus, $a\beta_1y_o\beta_2a = \lambda(y_o)\dot{\alpha}a$, where $0 \neq \lambda(y_o) \in C_{\Gamma}$. Similarly we get $a\gamma_1x_o\gamma_2a = \lambda(x_o)\alpha a$, where $0 \neq \lambda(x_o) \in C_{\Gamma}$. If $x_o = \lambda^{-1}(y_o)\alpha y_o$, then $a\gamma_1x_o\gamma_2a = a\gamma_1\lambda^{-1}(y_o)\alpha y_o\gamma_2a = \lambda^{-1}(y_o)\alpha a\gamma_1y_o\gamma_2a = \lambda^{-1}(y_o)\alpha\lambda(y_o\alpha a = a)$. Thus, let $e = a\gamma_1x_o$. $e\gamma_2e = (a\gamma_1x_o)\gamma_2(a\gamma_1x_o) = (a\gamma_1x_o\gamma_2a)\gamma_1x_o = a\gamma_1x_o = e$. From this we will have e idempotent. In this case; $e\Gamma S\Gamma e = (a\gamma x_o)\Gamma S\Gamma(a\gamma x_o) \subset C_{\Gamma}\Gamma(a\gamma x_o) = C_{\Gamma}\gamma e$. Thus $e\Gamma S$ is a minimal right ideal of S and $C_{\Gamma}\Gamma e$ is the commuting ring of S on $e\Gamma S$ by Lemma 3.3. Since S is prime Γ -ring and has a minimal right ideal. S is primitive Γ -ring by Theorem 2.2.

Theorem 3.7. Let M be a simple Γ -ring with unity. Suppose that for some $a \neq 0$ in M we have $a\gamma_1x\gamma_2a\beta_1y\beta_2a = a\beta_1y\beta_2a\gamma_1x\gamma_2a$ for all $x, y \in M$ and $\gamma_1, \gamma_2, \beta_1, \beta_2 \in \Gamma$. Then M is isomorphic onto the Γ -ring $D_{n,m}$, where $D_{n,m}$ is the additive abelian group of all rectangular matrices of type $n \times m$ over a division ring D and Γ is a nonzero subgroup of the additive abelian group of all rectangular matrices of type $m \times n$ over a division ring D. Furthermore M is the Γ -ring of all $n \times n$ matrices over the field C_{Γ} .

Proof. Since M is simple Γ -ring we have M = S and from Theorem 3.6 we get M has a minimal right (left) ideal of M. In this case, M is the sum of minimal right (left) ideals by Theorem 2.4, that is, M is the sum of minimal right ideals N_i , where $N_i = x_i \Gamma N$ (N is a non-zero minimal right ideal of M) for some $x_i \in M$. Also, since M has unit ($1 \in M$), $1 \in N_1 + \ldots + N_n$ for some n, we get $M = N_1 + \ldots + N_n$ and so M is the sum of a finite number of minimal right ideals, each of which is an irredicible right M-module. Thus M, as a M- module, has a composition serises. Thus M has min-r condition and so M is primitive Γ -ring by Theorem 2.3. In this case, by Theorem 3.6, the commuting ring of M on an irreducible module is $C_{\Gamma} = Z(M)$, the center of M. Thus, this finishes the proof of the theorem by Theorem 2.6.

Theorem 3.8. Let M be prime Γ -ring and C_{Γ} the extended centroid of M. If a and b are non-zero elements in $S = M\Gamma C_{\Gamma}$ such that $a\gamma x\beta b = b\beta x\gamma a$ for all $x \in M$ and $\gamma, \beta \in \Gamma$, then a and b are C_{Γ} -dependent.

Proof. Firstly, we assume that $a \neq 0$ and $b \neq 0$. Let U be a non-zero ideal of

M such that $a\Gamma U \subseteq M$ and $a\Gamma U \subseteq M$, and set $V = U\Gamma a\Gamma U = \{\sum x_i \gamma_i a\beta_i y_i \mid x_i, y_i \in U, \gamma_i, \beta_i \in \Gamma\}$. We define a mapping $f: V \to M$ defined by $v \mapsto f(v) = f(\sum x_i \gamma_i a\beta_i y_i) = \sum x_i \gamma_i b\beta_i y_i$, for all $x_i, y_i \in U$ and $\gamma_i, \beta_i \in \Gamma$. We suppose that $\sum x_i \gamma_i a\beta_i y_i = 0$. Then,

$$0 = b\alpha_i m\sigma_i \sum x_i \gamma_i a\beta_i y_i = \sum b\alpha_i (m\sigma_i x_i) \gamma_i a\beta_i y_i$$
$$= \sum a\alpha_i (m\sigma_i x_i) \gamma_i b\beta_i y_i = a\alpha_i m\sigma_i \sum x_i \gamma_i b\beta_i y_i$$

Thus, we get, for all $x_i, y_i \in U$ and $\gamma_i, \beta_i \in \Gamma$

$$a\Gamma M\Gamma(\sum x_i\gamma_i b\beta_i y_i) = 0$$

and so since $a \neq 0$ and M is prime Γ -ring we get $\sum x_i \gamma_i b \beta_i y_i = 0$. Therefore, f is well defined. Also, specially $f((x\gamma a\beta y)\alpha m) = x\gamma b\beta y\alpha m = f(x\gamma a\beta y)\alpha m$ for all $x, y \in U$ and $m \in M$ and $\gamma, \beta, \alpha \in \Gamma$ and so f is a M-module homomorphism. Let q denote the element of Q determined by f, that is, q = Cl(V, f). Let p be any element of Q with $p(W) \subseteq M$ for some non-zero ideal W of M by Lemma 2.7. In this case,

$$(f1_{M\alpha}p)(\sum w_i\dot{\gamma}_i m_i\alpha n_i\dot{\beta}_i x_i\gamma_i a\beta_i y_i)$$

$$= f(\sum p(w_i)\dot{\gamma}_i m_i\alpha n_i\dot{\beta}_i x_i\gamma_i a\beta_i y_i)$$

$$= \sum p(w_i)\dot{\gamma}_i m_i\alpha n_i\dot{\beta}_i x_i\gamma_i b\beta_i y_i$$

$$= p(\sum w_i\dot{\gamma}_i m_i\alpha n_i\dot{\beta}_i x_i\gamma_i b\beta_i y_i)$$

$$= p(1_{M\alpha}f(\sum w_i\dot{\gamma}_i m_i\alpha n_i\dot{\beta}_i x_i\gamma_i a\beta_i y_i))$$

$$= (p1_{M\alpha}f)(\sum w_i\dot{\gamma}_i m_i\alpha n_i\dot{\beta}_i x_i\gamma_i a\beta_i y_i)$$

and so $q\alpha p = Cl(W\Gamma M\alpha M\Gamma V, f1_{M\alpha}P) = Cl(W\Gamma M\alpha M\Gamma V, P1_{M\alpha}f) = p\alpha q$. Thus, we get $q \in C_{\Gamma}$. For $\gamma, \beta, \alpha \in \Gamma$,

$$q\gamma(x\alpha a\beta y) = Cl(V, f)Cl(M\gamma M, 1_{M\gamma})Cl(\acute{V}, x\alpha a\beta y)$$

$$= Cl(\acute{V}\Gamma M\gamma M\Gamma V, f1_{M\gamma}(x\alpha a\beta y))$$

$$= Cl(\acute{V}\Gamma M\gamma M\Gamma V, x\alpha a\beta y)$$

$$= x\alpha b\beta y,$$

Hence we have $(x\gamma q\alpha a - x\alpha b)\beta y = 0$ for all $x, y \in U$ and $\gamma, \beta, \alpha \in \Gamma$. Therefore, since M is prime Γ -ring we get $x\gamma q\alpha a - x\alpha b = 0$ for all $x, y \in U$ and $\gamma, \alpha \in \Gamma$. Now writing $\alpha + \gamma$ for in the previous equation we get, $x\gamma(q\gamma a - b) = 0$ for all $\gamma, \in \Gamma$ and $x \in U$. Thus, since M is prime Γ -ring, we get, $q\gamma a = b$ for all $\gamma \in \Gamma$ and so this completes the proof. \Box

Theorem 3.9. Let M be prime Γ -ring, Q quotient Γ -ring of M and C_{Γ} the extended centroid of M. If q is non-zero element in Q such that $q\gamma_1 x \gamma_2 q\beta_1 y\beta_2 q = q\beta_1 y\beta_2 q\gamma_1 x \gamma_2 q$ for all $x, y \in M$, $\gamma_1, \gamma_2, \beta_1, \beta_2 \in \Gamma$ then S is a primitive Γ -ring with minimal right (left) ideal such that $e\Gamma S$, where e is idempotent and $C_{\Gamma}\Gamma e$ is the commuting ring of S on $e\Gamma S$.

Proof. If $q \in M$, then the proof finishes from Theorem 3.6. If $q \in Q$ then one can pick $a \in M$ such that $\dot{q} = q\alpha a$ is a non-zero element of M by Lemma 2.7. Also, \dot{q} satisfies $\dot{q}\gamma_1 x \gamma_2 \dot{q}\beta_1 y \beta_2 \dot{q} = \dot{q}\beta_1 y \beta_2 \dot{q}\gamma_1 x \gamma_2 \dot{q}$ for all $x, y \in M, \gamma_1, \gamma_2, \beta_1, \beta_2 \in \Gamma$ and so this completes the proof.

References

- [1] Barnes, W. E.: On the Γ -ring of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
- [2] Herstein, I. N.: Rings with involution, University of Chicago Press, Chicago, 1976.
- [3] Kyuno, S.: On the semi-simple gamma rings, Tohoku Math. J. 29 (1977), 217-225.
- [4] Kyuno, S.: On prime gamma ring, Pacific J. Math. 75 (1978), 185-190.
- [5] Kyuno, S.: A gamma ring with minimum conditions, Tsukuba J. Math. 5(1) (1981), 47-65.
- [6] Kyuno, S.: Prime ideals in gamma rings, Pacific J. Math. 98(2) (1982), 375-379.
- [7] Luh, L.: On the theory of simple Γ -rings, Michigan Math. J. 16 (1969), 65-75.
- [8] Luh, L.: The structure of primitive gamma rings, Osaka J. Math. 7 (1970), 267-274.
- [9] Luh, L.: On primitive Γ-rings with one-sided ideals, Osaka J. Math. 5 (1988),165-173.
- [10] Martindale, W.: Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
- [11] Nobusawa, N.: On a generalization of the theory, Osaka J. Math. 1 (1964), 81-89.

[12] Öztürk, M. A., Jun, Y. B.: On the centroid of the prime gamma rings, Comm. Korean Math. Soc. 15(3) (2000), 469-479.

M. Ali ÖZTÜRK Department of Mathematics, Faculty of Arts and Science, Cumhuriyet University, 58140, Sivas-TURKEY e-mail: maozturk@cumhuriyet.edu.tr Young Bae JUN Department of Mathematics Education, Gyeongsang National University, 660-701, Chinju-KOREA e-mail: ybjun@nongae.gsnu.ac.kr Received 06.10.2000