On QR-Submanifolds of a Quaternionic Space form

Bayram Şahin

Abstract

In this paper, we investigate mixed QR-submanifolds in a quaternionic space form and pseudo umbilical QR-submanifold of a quaternionic space form under some additional condition. Finally we give a necessary condition for QR-submanifold of a quaternion Kaehler manifold such that $\operatorname{dim} v^{\perp}=1$ to be a 3-quasi Sasakian Manifold.

Key Words: Quaternion Kaehler Manifold, QR-Submanifold, Pseudo-Umbilical Submanifold, Mixed Geodesic QR-Submanifold, Almost Contact 3-Structure

1. Introduction

The main purpose of this paper is to continue study of QR -submanifolds in a quaternionic space form which were started in [1]. We prove some results being QR-submanifold analogues of well known results for CR-submanifold of a complex space form.

Bejancu classified totally umbilical QR-submanifolds in a quaternion Kaehler manifold. However, it is well known that the class of pseudo umbilical submanifolds in a quaternionic space form is too wide to classify. Recently, Sato proved that any pseudo umbilical submanifolds with nonzero parallel vector field in $C P^{m}(c)$ is totally real submanifold. In the present paper, we have given a theorem for the pseudo umbilical QRsubmanifold with nonzero parallel mean curvature vector field in a quaternionic space form similar to the obtained by Sato in the Kaehler setting. Particularly, we prove that there exist no pseudo umbilical QR-submanifold with nonzero parallel mean curvature vector field in quaternionic space form $c \neq 0$.

On the other hand, Bejancu,Kon and Yano proved that any proper mixed foliate CR-submanifold of a complex space form $(c>0)$ is complex submanifold or totally

[^0]
SAHİN

real submanifold. We prove that there exist no mixed foliate QR-submanifolds in a quaternionic space form $(c>0)$.

Finally, we have considered QR-submanifold of quaternion Kaehler manifold with $\operatorname{dim} v^{\perp}=1$. The present author and R.Günes, S.Keles have shown that QR-submanifold have almost contact 3 -structure in this case[4]. In this paper, we obtain a necessary condition for QR -submanifold to be a 3-quasi Sasakian manifold.

2. Preliminaries

Let \bar{M} be a Riemann manifold and M be a Riemann submanifold of \bar{M} with Riemann metric induced by the Riemann metric on \bar{M}. Denote by $T M^{\perp}$ and $T M$ the normal and tangent bundle respectively. $\bar{\nabla}$ and ∇ show the Levi-Civita connections on \bar{M} and M,respectively. Moreover $\Gamma(T M)$ represents the module of differentiable sections of a vector bundle TM. Then the formulas of Gauss and Weingarten are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.2}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma\left(T M^{\perp}\right)$, where ∇^{\perp} is the normal connection induced ∇ on the normal bundle $T M^{\perp}, h$ is the second fundamental form and A_{V} is the fundamental tensor of Weingarten with respect to the normal section V. Moreover its well known that we have

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) \tag{2.3}
\end{equation*}
$$

Let \bar{M} be a $4 n$-dimensional manifold and g be a Riemann metric on \bar{M}. Then \bar{M} is said to be a quaternion Kaehlerian manifold, if there exit a 3 -dimensional vector bundle V of type (1,1)with local basis of almost Hermitian structures J_{1}, J_{2}, J_{3} satisfying

$$
\begin{equation*}
J_{1} o J_{2}=-J_{2} o J_{1}=J_{3} \tag{2.4}
\end{equation*}
$$

and

ŞAHIN

$$
\begin{equation*}
\bar{\nabla}_{X} J_{a}=\sum_{b=1}^{3} Q_{a b}(X) J_{b}, a=1,2,3 \tag{2.5}
\end{equation*}
$$

for all vector fields X tangent to \bar{M}, where $Q_{a b}$ are certain 1-forms locally defined on \bar{M} such that $Q_{a b}+Q_{b a}=0$

Let \bar{M} be quaternion Kaehler manifold and M be a real submanifold of \bar{M}. Then, M is said QR-submanifold if there exists a vector subbundle ν of the normal bundle such that we have

$$
\begin{equation*}
J_{a}\left(\nu_{x}\right)=\nu_{x} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{a}\left(\nu_{x}^{\perp}\right) \subset T_{M}(x) \tag{2.7}
\end{equation*}
$$

for $x \in M$ and $a=1,2,3$, where ν^{\perp} is the complementary orthogonal bundle to ν in $T M^{\perp}[1]$. Let M be a QR-submanifold of \bar{M}. Set $D_{a x}=J_{a}\left(\nu_{x}^{\perp}\right)$. We consider $D_{1 x} \oplus D_{2 x} \oplus D_{3 x}=D_{x}^{\perp}$ and $3 s-$ dimensional distribution $D^{\perp}: x \rightarrow D_{x}^{\perp}$ globally defined on M, where $s=\operatorname{dim} \nu_{x}^{\perp}$. Also we have, for each $x \in M$

$$
\begin{equation*}
J_{a}\left(D_{a x}\right)=\nu_{x}^{\perp}, J_{a}\left(D_{b x}\right)=D_{c x} \tag{2.8}
\end{equation*}
$$

where (a, b, c) is a cyclic permutation of $(1,2,3)$. We denote by D the complementary orthogonal distribution to D^{\perp} in $T M$. Then D is invariant with respect to the action of J_{a} i.e. we have

$$
\begin{equation*}
J_{a}\left(D_{x}\right)=D_{x} \tag{2.9}
\end{equation*}
$$

for any $x \in M . D$ is called quaternion distribution.
Let M be a QR-submanifold of a quaternion Kaehler \bar{M}. Denote by P the projection morphism of $T M$ to the quaternion distribution D and choose a local field of orthonormal frames $\left\{v_{1}, \ldots, v_{s}\right\}$ on the vector subbundle ν^{\perp} in $T M^{\perp}$. Then on the distribution D^{\perp}, we have the local field of orthonormal frames

ŞAHIN

$$
\begin{equation*}
\left\{E_{11}, \ldots, E_{1 s}, E_{21}, \ldots, E_{2 s}, E_{31}, \ldots, E_{3 s}\right\} \tag{2.10}
\end{equation*}
$$

where $E_{a i}=J_{a} v_{i}, a=1,2,3$ and $i=1, \ldots, s$. Thus any vector field Y tangent to M can be written locally as follows

$$
\begin{equation*}
Y=P Y+\sum_{b=1}^{3} \sum_{i=1}^{s} W_{b i}(Y) E_{b i} \tag{2.11}
\end{equation*}
$$

where $W_{b i}$ are 1-forms locally defined on M by

$$
\begin{equation*}
W_{b i}(Y)=g\left(Y, E_{b i}\right) \tag{2.12}
\end{equation*}
$$

Applying J_{a} to (2.11) and taking account of (2.4) we have

$$
\begin{align*}
J_{a} Y= & J_{a} P Y+\sum_{i=1}^{s}\left\{W_{b i}(Y) E_{c i}-W_{c i}(Y) E_{b i}\right. \\
& -W_{a i}(Y) v_{i} \tag{2.13}
\end{align*}
$$

where (a, b, c) is a cyclic permutation of $(1,2,3)$. For $Y \in \Gamma(T M)$ we can decompose as follows

$$
\begin{equation*}
J_{a} Y=\phi_{a} Y+F_{a} Y, a=1,2,3 \tag{2.14}
\end{equation*}
$$

where $\phi_{a} Y$ and $F_{a} Y$ the tangential and normal parts of $J_{a} Y$, respectively. Similar way we get

$$
\begin{equation*}
J_{a} V=t_{a} V+f_{a} V . \tag{2.15}
\end{equation*}
$$

We note that a QR-submanifold is called mixed geodesic if $h(X, Y)=0$ for $X \in \Gamma(D)$ and $Y \in \Gamma\left(D^{\perp}\right)$ and M is called mixed foliate if the distribution D is integrable and M is mixed geodesic [2].

Now, we state the following well known result for later use.

ŞAHIN

Theorem 2.1 ([1]) Let M be a $Q R$-submanifold of a quaternion Kaehlerian manifold \bar{M}. Then the following assertions are equivalent with each other
(i)the second fundamental form of M satisfies

$$
h\left(X, J_{a} Y\right)=h\left(Y, J_{a} X\right)
$$

for any $X, Y \in \Gamma(D), a=1,2,3$.
(ii) M is $D-$ geodesic
(iii)the quaternion distribution D is involutive.

A quaternionic space form is a connected quaternion Kaehler manifold of constant quaternionic sectional curvature and its denoted by $\bar{M}(c)$. The curvature tensor of $\bar{M}(c)$ is given by [7]

$$
\begin{align*}
\bar{R}(X, Y) Z= & \frac{c}{4}\{g(Z, Y) X-g(X, Z) Y \\
& +\sum_{a=1}^{3} g\left(Z, J_{a} Y\right) J_{a} X-g\left(Z, J_{a} X\right) J_{a} Y \tag{2.16}\\
& \left.+2 g\left(X, J_{a} Y\right) J_{a} Z\right\}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T \bar{M})$.
A normal vector field V is said to be parallel if $\nabla_{X} V=0$ for all $X \in \Gamma(T M)$. Let $H=\frac{1}{n}$ traceh be the mean curvature vector of M in \bar{M}. If second fundamental form h is of the form $g(h(X, Y), H)=g(X, Y) g(H, H)$ for $X, Y \in \Gamma(T M)$, then M is said to be pseudo umbilical or equivalently $A_{H}=\|H\|^{2} I$.

For the second fundamental form h, the covariant derivation $\left(\nabla_{X} h\right)(Y, Z)$ is given by

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.17}
\end{equation*}
$$

for any $X, Y, Z \in \Gamma(T M)$. On the other hand, for the submanifold M the equations of Gauss and Codazzi are respectively

$$
\begin{align*}
& R(X, Y, Z, W)= \bar{R}(X, Y, Z, W)+g(h(X, W), h(Y, Z)) \tag{2.18}\\
&-g(h(X, Z), h(Y, W)) \\
&(\bar{R}(X, Y) Z)^{\perp}=\left(\nabla_{X} h\right)(Y, Z)-\left(\nabla_{Y} h\right)(X, Z) \tag{2.19}
\end{align*}
$$

for any $X, Y, Z, W \in \Gamma(T M)[7]$.

ŞAHIN

3. On QR-Submanifolds of a Quaternionic Space Form

We shall give some lemmas for later use.

Lemma 3.1 Let \bar{M} be a quaternion Kaehlerian manifold and M be a $Q R$-submanifold of \bar{M}. Then M is mixed geodesic if and only if

$$
\begin{equation*}
A_{V} X \in \Gamma(D) \tag{3.1}
\end{equation*}
$$

for any $X \in \Gamma(D)$ and $V \in \Gamma\left(T M^{\perp}\right)$.
Proof. By the definition of mixed geodesic QR-submanifold and from the equation (2.3) we have the assertion of the lemma.

Lemma 3.2 Let \bar{M} be a quaternion Kaehlerian manifold and M be a mixed geodesic $Q R$-submanifold of \bar{M}. Then

$$
\begin{equation*}
A_{J_{a} W_{i}} X=J_{a} A_{W_{i}} X \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{X}^{\perp} W_{i} \in \Gamma(\nu) \tag{3.3}
\end{equation*}
$$

$X \in \Gamma(D)$ and $W_{i} \in \Gamma(\nu)$.
Proof. From (2.5) we obtain

$$
\begin{aligned}
\bar{\nabla}_{X} J_{a} W_{i}= & \left(\bar{\nabla}_{X} J_{a}\right) W_{i}+J_{a} \bar{\nabla}_{X} W_{i} \\
= & Q_{a b}(X) J_{b} W_{i}+Q_{a c}(X) J_{c} W_{i} \\
& +J_{a} \bar{\nabla}_{X} W_{i}
\end{aligned}
$$

By using(2.1) and (2.2) we have

$$
\begin{aligned}
-A_{J_{a} W_{i}} X+\nabla \stackrel{\perp}{X} J_{a} W_{i}= & Q_{a b}(X) J_{b} W_{i}+Q_{a c}(X) J_{c} W_{i} \\
& -J_{a} A_{W_{i}} X+J_{a} \nabla \frac{\perp}{X} W_{i}
\end{aligned}
$$

418

ŞAHIN

since M is mixed geodesic, from (3.1) we derive

$$
A_{J_{a} W_{i}} X=J_{a} A_{W_{i}} X
$$

and

$$
\nabla_{X}^{\perp} J_{a} W_{i}-Q_{a b}(X) J_{b} W_{i}-Q_{a c}(X) J_{c} W_{i}=J_{a} \nabla \stackrel{\perp}{X} W_{i}
$$

The left hand side of this equation belongs to $T M^{\perp}$, thus $\nabla_{X}^{\perp} W_{i} \in \Gamma(\nu)$.

Lemma 3.3 Let M be a foliate $Q R$-submanifold of quaternion Kaehler manifold. Then we have the following expression;

$$
\begin{equation*}
g\left(A_{V_{i}} X, J_{a} Y\right)=g\left(A_{V_{i}} J_{a} X, Y\right) \tag{3.4}
\end{equation*}
$$

for any $X, Y \in \Gamma(D), V_{i} \in \Gamma\left(\nu^{\perp}\right)$
Proof. From (2.3) we have

$$
g\left(A_{V_{i}} X, J_{a} Y\right)=g\left(h\left(X, J_{a} Y\right), V_{i}\right)
$$

since D is integrable, from theorem 2.1 we get

$$
g\left(A_{V_{i}} X, J_{a} Y\right)=g\left(h\left(J_{a} X, Y\right), V_{i}\right)
$$

Thus we have $g\left(A_{V_{i}} X, J_{a} Y\right)=g\left(A_{V_{i}} J_{a} X, Y\right)$.

Lemma 3.4 Let M be a mixed geodesic QR-submanifold of quaternion Kaehler manifold. Then we have the following expression;

$$
\begin{equation*}
\nabla_{Y} E_{a i}=Q_{a b}(Y) E_{b i}+Q_{a c}(Y) E_{c i}-J_{a} A_{V_{i}} Y+B_{a} \nabla_{Y} V_{i} \tag{3.5}
\end{equation*}
$$

for any $Y \in \Gamma(D), E_{a i} \in \Gamma\left(D^{\perp}\right)$.

ŞAhin

Proof. By using (2.5), (2.1) and (2.2) we have

$$
\begin{aligned}
\bar{\nabla}_{X} E_{a i}= & \left(\bar{\nabla}_{X} J_{a}\right) V_{i}+J_{a} \bar{\nabla}_{X} V_{i} \\
= & Q_{a b}(X) J_{b} V_{i}+Q_{a c}(X) J_{c} V_{i} \\
& +J_{a} \bar{\nabla}_{X} V_{i} . \\
\nabla_{X} E_{a i}+h\left(X, E_{a i}\right)= & Q_{a b}(X) E_{b i}+Q_{a c}(X) E_{c i} \\
& +J_{a}\left(-A_{V_{i}} X+\nabla_{X}^{\perp} V_{i}\right) \\
= & Q_{a b}(X) E_{b i}+Q_{a c}(X) E_{c i} \\
& -J_{a} A_{V_{i}} X+B_{a} \nabla_{X}^{\perp} V_{i} \\
& +C_{a} \nabla_{X}^{\perp} V_{i}
\end{aligned}
$$

Taking acount of that M is mixed geodesic we obtain

$$
\begin{aligned}
\nabla_{X} E_{a i}= & Q_{a b}(X) E_{b i}+Q_{a c}(X) E_{c i} \\
& -J_{a} A_{V_{i}} X+B_{a} \nabla_{X}^{\perp} V_{i} .
\end{aligned}
$$

Theorem 3.5 There exist no mixed foliate $Q R$-submanifold of quaternionic space form with $c>0$.

Proof. We suppose that M is mixed foliate QR-submanifold of quaternionic space form with $c>0$.First,from (2.16) and (2.19) we get

$$
\left(\nabla_{X} h\right)\left(Y, E_{a i}\right)-\left(\nabla_{Y} h\right)\left(X, E_{a i}\right)=-\frac{c}{2} g\left(X, J_{a} Y\right) V_{i}
$$

for any $X, Y \in \Gamma(D)$ and $E_{a i} \in \Gamma\left(D^{\perp}\right)$. On the other hand, since M is mixed foliate we derive

$$
h\left(X, \nabla_{Y} E_{a i}\right)-h\left(Y, \nabla_{X} E_{a i}\right)=-\frac{c}{2} g\left(X, J_{a} Y\right) V_{i}
$$

from (3.5) we have

ŞAHIN

$$
-h\left(X, J_{a} A_{V_{i}} Y\right)+h\left(Y, J_{a} A_{V_{i}} X\right)=-\frac{c}{2} g\left(X, J_{a} Y\right) V_{i}
$$

Since M is mixed geodesic, $A_{V_{i}} Y \in \Gamma(D)$,from Theorem 1 we derive

$$
-h\left(J_{a} X, A_{V_{i}} Y\right)+h\left(J_{a} Y, A_{V_{i}} X\right)=-\frac{c}{2} g\left(X, J_{a} Y\right) V_{i} .
$$

Thus for $X=J_{a} Y$ we derive

$$
h\left(Y, A_{V_{i}} Y\right)+h\left(J_{a} Y, A_{V_{i}} J_{a} Y\right)=-\frac{c}{2} g(Y, Y) V_{i}
$$

or

$$
g\left(h\left(Y, A_{V_{i}} Y\right), V_{i}\right)+g\left(h\left(J_{a} Y, A_{V_{i}} J_{a} Y\right), V_{i}\right)=-\frac{c}{2} g(Y, Y) g\left(V_{i}, V_{i}\right)
$$

by using (2.3) we obtain

$$
g\left(A_{V_{i}} Y, A_{V_{i}} Y\right)+g\left(A_{V_{i}} J_{a} Y, A_{V_{i}} J_{a} Y\right)=-\frac{c}{2} g(Y, Y) g\left(V_{i}, V_{i}\right)
$$

from (3.1) and (3.4) we get

$$
\begin{aligned}
g\left(A_{V_{i}} Y, A_{V_{i}} Y\right)+g\left(A_{V_{i}} Y, J_{a} A_{V_{i}} J_{a} Y\right) & =-\frac{c}{2} g(Y, Y) g\left(V_{i}, V_{i}\right) \\
g\left(A_{V_{i}} Y, A_{V_{i}} Y\right)+g\left(A_{V_{i}} Y, A_{V_{i}} Y\right) & =-\frac{c}{2} g(Y, Y) g\left(V_{i}, V_{i}\right) \\
2 g\left(A_{V_{i}} Y, A_{V_{i}} Y\right) & =-\frac{c}{2} g(Y, Y) g\left(V_{i}, V_{i}\right)
\end{aligned}
$$

thus we have

$$
0 \leq 2 g\left(A_{V_{i}} Y, A_{V_{i}} Y\right)=-\frac{c}{2} g(Y, Y) g\left(V_{i}, V_{i}\right)
$$

which proves assertion.

ŞAHIN

Theorem 3.6 There exist no pseudo umbilical $Q R$-submanifold of a quaternionic space form $\bar{M}(c), c \neq 0$ with nonzero parallel mean curvature vector field.

Proof. We suppose that M be a pseudo umbilical submanifold of $\bar{M}(c), c \neq 0$ with nonzero parallel mean curvature vector field. Then we have

$$
\bar{\nabla}_{X} H=-A_{H} X=-\|H\|^{2} X, \forall X \in \Gamma(T M)
$$

where $\|H\|$ is a constant. Therefore we have

$$
\bar{R}(X, Y) H=0 .
$$

On the other hand, from (2.16) we get

$$
g\left(\bar{R}(X, Y) H, J_{1} H\right)=\frac{c}{2} g\left(X, J_{1} Y\right) g(H, H)
$$

for any $X, Y \in \Gamma(D)$. Since D is nondegenerate and $g(H, H) \neq 0$ we have $c=0$

4. A Theorem on QR-Submanifolds in Quaternion Kaehler Manifolds with

 $\operatorname{dim} \nu^{\perp}=1$Let N be $(4 m+3)$-dimensional differentiable manifold and $\left(\phi_{a}, \xi_{a}, \eta_{a}\right)$ be three almost contact structures on N. i.e. We have

$$
\begin{align*}
\phi_{a}^{2} X & =-X+\eta_{a}(X) \xi_{a}, \phi_{a} \xi_{a}=0 \tag{4.1}\\
\eta_{a}\left(\xi_{a}\right) & =1, \eta_{a} o \phi_{a}=0 \tag{4.2}
\end{align*}
$$

where X tangent to N. Suppose that almost contact structures satisfy the following conditions

$$
\begin{align*}
\eta_{a}\left(\xi_{b}\right) & =0, a \neq b, \phi_{a}\left(\xi_{b}\right)=-\phi_{b}\left(\xi_{a}\right)=\xi_{c} \tag{4.3}\\
\eta_{a} o \phi_{b} & =-\eta_{b} o \phi_{a}=\eta_{c} \tag{4.4}\\
\left(\phi_{a} o \phi_{b}\right)(X)-\xi_{a}\left(\eta_{b}(X)\right) & =\left(\phi_{b} o \phi_{a}\right)(X)-\xi_{b}\left(\eta_{a}(X)\right)=\phi_{c} X \tag{4.5}
\end{align*}
$$

ŞAHIN

for any cyclic permutation (a, b, c) of $(1,2,3)$. Then, we say that N is endowed with an almost contact 3 -structure [5].If N is a Riemannian manifold, then we can choose a Riemann metric g on M such that we have

$$
\begin{align*}
g\left(\phi_{a} X, \phi_{a} Y\right) & =g(X, Y)-\eta_{a}(X) \eta_{a}(Y) \tag{4.6}\\
\eta_{a}(X) & =g\left(X, \xi_{a}\right) \tag{4.7}
\end{align*}
$$

for any $X, Y \in \Gamma(T N)$. In this case we say that $\left(\phi_{a}, \xi_{a}, \eta_{a}\right), a=1,2,3$. define almost contact metric structure (see, [5]). Taking account of (4.1) and (4.6), we obtain

$$
\begin{equation*}
g\left(\phi_{a} X, Y\right)+g\left(X, \phi_{a} Y\right)=0 \tag{4.8}
\end{equation*}
$$

Definition 4.1 An almost contact 3 -structure $\left(\phi_{a}, \xi_{a}, \eta_{a}\right)$ is
a) a 3-cosymplectic structure if

$$
\begin{equation*}
\left(\nabla_{X} \phi_{a}\right) Y=0,\left(\nabla_{X} \eta_{a}\right) Y=0 \tag{4.9}
\end{equation*}
$$

b) a 3-Sasakian structure if

$$
\begin{equation*}
\left(\nabla_{X} \phi_{a}\right) Y=\eta_{a}(Y) X-g(X, Y) \xi_{a} \tag{4.10}
\end{equation*}
$$

c) a quasi-3-Sasakian if

$$
\begin{equation*}
g\left(\left(\nabla_{X} \phi_{a}\right) Y, Z\right)+g\left(\left(\nabla_{Y} \phi_{a}\right) Z, X\right)+g\left(\left(\nabla_{Z} \phi_{a}\right) X, Y\right)=0 \tag{4.11}
\end{equation*}
$$

where ∇ denotes the Levi-Civita connection and X, Y, Z are arbitrary vector fields on N.
Now, Let M be a QR-submanifold of quaternion Kaehler manifold \bar{M} such that the dimension ν^{\perp} is equal to one. In this case ν^{\perp} is generated by unit vector field, say N. Let $-J_{a}(N)=\xi_{a}, a=1,2,3$. and hence the distributions D_{a} are generated by the vector fields ξ_{a}. Since ν^{\perp} is generated by unit vector field, we have

$$
\begin{equation*}
J_{a} Y=\phi_{a} Y+\eta_{a}(Y) N \tag{4.12}
\end{equation*}
$$

for any $Y \in \Gamma(T M)$, where $\eta_{a}(Y)=g\left(Y, \xi_{a}\right)$.
In this section we will make use of the following proposition whose proof was given in [4].

From now on we will denote by M a QR-submanifold with $\operatorname{dim} \nu^{\perp}=1$.

ŞAHIN

Proposition 4.2 Let \bar{M} be a quaternion Kaehler manifold and M be $Q R$-submanifold of \bar{M}. Then M is a manifold with almost contact 3-structure. i.e. tensor field ϕ_{a} of type $(1,1), 1-$ form η_{a} and ξ_{a} satisfy (4.1)-(4.7)

Let M be a QR-submanifold of quaternion Kaehler manifold \bar{M}. Then by using (2.1), (2.2), (2.3), (2.14) and (4.12) in (2.5) and taking the tangent parts we obtain

$$
\begin{align*}
\left.g\left(\left(\nabla_{X} \phi_{a}\right) Y\right), Z\right)= & \eta_{a}(Y) \alpha(X, Z)-\alpha(X, Y) \eta_{a}(Z) \\
& +\left\{\alpha\left(X, \xi_{c}\right)+\eta_{b}\left(\nabla_{X} \xi_{a}\right)\right\} g\left(\phi_{b} Y, Z\right) \\
& \left.+\left\{-\alpha\left(X, \xi_{b}\right)+\eta_{c}\left(\nabla_{X} \xi_{a}\right)\right\} g\left(\phi_{c} Y, Z\right)\right) \tag{4.13}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T M)$

Theorem 4.3 Let \bar{M} be a quaternion Kaehler manifold and M be $Q R$-submanifold of \bar{M}. If $h\left(X, \xi_{a}\right), a=1,2,3$ have no components in ν^{\perp} and $D_{a}, a=1,2,3$ are parallel in M. Then M is a manifold with quasi Sasakian 3-structure.

Proof. From (4.13) we have

$$
\begin{align*}
\left.g\left(\left(\nabla_{X} \phi_{a}\right) Y\right), Z\right)= & \eta_{a}(Y) \alpha(X, Z)-\alpha(X, Y) \eta_{a}(Z) \\
& +\left\{\alpha\left(X, \xi_{c}\right)+\eta_{b}\left(\nabla_{X} \xi_{a}\right)\right\} g\left(\phi_{b} Y, Z\right) \\
& \left.+\left\{-\alpha\left(X, \xi_{b}\right)+\eta_{c}\left(\nabla_{X} \xi_{a}\right)\right\} g\left(\phi_{c} Y, Z\right)\right) \tag{4.14}
\end{align*}
$$

$$
\begin{align*}
\left.g\left(\left(\nabla_{Y} \phi_{a}\right) Z\right), X\right)= & \eta_{a}(Z) \alpha(Y, X)-\alpha(Y, Z) \eta_{a}(X) \\
& +\left\{\alpha\left(Y, \xi_{c}\right)+\eta_{b}\left(\nabla_{Y} \xi_{a}\right)\right\} g\left(\phi_{b} Z, X\right) \\
& \left.\left\{-\alpha\left(Y, \xi_{b}\right)+\eta_{c}\left(\nabla_{Y} \xi_{a}\right)\right\} g\left(\phi_{c} Z, X\right)\right) \tag{4.15}
\end{align*}
$$

and

$$
\begin{align*}
\left.g\left(\left(\nabla_{Z} \phi_{a}\right) X\right), Y\right)= & \eta_{a}(X) \alpha(Z, Y)-\alpha(Z, X) \eta_{a}(Y) \\
& -\left\{\alpha\left(Z, \xi_{c}\right)+\eta_{b}\left(\nabla_{Z} \xi_{a}\right)\right\} g\left(\phi_{b} X, Y\right) \\
& \left.+\left\{-\alpha\left(Z, \xi_{b}\right)+\eta_{c}\left(\nabla_{Z} \xi_{a}\right)\right\} g\left(\phi_{c} X, Y\right)\right) \tag{4.16}
\end{align*}
$$

ŞAHIN

for any $X, Y, Z \in \Gamma(T M)$. Thus using (4.14),(4.15) and (4.16) we obtain

$$
\begin{aligned}
& \left.\left.g\left(\left(\nabla_{X} \phi_{a}\right) Y\right), Z\right)+g\left(\left(\nabla_{Y} \phi_{a}\right) Z\right), X\right) \\
\left.+g\left(\left(\nabla_{Z} \phi_{a}\right) X\right), Y\right)= & \left\{\alpha\left(X, \xi_{c}\right)+\eta_{b}\left(\nabla_{X} \xi_{a}\right)\right\} g\left(\phi_{b} Y, Z\right) \\
& \left.+\left\{-\alpha\left(X, \xi_{b}\right)+\eta_{c}\left(\nabla_{X} \xi_{a}\right)\right\} g\left(\phi_{c} Y, Z\right)\right) \\
& +\left\{\alpha\left(Y, \xi_{c}\right)+\eta_{b}\left(\nabla_{Y} \xi_{a}\right)\right\} g\left(\phi_{b} Z, X\right) \\
& \left.+\left\{-\alpha\left(Y, \xi_{b}\right)+\eta_{c}\left(\nabla_{Y} \xi_{a}\right)\right\} g\left(\phi_{c} Z, X\right)\right) \\
& +\left\{\alpha\left(Z, \xi_{c}\right)+\eta_{b}\left(\nabla_{Z} \xi_{a}\right)\right\} g\left(\phi_{b} X, Y\right) \\
& \left.+\left\{-\alpha\left(Z, \xi_{b}\right)+\eta_{c}\left(\nabla_{Z} \xi_{a}\right)\right\} g\left(\phi_{c} X, Y\right)\right)
\end{aligned}
$$

Hence if $D_{a}, a=1,2,3$ are parallel and $\alpha\left(X, \xi_{a}\right)=0$, then M is a manifold with 3-quasi Sasakian structure.

References

[1] Bejancu, A.: QR-Submanifolds of Quaternion Kaehler manifolds, Chinese J.Math. Vol:14 No:2 (1986).
[2] Bejancu, A. Geometry of CR-Submanifolds, Kluwer,Dortrecht (1986)
[3] Bejancu, A., Kon, M. \& Yano, K.: CR-submanifolds of A Complex Space Form, J.Diff.Geo. 16, 137-145 (1981).
[4] Günes, R.,Șahin, B. and Keles, S.: QR-Submanifolds and Almost Contact 3-Structure, Turkish J.Math. Vol:24 No:3,239-250 (2000)
[5] Kuo, Y.Y.: On Almost Contact 3-Structure, Tohokou Math.J.22,325-332 (1970)
[6] Sato, N.: Totally Real Submanifolds of a Complex Space Form with Non-Zero Parallel Mean Curvature Vector, Yokohoma Mat.J. 44 1-4(1997).
[7] Yano, K. and Kon, M.: Structures on Manifolds, World Scientific (1984).
Bayram ŞAHİN
Received 16.02.2001
İnönü University
Faculty of Science and Art
Department of Mathematics
Malatya-TURKEY

[^0]: 1991 AMS Mathematics Subject Classification: 53C40

