Some Characterization of Curves of Constant Breadth in \mathbf{E}^{n} Space

Zülfigar Akdoğan, Abdullah Mağden

Abstract

In this paper, the concepts concerning the space of constant breadth were extended to E^{n}-space. An approximate solution of the equation system which belongs to this curve was obtained. Using this solution vectorial expression of the curves of constant breadth was obtained. The relation $\int_{0}^{2 \pi} \widetilde{f}(s) d s=0$ between the curvatures of curves of constant breadth in E^{n} was obtained.

Key Words and Phrases: Curvature, Constant Breadth, Integral Characterization of Curve

1. Introduction

Curves of constant breadth were introduced by L.Euler [3]. F. Reuleaux gave a method obtaining some curves of constant breadth and has found use in the kinematics of machinary [11]. Some authors have obtained the geometric properties of plane curves of constant breadth [2], [7].
W.Blascke defined the curve of constant breadth on the sphere [1] and M. Fujivara had obtained a problem to determine whether there exist "space curve of constant breadth" or not, and he defined "breadth" for space curves and obtained these curves on a surface of constant breadth [4]. Ö. Köse presented some concepts for space curves of constant breadth [8]. M. Sezer investigated differential equations characterizing space curves of constant breadth and gave a criterion for these curves [12]. A.R. Forsyt had given the

AKDOĞAN, MAĞDEN

theory of curves in $E^{4}[5]$. The curves of constant breadth were extented to the E^{4}-space and some characterizations were obtained by [9].

Definition 1 In E^{n} Euclidean space, if a normal hyperplane on a $X(s)=P$ point of a simple closed (C) curve meets (C) curve at single Q point other then P point, Q point is called opposit point of P.

In E^{n} Euclidean space, if the distance between opposite points of simple closed C curve is constant, this curve is called the curve of constant breadth.

In this paper, this kind of curves were extented to E^{n}-space and some characterizations were obtained.

2. The Curves of Constant Breadth

Let $\vec{X}=\vec{X}(s)$ be a simple closed curve in E^{n}-space. These curves will be denoted by (C). The normal plane at every point P on the curve meets the curve at a single point Q other then P. We call the point Q the opposite point of P. We consider a curve having parallel tangents \vec{V}_{1} and \vec{V}_{1}^{*} in opposite directions at the opposite points X and X^{*} of the curve. A simple closed curve of constant breadth having parallel tangents in opposite directions at opposite points can be represented by the quation

$$
\begin{equation*}
\vec{X}^{*}(s)=\vec{X}(s)+\sum_{i=1}^{n} m_{i}(s) V_{i}(s) \tag{1}
\end{equation*}
$$

where \vec{X} and \vec{X}^{*} are opposite points and \vec{V}_{i} denote the Frenet-Serret frame in E^{n}-space. We have from equation (1)

$$
\begin{align*}
\frac{d X^{*}}{d s} & =\frac{d X^{*}}{d s^{*}} \frac{d s^{*}}{d s}=V_{1}^{*} \frac{d s^{*}}{d s} \\
& =\left(1+\frac{d m_{1}}{d s}-m_{2} k_{1}\right) V_{1}+\left(\frac{d m_{2}}{d s}+m_{1} k_{1}-m_{3} k_{2}\right) V_{2} \\
& +\left(\frac{d m_{3}}{d s}+m_{2} k_{2}-m_{4} k_{3}\right) V_{3}+\left(\frac{d m_{4}}{d s}+m_{3} k_{3}-m_{5} k_{4}\right) V_{4}+\cdots \tag{2}\\
& +\left(\frac{d m_{n-1}}{d s}+m_{n-2} k_{n-2}-m_{n} k_{n-1}\right) V_{n-1}+\left(\frac{d m_{n}}{d s}+m_{n-1} k_{n-1}\right) V_{n}
\end{align*}
$$

AKDOĞAN, MAĞDEN

where k_{i} is the curvatures of the curve. Since ${\overrightarrow{V_{1}}}^{*}=-\vec{V}_{1}$, we obtain

$$
\begin{align*}
& -\frac{d s^{*}}{d s}=1+\frac{d m_{1}}{d s}-m_{2} k_{1} \\
& \frac{d m_{2}}{d s}+m_{1} k_{1}-m_{3} k_{2}=0 \\
& \frac{d m_{3}}{d s}+m_{2} k_{2}-m_{4} k_{3}=0 \\
& \frac{d m_{4}}{d s}+m_{3} k_{3}-m_{5} k_{4}=0 \tag{3}\\
& \quad \vdots \\
& \frac{d m_{n-1}}{d s}+m_{n-2} k_{n-2}-m_{n} k_{n-1}=0 \\
& \frac{d m_{n}}{d s}+m_{n-1} k_{n-1}=0
\end{align*}
$$

If we call ϕ as the angle between the tangent of the curve (C) at point $X(s)$ with a given fixed direction and consider $\frac{d \phi}{d s}=k_{1}$, we can rewrite equation (3) as

$$
\left.\begin{array}{l}
\frac{d m_{1}}{d \phi}=m_{2}-f(\phi) \tag{4}\\
\frac{d m_{2}}{d \phi}=-m_{1}+\rho k_{2} m_{3} \\
\frac{d m_{3}}{d \phi}=-\rho k_{2} m_{2}+\rho k_{3} m_{4} \\
\vdots \\
\frac{d m_{n-1}}{d \phi}=-\rho k_{n-2} m_{n-2}+\rho k_{n-1} m_{n} \\
\frac{d m_{n}}{d \phi}=-\rho k_{n-1} m_{n-1}
\end{array}\right\}
$$

where $f(\phi)=\rho+\rho^{*}, \rho=\frac{1}{k_{1}}$ and $\rho^{*}=\frac{1}{k_{1}^{*}}$ denote the radii of curvatures at X and X^{*}, respectively. If $\frac{d m_{i}}{d \phi}=m_{i}^{\prime}$, then equation (4) can be written as

$$
\begin{align*}
& m_{1}^{\prime}=m_{2}-f \\
& m_{2}^{\prime}=-m_{1}+\rho k_{2} m_{3} \\
& m_{3}^{\prime}=-\rho k_{2} m_{2}+\rho k_{3} m_{4} \\
& \quad \vdots \tag{5}\\
& m_{n-1}^{\prime}=-\rho k_{n-2} m_{n-2}+\rho k_{n-1} m_{n} \\
& m_{n}^{\prime}=-\rho k_{n-1} m_{n-1}
\end{align*}
$$

AKDOĞAN, MAĞDEN

where the functions ρ and k_{i} are a function of ϕ and
$\left.\begin{array}{l}m_{2}=h_{1}^{-1}\left(m_{1}^{\prime}+h_{0} f\right) \\ m_{3}=h_{2}^{-1}\left(m_{2}^{\prime}+h_{1} m_{1}\right) \\ m_{4}=h_{3}^{-1}\left(m_{3}^{\prime}+h_{2} m_{2}\right) \\ \quad \vdots \\ m_{n-1}=h_{n-2}^{-1}\left(m_{n-2}^{\prime}+h_{n-3} m_{n-3}\right) \\ m_{n}=h_{n-1}^{-1}\left(m_{n-1}^{\prime}+h_{n-2} m_{n-2}\right)\end{array}\right\}$
where $h_{0}=1$ and $h_{i}^{-1}=\frac{1}{\rho k_{i}}, \quad(i=1,2,3, \ldots, n-1)$. From first equation of equation system (6) we obtain

$$
m_{2}^{\prime}=h_{1}^{-1} m_{1}^{\prime \prime}+\left(h_{1}^{-1}\right)^{\prime} m_{1}^{\prime}+\left(h_{1}^{-1} f\right)^{\prime} .
$$

Here if $a_{22}=h_{1}^{-1}, \quad a_{21}=\left(h_{1}^{-1}\right)^{\prime}$ and $A_{1}=\left(h_{1}^{-1} f\right)^{\prime}$, then

$$
\begin{equation*}
m_{2}^{\prime}=a_{22} m_{1}^{\prime \prime}+a_{21} m_{1}^{\prime}+A_{1} \tag{7}
\end{equation*}
$$

having second derivative this will be

$$
\begin{equation*}
m_{2}^{\prime \prime}=a_{22} m_{1}^{(3)}+\left(a_{22}^{\prime}+a_{21}\right) m_{1}^{(2)}+a_{21}^{\prime} m_{1}^{(1)}+A_{1}^{\prime} . \tag{8}
\end{equation*}
$$

If we put equation (8) in the derivation of second equation of equation system (6), we get the following equation

$$
\begin{align*}
m_{3}^{\prime} & =h_{2}^{-1} a_{22} m_{1}^{(3)}+\left[\left(h_{2}^{-1} a_{22}\right)^{\prime}+h_{2}^{-1} a_{21}\right] m_{1}^{(2)} \\
& +\left[\left(h_{2}^{-1} a_{21}\right)^{\prime}+h_{2}^{-1} h_{1}\right] m_{1}^{(1)}+h_{2}^{-1} h_{1} m_{1}+\left(h_{2}^{-1} A_{1}\right)^{\prime} . \tag{9}
\end{align*}
$$

After using abbreviations $a_{33}=h_{2}^{-1} a_{22}, a_{32}=\left(h_{2}^{-1} a_{22}\right)^{\prime}+h_{2}^{-1} a_{21}, a_{31}=\left(h_{2}^{-1} a_{21}\right)^{\prime}+$ $h_{2}^{-1} h_{1}, a_{30}=a_{20}^{\prime}, a_{20}=h_{2}^{-1} h_{1}, A_{2}=\left(h_{2}^{-1} A_{1}\right)^{\prime}$ the equation (9) is shortened as below

$$
\begin{equation*}
m_{3}^{\prime}=a_{33} m_{1}^{(3)}+a_{32} m_{1}^{(2)}+a_{31} m_{1}^{(1)}+a_{30} m_{1}+A_{2} . \tag{10}
\end{equation*}
$$

Second derivation of this equation will be

$$
\begin{equation*}
m_{3}^{\prime \prime}=a_{33} m_{1}^{(4)}+\left(a_{33}^{\prime}+a_{32}\right) m_{1}^{(3)}+\left(a_{32}^{\prime}+a_{31}\right) m_{1}^{(2)}+\left(a_{31}^{\prime}+a_{30}\right) m_{1}^{(1)}+a_{30}^{\prime} m_{1}+A_{2}^{\prime} \tag{11}
\end{equation*}
$$

AKDOĞAN, MAĞDEN

If we put equation (11) in the derivation of third equation of equation system (6), we get following equation

$$
\begin{align*}
m_{4}^{\prime} & =h_{3}^{-1} a_{33} m_{1}^{(4)}+\left[\left(h_{3}^{-1} a_{33}\right)^{\prime}+h_{3}^{-1} a_{32}\right] m_{1}^{(3)} \\
& +\left[\left(h_{3}^{-1} a_{32}\right)^{\prime}+h_{3}^{-1} a_{31}+h_{3}^{-1} h_{2} a_{22}\right] m_{1}^{(2)} \\
& +\left[\left(h_{3}^{-1} a_{31}\right)^{\prime}+h_{3}^{-1} a_{30}+h_{3}^{-1} h_{2} a_{21}+h_{3}^{-1} h_{2} h_{1}^{-1}\right] m_{1}^{(1)} \tag{12}\\
& +\left(h_{3}^{-1} a_{30}\right)^{\prime} m_{1}+\left(h_{3}^{-1} A_{2}\right)^{\prime}+h_{3}^{-1} h_{2} A_{1}+h_{3}^{-1} h_{2} h_{1}^{-1} f .
\end{align*}
$$

Here if we do following abbreviations

$$
\begin{aligned}
a_{44} & =h_{3}^{-1} a_{33}, a_{43}=\left(h_{3}^{-1} a_{33}\right)^{\prime}+h_{3}^{-1} a_{32}, a_{42}=\left(h_{3}^{-1} a_{32}\right)^{\prime}+h_{3}^{-1} a_{31}+h_{3}^{-1} h_{2} a_{22} \\
a_{41} & =\left(h_{3}^{-1} a_{31}\right)^{\prime}+h_{3}^{-1} a_{30}+h_{3}^{-1} h_{2} a_{21}+h_{3}^{-1} h_{2} h_{1}^{-1}, a_{40}=\left(h_{3}^{-1} a_{30}\right)^{\prime} \\
A_{3} & =\left(h_{3}^{-1} A_{2}\right)^{\prime}+h_{3}^{-1} h_{2} A_{1}+h_{3}^{-1} h_{2} h_{1}^{-1} f,
\end{aligned}
$$

the equation (12) is turned to

$$
\begin{equation*}
m_{4}^{\prime}=a_{44} m_{1}^{(4)}+a_{43} m_{1}^{(3)}+a_{42} m_{1}^{(2)}+a_{41} m_{1}^{(1)}+a_{40} m_{1}+A_{3} . \tag{13}
\end{equation*}
$$

If this process is going on like that, then derivation of m_{n} can be written by the power of derivation of m_{1} as following

$$
\begin{align*}
m_{n}^{\prime} & =h_{n-1}^{-1} a_{(n-1)(n-1)} m_{1}^{(n)}+\left[\left(h_{n-1}^{-1} a_{(n-1)(n-1)}\right)^{\prime}\right. \\
& \left.+h_{n-1}^{-1} a_{(n-1)(n-2)}\right] m_{1}^{(n-1)}+\cdots+\left[\left(h_{n-1}^{-1} a_{(n-1) 0}\right)^{\prime}+\cdots\right. \tag{14}\\
& \left.+\left(h_{n-1}^{-1} h_{n-2}\right)^{\prime} h_{n-3}^{-1} h_{n-4} h_{n-5}^{-1} \cdots h_{4} h_{3}^{-1} a_{30}\right] m_{1}+\left(h_{n-1}^{-1} A_{n-2}\right)^{\prime} \\
& +h_{n-1}^{-1} h_{n-2} A_{n-3}+\left(h_{n-1}^{-1} h_{n-2}\right)^{\prime} h_{n-3}^{-1} h_{n-4} h_{n-5}^{-1} \cdots h_{3}^{-1} h_{2} h_{1}^{-1} A_{0}
\end{align*}
$$

where $A_{0}=f$. If $a_{0}, a_{1}, \ldots, a_{n}$ stand for coefficients of $m_{1}^{(n)}, m_{1}^{(n-1)}, \ldots, m_{1}^{\prime}, m_{1}$ respectively, then the equation (14) will be

$$
\begin{equation*}
a_{0} m_{1}^{(n)}+a_{1} m_{1}^{(n-1)}+\cdots+a_{n-1} m_{1}^{\prime}+a_{n} m_{1}=\widetilde{f} \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
\widetilde{f} & =-\left[\left(h_{n-1}^{-1} A_{n-2}\right)^{\prime}+h_{n-1}^{-1} h_{n-2} A_{n-3}+\cdots\right. \\
& \left.+\left(h_{n-1}^{-1} h_{n-2}\right)^{\prime} h_{n-3}^{-1} h_{n-4} h_{n-5}^{-1} \cdots h_{5}^{-1} h_{4} h_{3}^{-1} h_{2} h_{1}^{-1} A_{0}\right]
\end{aligned}
$$

If we choose $\widetilde{a_{i}}=-\frac{a_{i}}{a_{0}},(i=1,2, \ldots, n)$, then equation (15) will be written as

$$
m_{1}^{(n)}=\widetilde{a_{1}} m_{1}^{(n-1)}+\cdots+\widetilde{a_{n}} m_{1}+\frac{\widetilde{f}(\phi)}{a_{0}(\phi)}
$$

AKDOĞAN, MAĞDEN

Having successively integration, we obtain

$$
\begin{array}{ll}
m_{1}^{(n-1)} & =\int_{0}^{\phi}\left(\widetilde{a_{1}}(s) m_{1}^{(n-1)}+\cdots+\widetilde{a_{n}}(s) m_{1}\right) d s+\int_{0}^{\phi} \frac{\tilde{f}(s)}{a_{0}(s)} d s \\
m_{1}^{(n-2)} & =\int_{0}^{\phi}(\phi-s)\left(\widetilde{a_{1}}(s) m_{1}^{(n-1)}+\cdots+\widetilde{a_{n}}(s) m_{1}\right) d s+\int_{0}^{\phi}(\phi-s) \frac{\tilde{f}(s)}{a_{0}(s)} d s \\
m_{1}^{(n-3)} & =\int_{0}^{\phi} \frac{(\phi-s)^{2}}{2!}\left(\widetilde{a_{1}}(s) m_{1}^{(n-1)}+\cdots+\widetilde{a_{n}}(s) m_{1}\right) d s+\int_{0}^{\phi} \frac{(\phi-s)^{2}}{2!} \frac{\tilde{f}(s)}{a_{0}(s)} d s \\
\quad \vdots \\
m_{1} & =\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!}\left(\widetilde{a_{1}}(s) m_{1}^{(n-1)}+\cdots+\widetilde{a_{n}}(s) m_{1}\right) d s+\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!} \frac{\tilde{f}(s)}{a_{0}(s)} d s .
\end{array}
$$

Here it is imposible to get m_{1} directly, but by using an approximate solution of system as [10], we get the following solution

$$
m_{1, k}=\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!}\left(\widetilde{a_{1}}(s) m_{1, k-1}^{(n-1)}+\cdots+\widetilde{a_{n}}(s) m_{1, k-1}\right) d s+\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!} \frac{\widetilde{f}(s)}{a_{0}(s)} d s
$$

and then

$$
\begin{aligned}
& m_{1, k}^{\prime}=\int_{0}^{\phi} \frac{(\phi-s)^{n-1}}{(n-1)!}\left(\widetilde{a_{1}}(s) m_{1, k-1}^{(n-1)}+\cdots+\widetilde{a_{n}}(s) m_{1, k-1}\right) d s+\int_{0}^{\phi} \frac{(\phi-s)^{n-1}}{(n-1)!} \frac{\tilde{f}(s)}{a_{0}(s)} d s \\
& \vdots \\
& m_{1, k}^{(n)}=\widetilde{a_{1}}(\phi) m_{1, k-1}^{(n-1)}+\cdots+\widetilde{a_{n}}(\phi) m_{1, k-1}+\frac{\widetilde{f}(\phi)}{a_{0}(\phi)} .
\end{aligned}
$$

We now calculate how $m_{1, k}$ approximate to m_{1}. If $\varepsilon_{1, k}=\left\|m_{1}-m_{1, k}\right\|$, then

$$
\begin{aligned}
\varepsilon_{1, k} & \leq \int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!}\left[\left\|\widetilde{a_{1}}\right\| \varepsilon_{1, k-1}^{(n-1)}+\cdots+\left\|\widetilde{a_{n}}\right\| \varepsilon_{1, k-1}\right] d s \\
\vdots & \\
\varepsilon_{1, k}^{(n-1)} & \leq \int_{0}^{\phi}\left[\left\|\widetilde{a_{1}}\right\| \varepsilon_{1, k-1}^{(n-1)}+\cdots+\left\|\widetilde{a_{n}}\right\| \varepsilon_{1, k-1}\right] d s \\
\varepsilon_{1, k}^{(n)} & \leq\left\|\widetilde{a_{1}}\right\| \varepsilon_{1, k-1}^{(n-1)}+\cdots+\left\|\widetilde{a_{n}}\right\| \varepsilon_{1, k-1} .
\end{aligned}
$$

AKDOĞAN, MAĞDEN

If $L_{1}=\max \left\{\left\|\widetilde{a_{1}}\right\|, \ldots,\left\|\widetilde{a_{n}}\right\|\right\}$, then

$$
\begin{aligned}
\varepsilon_{1, k} & \leq L_{1} \int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!}\left(\sum_{j=0}^{n-1} \varepsilon_{1, k-1}^{(j)}\right) d s \\
\varepsilon_{1, k}^{\prime} & \leq L_{2} \int_{0}^{\phi} \frac{(\phi-s)^{n-1}}{(n-1)!}\left(\sum_{j=0}^{n-1} \varepsilon_{1, k-1}^{(j)}\right) d s \\
\vdots & \\
\varepsilon_{1, k}^{(n-1)} & \leq L_{n-1} \int_{0}^{\phi}\left(\sum_{j=0}^{n-1} \varepsilon_{1, k-1}^{(j)}\right) d s .
\end{aligned}
$$

We can sum up above equations side by side in order to obtain following equation

$$
\left.\sum_{j=0}^{n-1} \varepsilon_{1, k}^{(j)} \leq \int_{0}^{\phi}\left[L_{1} \frac{(\phi-s)^{n}}{n!}+\cdots+L_{n-1}\right] \sum_{j=0}^{n-1} \varepsilon_{1, k-1}^{(j)}\right) d s
$$

In this case, if we say $\delta_{k}=\sum_{j=0}^{n-1} \varepsilon_{1, k}^{(j)}$, then we can write

$$
\delta_{k} \leq \int_{0}^{\phi}\left[\sum_{j=0}^{n-1} L_{j} \frac{(\phi-s)^{n-j}}{(n-j)!} \delta_{k-1}\right] d s
$$

and if

$$
\sum_{j=0}^{n-1} L_{j} \frac{(\phi-s)^{n-j}}{(n-j)!} \leq L
$$

then we can write

$$
\delta_{k} \leq L \int_{0}^{\phi} \delta_{k-1} d s
$$

we now show approximate of δ_{k}. To do this

$$
\begin{aligned}
& \delta_{1} \leq L \delta_{0} \phi \\
& \delta_{2} \leq L \int_{0}^{\phi} \delta_{1} d s \leq L^{2} \delta_{0} \frac{\phi^{2}}{2!} \\
& \vdots \\
& \delta_{k} \leq \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!} \quad\left(0 \leq \phi \leq \phi_{0}\right)
\end{aligned}
$$

thus

$$
\sum_{j=0}^{n-1} \varepsilon_{1, k}^{(j)} \leq \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!}
$$

AKDOĞAN, MAĞDEN

Each term is smaller then $\delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!}$ since summation of all terms is smaller then $\delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!}$. That is,

$$
\varepsilon_{1, k}^{(j)} \leq \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!}
$$

and then

$$
\begin{array}{ll}
\left\|m_{1}-m_{1, k}\right\| & \leq \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!} \\
\left\|m_{1}^{\prime}-m_{1, k}^{\prime}\right\| & \leq \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!} \\
\vdots & \\
\left\|m_{1}^{(n-1)}-m_{1, k}\right\| & \leq \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!}
\end{array}
$$

and

$$
\varepsilon_{1, k}^{(n)} \leq L_{n} \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!}
$$

so

$$
\left\|m_{1}^{(n)}-m_{1, k}^{n}\right\| \leq L_{n} \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!} .
$$

We take limit both side

$$
\lim _{k \rightarrow \infty} \varepsilon_{i, k}^{(j)} \leq \lim _{k \rightarrow \infty} \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!}
$$

we get

$$
\lim _{k \rightarrow \infty} m_{1, k}^{(j)}=m_{1}^{(j)} \quad(\quad j=0,1,2, \cdots, n-1)
$$

and

$$
\lim _{k \rightarrow \infty} m_{1, k}^{(n)}=m_{1}^{(n)} .
$$

We have that

$$
\left.\begin{array}{ll}
m_{2} & =m_{1}^{\prime}+f \tag{16}\\
m_{3} & =h_{2}^{-1}\left(m_{2}^{\prime}+h_{1} m_{1}\right) \\
m_{4} & =h_{3}^{-1}\left(m_{3}^{\prime}+h_{2} m_{2}\right) \\
\vdots & \\
m_{n} & =h_{n-1}^{-1}\left(m_{n-1}^{\prime}+h_{n-2} m_{n-2}\right)
\end{array}\right\}
$$

AKDOĞAN, MAĞDEN

and then

$$
\begin{aligned}
& \varepsilon_{2, k}=\varepsilon_{1, k}^{\prime} \\
& \varepsilon_{3, k}=k_{2}^{-1} \varepsilon_{2, k}^{\prime}+k_{1} \varepsilon_{1, k} \\
& \varepsilon_{4, k}=k_{3}^{-1} \varepsilon_{3, k}^{\prime}+k_{2} \varepsilon_{2, k} \\
& \vdots \\
& \varepsilon_{n, k}=k_{n-1}^{-1} \varepsilon_{n-1, k}^{\prime}+k_{n-2} \varepsilon_{n-2, k}
\end{aligned}
$$

Therefore, we can find the value of $m_{2}, m_{3}, \ldots, m_{n}$ from equation (16) since the value of m_{1} is known. Thus, the error of $\varepsilon_{2, k}, \varepsilon_{3, k}, \cdots, \varepsilon_{n, k}$ can be found by depending on the error of $\varepsilon_{1, k}$. If $k \rightarrow \infty$, then \vec{X}^{*} can be presented by \vec{X} and its invarient. So the following theorem is proved.

Theorem 1 Let $k_{i}(s),(i=1,2, \ldots, n ; 0 \leq s \leq L)$ be non-zero functions in the class Γ.Then $m_{i, k}(k=0,1,2, \ldots)$ which obtained from (4) limits to the unique solution of system as following

$$
\begin{gathered}
\left\|m_{1}^{(i)}-m_{1, k}^{(i)}\right\| \leq L_{i} \delta_{0} \frac{\left(L \phi_{0}\right)^{k}}{k!} \quad(i=0,1, \ldots, n ; k=0,1 \ldots), \\
\left\|m_{\ell}^{(i)}-m_{\ell, k}^{(i)}\right\| \leq L_{\ell, i}^{*} \delta_{0} \frac{\left(L_{\ell}^{*} \phi_{0}\right)^{k}}{k!} \quad(\ell=2,3, \ldots, n),
\end{gathered}
$$

where $L_{i}, L, L_{\ell, i}^{*}$ and L_{ℓ}^{*} are numbers which are known.
If the distance between the opposite points of (C) and $\left(C^{*}\right)$ is constant, then

$$
\left\|\alpha^{*}-\alpha\right\|^{2}=m_{1}^{2}+m_{2}^{2}+\cdots+m_{n}^{2}=k^{2}, k \in \Re .
$$

Hence, we write

$$
\begin{equation*}
m_{1} \frac{d m_{1}}{d \phi}+m_{2} \frac{d m_{2}}{d \phi}+\cdots+m_{n} \frac{d m_{n}}{d \phi}=0 \tag{17}
\end{equation*}
$$

and then

$$
\begin{equation*}
m_{1}\left(\frac{d m_{1}}{d \phi}-m_{2}\right)=0 \tag{18}
\end{equation*}
$$

AKDOĞAN, MAĞDEN

In this case, either $m_{1}=0$ or $\frac{d m_{1}}{d \phi}-m_{2}=0$ which means $f(\phi)=0$. If $f(\phi)=0$, then \vec{X}^{*} is a transition of \vec{X} with following constant vector

$$
\begin{equation*}
\ell=m_{1} V_{1}+m_{2} V_{2}+\cdots+m_{n} V_{n} \tag{19}
\end{equation*}
$$

If $m_{1}=0$, then from equation (14) we have

$$
\begin{align*}
& \left(h_{n-1}^{-1} A_{n-2}\right)^{\prime}+h_{n-1}^{-1} h_{n-2} A_{n-3}+\cdots \\
& +\left(h_{n-1}^{-1} h_{n-2}\right)^{\prime} h_{n-3}^{-1} h_{n-4} h_{n-5}^{-1} \cdots h_{5}^{-1} h_{4} h_{3}^{-1} h_{2} h_{1}^{-1} A_{0}=0 \tag{20}
\end{align*}
$$

Thus, the function $f(\phi)$ satisfies the equation (20). $\vec{X}^{*}(0)=\vec{X}^{*}(2 \pi)$ since the curve of constant breadth is closed. Accordingly, from (1) we can write

$$
\begin{aligned}
\alpha^{*}(0) & =\alpha(0)+\sum_{i=2}^{n} m_{i}(0) V_{i}(0)=\alpha^{*}(2 \pi) \\
& =\alpha(2 \pi)+\sum_{i=2}^{n} m_{i}(2 \pi) V_{i}(2 \pi)
\end{aligned}
$$

and finally $m_{i}(0)=m_{i}(2 \pi)$.

Corollary 1 In the equation

$$
m_{1, k}=\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!}\left(\widetilde{a_{1}}(s) m_{1, k-1}^{(n-1)}+\cdots+\widetilde{a_{n}}(s) m_{1, k-1}\right) d s+\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!} \frac{\widetilde{f}(s)}{a_{0}(s)} d s
$$

if we choose $m_{1,0}=0$, then

$$
m_{1,1}=\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!} \frac{\tilde{f}(s)}{a_{0}(s)} d s
$$

Assume that $m_{1, k}$ limits for $k=1$ to m_{1}. Then $m_{1,1}=0=m_{1}$ and then

$$
\begin{equation*}
\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!} \frac{\tilde{f}(s)}{a_{0}(s)} d s=0 \tag{21}
\end{equation*}
$$

Corollary 2 If we choose $m_{1,1}=0$, then

$$
m_{1,2}=\int_{0}^{\phi} \widetilde{a_{n}}(s) d s+\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!} \frac{\widetilde{f}(s)}{a_{0}(s)} d s
$$

AKDOĞAN, MAĞDEN

Assume that $m_{1, k}$ limits for $k=2$ to m_{1}. Then $m_{1,2}=m_{1}=0$ and then

$$
\int_{0}^{\phi} \widetilde{a_{n}}(s) d s=-\int_{0}^{\phi} \frac{(\phi-s)^{n}}{n!} \frac{\widetilde{f}(s)}{a_{0}(s)} d s
$$

By derivating

$$
a_{n}(\phi)=a_{0}(\phi) \int_{0}^{\phi} \frac{(\phi-s)^{n-1}}{(n-1)!} \frac{\tilde{f}(s)}{a_{0}(s)} d s
$$

Corollary 3 If we choose $m_{1}=0$ in equation (14), then

$$
m_{n}^{\prime}=-\widetilde{f}
$$

and

$$
m_{n}=-\int_{0}^{\phi} \tilde{f} d s
$$

We have $m_{n}(0)=m_{n}(2 \pi)$, so

$$
\int_{0}^{2 \pi} \widetilde{f}(s) d s=0
$$

References

[1] Blaschke, W., Leibziger Berichte,67,290,(1917).
[2] Emch, A., Some properties of closed convex curves in a plane, Amer. J. Math., 36, 407-410, (1913). Acad. Petropol., 3-30, (1778), (1980).
[3] Euler, L., De Curvis trangularibis, Acta Acad. Petropol., (3-30, (1778), (1780).
[4] Fujivara, M., On Space Curve of Constant Breadth, Tohoku Math., J., 5, 179-184, (1914).
[5] Forsth, A.R., Geometry of Four Dimension, 1, Cambridge University Press Fetter line, london,(1930).
[6] Gluck, H., Higher Curvatures of Curves in Euclidean Space, Proc. Amer. Math. Montly, 73, 699-704,(1966).
[7] Köse, Ö., Düzlemde Ovaller ve Sabit Genişlikli Eğrilerin Bazı Özellikleri, Doğa Bilim Dergisi, Seri B, 8(2), 119-126,(1984).

AKDOĞAN, MAĞDEN

[8] Köse, Ö., On Space Curve of Constant Breadth, Doğa Türk Matematik Dergisi, 10(1), 11-14, (1986).
[9] Mağden, A., and Köse, Ö., On The Curves of Constant Breadth in E^{4}-Space, Turkish J. of Math. 21(3),277-284, (1997).
[10] Mamedov, Y. C., Adi Diferensiyel Denklemlerin Yaklaşık Metodla Çözümü, Maarif, Bakü (Rusca), (1975).
[11] Reuleaux, F., The Kinematics of Machinery, Trans. by A.B.W. Kennedy, Dover Pub. New York, (1963).
[12] Sezer, M., Differential equations characterizing space curves of constant breadth and a ciriterion for this curves, Turkish J. of Math., 13(2), 70-78, (1989).

Zülfigar AKDOĞAN
Received 28.02.2001
GOP Üniversitesi,
Fen Edebiyat Fakültesi,
Tokat-TURKEY
Abdullah MAĞDEN
Atatürk Üniversitesi,
Fen Edebiyat Fakültesi,
Erzurum-TURKEY

