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Abstract

In this paper, the concepts concerning the space of constant breadth were ex-

tended to En-space. An approximate solution of the equation system which belongs

to this curve was obtained. Using this solution vectorial expression of the curves of

constant breadth was obtained. The relation
R 2π

0
ef(s) ds = 0 between the curvatures

of curves of constant breadth in En was obtained.
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1. Introduction

Curves of constant breadth were introduced by L.Euler [3]. F. Reuleaux gave a

method obtaining some curves of constant breadth and has found use in the kinematics

of machinary [11]. Some authors have obtained the geometric properties of plane curves

of constant breadth [2], [7].

W.Blascke defined the curve of constant breadth on the sphere [1] and M. Fujivara had

obtained a problem to determine whether there exist ”space curve of constant breadth”

or not, and he defined ”breadth” for space curves and obtained these curves on a surface

of constant breadth [4]. Ö. Köse presented some concepts for space curves of constant

breadth [8]. M. Sezer investigated differential equations characterizing space curves of

constant breadth and gave a criterion for these curves [12]. A.R. Forsyt had given the
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theory of curves in E4 [5]. The curves of constant breadth were extented to the E4-space

and some characterizations were obtained by [9].

Definition 1 In En Euclidean space, if a normal hyperplane on a X(s) = P point of a

simple closed (C) curve meets (C) curve at single Q point other then P point, Q point is

called opposit point of P .

In En Euclidean space, if the distance between opposite points of simple closed C curve

is constant, this curve is called the curve of constant breadth.

In this paper, this kind of curves were extented to En-space and some characterizations

were obtained.

2. The Curves of Constant Breadth

Let ~X = ~X(s) be a simple closed curve in En-space. These curves will be denoted by

(C). The normal plane at every point P on the curve meets the curve at a single point Q

other then P . We call the point Q the opposite point of P . We consider a curve having

parallel tangents ~V1 and ~V ∗1 in opposite directions at the opposite points X and X∗ of

the curve. A simple closed curve of constant breadth having parallel tangents in opposite

directions at opposite points can be represented by the quation

~X∗(s) = ~X(s) +
n∑
i=1

mi(s)Vi(s), (1)

where ~X and ~X∗ are opposite points and ~Vi denote the Frenet-Serret frame in En-space.

We have from equation (1)

dX∗

ds
=

dX∗

ds∗
ds∗

ds
= V ∗1

ds∗

ds

= (1 +
dm1

ds
−m2k1)V1 + (

dm2

ds
+m1k1 −m3k2)V2

+ (
dm3

ds
+m2k2 −m4k3)V3 + (

dm4

ds
+ m3k3 −m5k4)V4 + · · · (2)

+ (
dmn−1

ds
+ mn−2kn−2 −mnkn−1)Vn−1 + (

dmn

ds
+mn−1kn−1)Vn,
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where ki is the curvatures of the curve. Since ~V ∗1 = − ~V1, we obtain

− ds∗

ds = 1 + dm1
ds −m2k1

dm2
ds

+m1k1 −m3k2 = 0
dm3
ds

+m2k2 −m4k3 = 0
dm4
ds +m3k3 −m5k4 = 0

...
dmn−1
ds + mn−2kn−2 −mnkn−1 = 0

dmn
ds +mn−1kn−1 = 0.


(3)

If we call φ as the angle between the tangent of the curve (C) at point X(s) with a given

fixed direction and consider dφ
ds = k1, we can rewrite equation (3) as

dm1
dφ = m2 − f(φ)
dm2
dφ = −m1 + ρk2m3

dm3
dφ

= −ρk2m2 + ρk3m4

...
dmn−1
dφ

= −ρkn−2mn−2 + ρkn−1mn

dmn
dφ = −ρkn−1mn−1,


(4)

where f(φ) = ρ+ ρ∗, ρ = 1
k1

and ρ∗ = 1
k∗1

denote the radii of curvatures at X and X∗,

respectively. If dmi
dφ

= m′i, then equation (4) can be written as

m′1 = m2 − f
m′2 = −m1 + ρk2m3

m′3 = −ρk2m2 + ρk3m4

...

m′n−1 = −ρkn−2mn−2 + ρkn−1mn

m′n = −ρkn−1mn−1


(5)
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where the functions ρ and ki are a function of φ and

m2 = h−1
1 (m′1 + h0f)

m3 = h−1
2 (m′2 + h1m1)

m4 = h−1
3 (m′3 + h2m2)

...

mn−1 = h−1
n−2(m′n−2 + hn−3mn−3)

mn = h−1
n−1(m′n−1 + hn−2mn−2)


(6)

where h0 = 1 and h−1
i = 1

ρki
, (i = 1, 2, 3, . . . , n− 1). From first equation of equation

system (6) we obtain

m′2 = h−1
1 m′′1 + (h−1

1 )′m′1 + (h−1
1 f)′.

Here if a22 = h−1
1 , a21 = (h−1

1 )′ and A1 = (h−1
1 f)′, then

m′2 = a22m
′′
1 + a21m

′
1 +A1 (7)

having second derivative this will be

m′′2 = a22m
(3)
1 + (a′22 + a21)m(2)

1 + a′21m
(1)
1 + A′1. (8)

If we put equation (8) in the derivation of second equation of equation system (6), we get

the following equation

m′3 = h−1
2 a22m

(3)
1 + [(h−1

2 a22)′ + h−1
2 a21]m(2)

1

+[(h−1
2 a21)′ + h−1

2 h1]m(1)
1 + h−1

2 h1m1 + (h−1
2 A1)′.

(9)

After using abbreviations a33 = h−1
2 a22, a32 = (h−1

2 a22)′ + h−1
2 a21, a31 = (h−1

2 a21)′ +

h−1
2 h1, a30 = a′20, a20 = h−1

2 h1, A2 = (h−1
2 A1)′ the equation (9) is shortened as below

m′3 = a33m
(3)
1 + a32m

(2)
1 + a31m

(1)
1 + a30m1 + A2. (10)

Second derivation of this equation will be

m′′3 = a33m
(4)
1 + (a′33 + a32)m(3)

1 + (a′32 + a31)m(2)
1 + (a′31 + a30)m(1)

1 + a′30m1 + A′2.

(11)
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If we put equation (11) in the derivation of third equation of equation system (6), we get

following equation

m′4 = h−1
3 a33m

(4)
1 + [(h−1

3 a33)′ + h−1
3 a32]m(3)

1

+[(h−1
3 a32)′ + h−1

3 a31 + h−1
3 h2a22]m(2)

1

+[(h−1
3 a31)′ + h−1

3 a30 + h−1
3 h2a21 + h−1

3 h2h
−1
1 ]m(1)

1

+(h−1
3 a30)′m1 + (h−1

3 A2)′ + h−1
3 h2A1 + h−1

3 h2h
−1
1 f.

(12)

Here if we do following abbreviations

a44 = h−1
3 a33, a43 = (h−1

3 a33)′ + h−1
3 a32, a42 = (h−1

3 a32)′ + h−1
3 a31 + h−1

3 h2a22

a41 = (h−1
3 a31)′ + h−1

3 a30 + h−1
3 h2a21 + h−1

3 h2h
−1
1 , a40 = (h−1

3 a30)′

A3 = (h−1
3 A2)′ + h−1

3 h2A1 + h−1
3 h2h

−1
1 f,

the equation (12) is turned to

m′4 = a44m
(4)
1 + a43m

(3)
1 + a42m

(2)
1 + a41m

(1)
1 + a40m1 +A3. (13)

If this process is going on like that, then derivation of mn can be written by the power

of derivation of m1 as following

m′n = h−1
n−1a(n−1)(n−1)m

(n)
1 + [(h−1

n−1a(n−1)(n−1))′

+h−1
n−1a(n−1)(n−2)]m

(n−1)
1 + · · ·+ [(h−1

n−1a(n−1)0)′ + · · ·
+(h−1

n−1hn−2)′h−1
n−3hn−4h

−1
n−5 · · ·h4h

−1
3 a30]m1 + (h−1

n−1An−2)′

+h−1
n−1hn−2An−3 + (h−1

n−1hn−2)′h−1
n−3hn−4h

−1
n−5 · · ·h−1

3 h2h
−1
1 A0

(14)

where A0 = f . If a0, a1, . . . , an stand for coefficients of m(n)
1 , m

(n−1)
1 , . . . , m′1, m1 respec-

tively, then the equation (14) will be

a0m
(n)
1 + a1m

(n−1)
1 + · · ·+ an−1m

′
1 + anm1 = f̃ (15)

where

f̃ = −[(h−1
n−1An−2)′ + h−1

n−1hn−2An−3 + · · ·
+(h−1

n−1hn−2)′h−1
n−3hn−4h

−1
n−5 · · ·h−1

5 h4h
−1
3 h2h

−1
1 A0].

If we choose ãi = − ai
a0
, (i = 1, 2, . . . , n), then equation (15) will be written as

m
(n)
1 = ã1m

(n−1)
1 + · · ·+ ãnm1 +

f̃(φ)
a0(φ)

.
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Having successively integration, we obtain

m
(n−1)
1 =

∫ φ
0

(ã1(s)m(n−1)
1 + · · ·+ ãn(s)m1) ds+

∫ φ
0

ef(s)
a0(s)

ds

m
(n−2)
1 =

∫ φ
0

(φ− s)(ã1(s)m(n−1)
1 + · · ·+ ãn(s)m1) ds+

∫ φ
0

(φ− s) ef(s)
a0(s) ds

m
(n−3)
1 =

∫ φ
0

(φ−s)2

2! (ã1(s)m(n−1)
1 + · · ·+ ãn(s)m1) ds+

∫ φ
0

(φ−s)2

2!

ef(s)
a0(s) ds

...

m1 =
∫ φ

0
(φ−s)n
n! (ã1(s)m(n−1)

1 + · · ·+ ãn(s)m1) ds+
∫ φ

0
(φ−s)n
n!

ef(s)
a0(s) ds.

Here it is imposible to get m1 directly, but by using an approximate solution of system

as [10], we get the following solution

m1,k =
∫ φ

0

(φ− s)n
n!

(ã1(s)m(n−1)
1,k−1 + · · ·+ ãn(s)m1,k−1) ds+

∫ φ

0

(φ− s)n
n!

f̃(s)
a0(s)

ds.

and then

m′1,k =
∫ φ

0
(φ−s)n−1

(n−1)!
(ã1(s)m(n−1)

1,k−1 + · · ·+ ãn(s)m1,k−1) ds+
∫ φ

0
(φ−s)n−1

(n−1)!

ef(s)
a0(s)

ds
...

m
(n)
1,k = ã1(φ)m(n−1)

1,k−1 + · · ·+ ãn(φ)m1,k−1 +
ef(φ)
a0(φ)

.

We now calculate how m1,k approximate to m1. If ε1,k = ‖m1 −m1,k‖, then

ε1,k ≤
∫ φ

0
(φ−s)n
n! [‖ã1‖ε(n−1)

1,k−1 + · · ·+ ‖ãn‖ε1,k−1] ds
...

ε
(n−1)
1,k ≤

∫ φ
0

[‖ã1‖ε(n−1)
1,k−1 + · · ·+ ‖ãn‖ε1,k−1] ds

ε
(n)
1,k ≤ ‖ã1‖ε(n−1)

1,k−1 + · · ·+ ‖ãn‖ε1,k−1.
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If L1 = max{‖ã1‖, . . . , ‖ãn‖}, then

ε1,k ≤ L1

∫ φ
0

(φ−s)n
n!

(
∑n−1

j=0 ε
(j)
1,k−1) ds

ε′1,k ≤ L2

∫ φ
0

(φ−s)n−1

(n−1)! (
∑n−1

j=0 ε
(j)
1,k−1) ds

...

ε
(n−1)
1,k ≤ Ln−1

∫ φ
0

(
∑n−1

j=0 ε
(j)
1,k−1) ds.

We can sum up above equations side by side in order to obtain following equation

n−1∑
j=0

ε
(j)
1,k ≤

∫ φ

0

[L1
(φ − s)n

n!
+ · · ·+ Ln−1]

n−1∑
j=0

ε
(j)
1,k−1) ds.

In this case, if we say δk =
∑n−1

j=0 ε
(j)
1,k, then we can write

δk ≤
∫ φ

0

[
n−1∑
j=0

Lj
(φ− s)n−j

(n − j)! δk−1] ds

and if
n−1∑
j=0

Lj
(φ− s)n−j

(n − j)! ≤ L

then we can write

δk ≤ L
∫ φ

0

δk−1ds.

we now show approximate of δk. To do this

δ1 ≤ Lδ0φ
δ2 ≤ L

∫ φ
0
δ1ds ≤ L2δ0

φ2

2!
...

δk ≤ δ0 (Lφ0)k

k! (0 ≤ φ ≤ φ0)

thus
n−1∑
j=0

ε
(j)
1,k ≤ δ0

(Lφ0)k

k!
.
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Each term is smaller then δ0
(Lφ0)k

k! since summation of all terms is smaller then δ0
(Lφ0)k

k! .

That is,

ε
(j)
1,k ≤ δ0

(Lφ0)k

k!

and then

‖m1 −m1,k‖ ≤ δ0 (Lφ0)k

k!

‖m′1 −m′1,k‖ ≤ δ0 (Lφ0)k

k!
...

‖m(n−1)
1 −m1,k‖ ≤ δ0 (Lφ0)k

k!

and

ε
(n)
1,k ≤ Lnδ0

(Lφ0)k

k!

so

‖m(n)
1 −mn

1,k‖ ≤ Lnδ0
(Lφ0)k

k!
.

We take limit both side

lim
k→∞

ε
(j)
i,k ≤ lim

k→∞
δ0

(Lφ0)k

k!

we get

lim
k→∞

m
(j)
1,k = m

(j)
1 ( j = 0, 1, 2, · · · , n− 1)

and

lim
k→∞

m
(n)
1,k = m

(n)
1 .

We have that

m2 = m′1 + f

m3 = h−1
2 (m′2 + h1m1)

m4 = h−1
3 (m′3 + h2m2)

...

mn = h−1
n−1(m′n−1 + hn−2mn−2)


(16)
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and then

ε2,k = ε′1,k

ε3,k = k−1
2 ε′2,k + k1ε1,k

ε4,k = k−1
3 ε′3,k + k2ε2,k

...

εn,k = k−1
n−1ε

′
n−1,k + kn−2εn−2,k

Therefore, we can find the value of m2, m3, . . . , mn from equation (16) since the value

of m1 is known. Thus, the error of ε2,k, ε3,k, · · · , εn,k can be found by depending on

the error of ε1,k. If k → ∞, then ~X∗ can be presented by ~X and its invarient. So the

following theorem is proved.

Theorem 1 Let ki(s), (i = 1, 2, . . . , n; 0 ≤ s ≤ L) be non-zero functions in the class

Γ.Then mi,k(k = 0, 1, 2, . . .)which obtained from (4) limits to the unique solution of

system as following

‖m(i)
1 −m

(i)
1,k‖ ≤ Liδ0

(Lφ0)k

k!
(i = 0, 1, . . . , n; k = 0, 1 . . . ),

‖m(i)
` −m

(i)
`,k‖ ≤ L

∗
`,iδ0

(L∗`φ0)k

k!
(` = 2, 3, . . . , n),

where Li, L, L∗`,i and L∗` are numbers which are known.

If the distance between the opposite points of (C) and (C∗) is constant, then

‖α∗ − α‖2 = m2
1 + m2

2 + · · ·+ m2
n = k2, k ∈ <.

Hence, we write

m1
dm1

dφ
+m2

dm2

dφ
+ · · ·+ mn

dmn

dφ
= 0 (17)

and then

m1(
dm1

dφ
−m2) = 0. (18)
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In this case, either m1 = 0 or dm1
dφ −m2 = 0 which means f(φ) = 0. If f(φ) = 0, then

~X∗ is a transition of ~X with following constant vector

` = m1V1 + m2V2 + · · ·+ mnVn. (19)

If m1 = 0, then from equation (14) we have

(h−1
n−1An−2)′ + h−1

n−1hn−2An−3 + · · ·
+(h−1

n−1hn−2)′h−1
n−3hn−4h

−1
n−5 · · ·h−1

5 h4h
−1
3 h2h

−1
1 A0 = 0.

(20)

Thus, the function f(φ) satisfies the equation (20). ~X∗(0) = ~X∗(2π) since the curve of

constant breadth is closed. Accordingly, from (1) we can write

α∗(0) = α(0) +
∑n

i=2mi(0)Vi(0) = α∗(2π)

= α(2π) +
∑n

i=2 mi(2π)Vi(2π)

and finally mi(0) = mi(2π).

Corollary 1 In the equation

m1,k =
∫ φ

0

(φ− s)n
n!

(ã1(s)m(n−1)
1,k−1 + · · ·+ ãn(s)m1,k−1) ds+

∫ φ

0

(φ− s)n
n!

f̃(s)
a0(s)

ds

if we choose m1,0 = 0, then

m1,1 =
∫ φ

0

(φ − s)n
n!

f̃(s)
a0(s)

ds.

Assume that m1,k limits for k = 1 to m1. Then m1,1 = 0 = m1 and then

∫ φ

0

(φ− s)n
n!

f̃(s)
a0(s)

ds = 0. (21)

Corollary 2 If we choose m1,1 = 0, then

m1,2 =
∫ φ

0

ãn(s)ds+
∫ φ

0

(φ− s)n
n!

f̃(s)
a0(s)

ds.
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Assume that m1,k limits for k = 2 to m1. Then m1,2 = m1 = 0 and then

∫ φ

0

ãn(s)ds = −
∫ φ

0

(φ− s)n
n!

f̃(s)
a0(s)

ds.

By derivating

an(φ) = a0(φ)
∫ φ

0

(φ− s)n−1

(n − 1)!
f̃(s)
a0(s)

ds

Corollary 3 If we choose m1 = 0 in equation (14),then

m′n = −f̃

and

mn = −
∫ φ

0

f̃ds.

We have mn(0) = mn(2π),so ∫ 2π

0

f̃(s) ds = 0.
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Atatürk Üniversitesi,

Fen Edebiyat Fakültesi,

Erzurum-TURKEY

Received 28.02.2001

444


