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Characterizations of Matroid VIA OFR-Sets
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Abstract

The aim of this paper is to introduce the class of OFR-sets as the sets that are
the intersection of an open set and a feeble-regular set. Several classes of matroids
are studied via the new concept. New decompositions of strong maps are provided.
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1. Introduction

For an introduction on matroids see [3, 4, 7, 8, 9]. In particular, a matroid M is an
ordered pair (E ,O) such that O is a collection of subsets, called open sets of M, of a finite
set E , called the ground set of M, such that ∅ is an open set, unions of open sets are
open and if O1 and O2 are open sets and x ∈ O1 ∩O2, there exists an open set O3 such
that

(O1 ∪O2) − (O1 ∩O2) ⊆ O3 ⊆ (O1 ∪O2)− {x}.

An equivalent way of defining a matroid M, is that M is an ordered pair (E ,FM ) such
that FM is a collection of subsets, called flats or closed sets of M, of a finite set E such
that E ∈ FM , intersections of flats are flats and if F ∈ FM and {F1 , F2, ..., Fk} is the
set of minimal members of F

M
(with respect to inclusion) that properly contain F , then

F1 ∪ F2 ∪ ... ∪ Fk = E. The closure of a subset A ⊆ E will be denoted by Ā. Clearly

Ā is the smallest flat containing A and x ∈ Ā if and only if for every open set O in M

that contains x, O ∩ A 6= ∅, see Oxley [4]. A is a spanning set of M if Ā = E. Let
M1 = (E1,F1) and M2 = (E 2,F2) be matroids. A strong map f from M1 to M2 is a map
f : E1 → E2 such that the inverse image of any flat of M2 is a flat of M1. We abbreviate
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this as f : M1 → M2. Clearly, f is strong if and only if the inverse image of any open
set in M2 is open in M1. A set U ⊆ E is called a feeble-open set (=FO-set) in M if there

exists an open set O ∈ O such that O ⊆ U ⊆ Ō, see Al-Hawary [1]. A subset A ⊆ E is
feeble-flat (=FF-set) if its complement is an FO-set. Feeble-closure A of A can be defined

in a manner analogous to the closure Ā of A. The inner of A is the set

o

A=: {x ∈ A | ∃O ∈ O, x ∈ O ⊆ A}.

Clearly A is a FO-set if and only if A ⊆
o

A and A is a FF-set if and only if
o

A=
o

Ā . Feeble-
inner Ao of A and feeble-spanning set can be defined an analogous manner to the inner
and spanning set notions, respectively. A is called a local-flat (=LF-set) if A is open in

M |Ā or equivalently if A = O∩F, where O is open and F is a flat. A is called regular-open

(=RO-set) if A =
o

A . Complements of RO-sets are called regular-flats (=RF-set). Clearly

A is a RF-set if and only if A is a flat and A =
o

A. A is called a ORF-set (resp. a OFF-set)
if A = O∩C, where O is open and C is a RF-set (resp. FF-set). Clearly every ORF-set is

a LF-set and every LF-set is a OFF-set. A is called a feeble-preopen (=FP-set) if A ⊆
o

A.

The feeble-closure of A is the intersection of all FF supersets of A.
The concepts of ORF-sets, LF-sets and OFF-sets play an important role when strong

maps are decomposed. A map f : M1 →M2 is feeble-strong (=FS) if the inverse image of

any open set in M2 is feeble-open set in M1. f is called Â-strong if for every open set O in

M2, the set f−1(O) ∈ Â, where Â is a collection of subsets of E1. Most of the definitions

of maps used through this paper are consequences of the definition of Â − strong map.
The aim of this paper is to introduce the classes of ORF-sets and OFF-sets and a class

of sets very closely related to these classes, in fact properly placed between them, called
OFR-sets. Under consideration are sets that can be represented as the intersection of an
open set and a feeble-regular set. A subset A of the ground set of a matroid M = (E ,O)
is called feeble-regular set(=FR-set) if it is both FO-set and FF-set.

Theorem 1 [1]Let M = (E ,O) be a matroid and A ⊆ E. Then (Ā)o ⊆ (A)o

Theorem 2 If a subset A of the ground set of a matroid M = (E ,O) is a FR-set, then

there exists a RO-set O such that O ⊆ A ⊆ Ō.

Proof. Let A be a FR-set and let O = Ao. As A is a FO-set, A ⊆
o

Ō or O ⊆
o

Ō . On
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the other hand, by Theorem 1, (Ō)o ⊆ (O)o = (Ao)o = (Ao)o = Oo ⊆ O. Thus O =
o

Ō

and hence O is a RO-set such that O ⊆ A ⊆ Ō.
In this paper, the connection of OFR-sets to the other classes of “generalized open”

sets is investigated as well as several characterizations of matroids via OFR-sets are given.
The concept of OFR-strong maps is also introduced. New decompositions of strong maps
and decompositions of OFR-strong maps are produced at the end of the paper.

2. OFR-sets

Definition 1 A subset A of the ground set of a matroid M is called a OFR-set if
A = O ∩ B, where O is open and B is FR. The collection of all OFR-sets of M will
be denoted by OFR(M).

Since RF-sets are FR-sets and since FR-sets are FF-sets, then the following implica-
tions are obvious.

ORF − set ⇒ OFR− set⇒ OFF − set.

None of them of course is reversible as the following examples show:

Example 1 Let E = {a, b, c, d} and let O = {∅, {a}, {b}, {a, b}}. Set A = {a, b}. It is
easily observed that A is a OFR-set but not a ORF-set.

Example 2 Let E = {a, b, c, d} and let O = {∅, {a, b}, {a, c}, {b, c}, {a, b, c}}. Set A =
{c}. It is easily observed that A = {b, c} ∩ {c, d} is a OFF-set but not a OFR-set.

Next, the relation between ORF-sets and OFF-sets is shown but first consider the
following lemma.

Lemma 1 The feeble-closure of every FP-set is a FR-set.

Proof. Let A be such that A ⊆
o

A and C =
⋂
{B : A ⊆ B = B}. Then C⊆

⋂
{B :

A ⊆ B = B} = C and as C ⊆C, C is a FF-set. Since
o

A is a flat, it is a FF-set and hence
it equals its feeble-closure and as it contains A,

C ⊆
o

A. (2.1)
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As Ā is the smallest flat containing A and as every flat is a FF-set, Ā ⊆ C. This together

with 2.1 implies that C ⊆ Co and hence C is a FO-set. Therefore, C is a FR-set.

Theorem 3 Let M be a matroid in which every OFR-set is a FO-set. Then for a subset
A of the ground set of M the following are equivalent:

(1) A is a OFR-set.
(2) A is an FO- and OFF-set.
(3) A is an FP- and OFF-set.

Proof. (1)⇒ (2) and (2)⇒ (3) are obvious.
(3)⇒ (1) Since A is a OFF-set, then there exists an open set O such that A = O∩A.

By Lemma 1, A is a FR-set, since by (3) A is an FP-set. Thus A is a OFR-set.

Definition 2 A matroid M is called maximal if every spanning set is open and every
OFR-set is a FO-set.

Let FP (M) denote the collection of all FP-sets in M. Then we obtain the following
result.

Theorem 4 If M = (E,O) is a maximal matroid, then every subset of E is a OFF-set.

Proof. Let A ⊆ E. Since every submatroid of a maximal matroid is maximal, then
M |Ā is maximal. Since A is a spanning in M |Ā, A is open in M |Ā. Thus A = O ∩ Ā
where O is an open set in M and Ā is a FF-set in M. Thus A is a OFF-set.

Corollary 1 If M = (E,O) is a maximal matroid, then OFR(M) = FP (M).

Proof. Since M is maximal, then by Theorem 4, every (FP-) set is a OFF-set. Thus
by Theorem 3, every FP subset of E is a OFR-set. On the other hand, every OFR-set is
a FP-set.

Lemma 2 In a matroid M = (E,O), a LF-set that is also a FO-set is a ORF-set.

Proof. Let A ⊆ E be both LF- and FO-set. Then A ⊆
o

A and A = O ∩ Ā for some

open set O. Thus Ā =
o

A and so A is a RF-set. Hence A is a ORF-set.
The class of LF-sets is also properly placed between the class of ORF- and OFF-sets

but the concepts of OFR-sets and LF-sets are independent from each other: First, the
set A = {a} is a LF-set that is not a OFR-set in the matroid of Example 2, hence not
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every LF-set is a OFR-set. Second, if every OFR-set would be a LF-set, then again it
must be a ORF-set but as shown before not all OFR-sets are ORF-sets.

Let M = (E,O) be a matroid and A ⊆ E. Define

Fr(A) := {e ∈ E : O ∩A 6= ∅ andO ∩ E\A 6= ∅, ∀O ∈ O}.

Then A is called an CIB if and only if
o

Fr(A)= ∅. The following result shows that the
defined property coincides with the class of FF-sets.

Theorem 5 Let M = (E,O) be a matroid in which E ∈ O. Then the following are
equivalent:

(1)
o

Ā=
o

A.

(2) A is a FF-set.

(3) E\A is a FP-set and A is a OFF-set.

(4) E\A is a FP-set and A is a CIB-set.

Proof. (1)⇒ (2) Since
o

Ā=
o

A⊆ A, then E\A ⊆ (E\A)o. Thus E\A is a FO-set, hence
A is a FF-set.

(2)⇒ (3) Every FF-set is trivially a FP-set. Since A = E ∩ A, where E is open and
A is FF-set, then A is a OFF-set.

(3) ⇒ (4) Clearly the intersection of two CIB-sets is a CIB-set. Since a OFF-set is
an intersection of an (FO-set) open set and a FF-set, it is enough to show that every
FO-set and every FF-set is a CIB-set. If A is a FO-set, then for some open set O we

have O ⊆ A ⊆ Ō. Since Fr(A) = Ā ∩ E\A = Ō ∩ E\A ⊆ Ō ∩ E\O = Fr(O), clearly
o

Fr(A)= ∅ as
o

Fr(O)= ∅. In fact, it is obvious that every open set is CIB. Thus FO-(and
hence every FF-) is a CIB-set.

(4)⇒ (1) Since A is a CIB-set, B = E\A is also a CIB-set. It is easy to see that from
the identity

(Fr(B))o =
o

B̄ ∩
o

E\B=
o

B̄ ∩E\
o

B =
o

B̄ \
o

B,

it follows that
o

B̄⊆
o

B. Since B is a FP-set, B ⊆
o

B̄. Thus B ⊆
o

B or equivalently B̄ =
o

B.

Since B = E\A,
o

Ā=
o

A .
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Theorem 6 Let M = (E,O) be a matroid in which every OFR-set is a FO-set and
E ∈ O. Then for a subset A of the ground set of M the following are equivalent:

(1) A is a FR-set.
(2) A is a FF-set and a OFR-set.
(3) A is a OFR-set and E\A is a FP-set.

Proof. (1)⇒ (2) and (2)⇒ (3) are obvious.
(3) ⇒ (1) By Theorem 5 A is a FF-set, since E\A is a FP-set and A is a OFF-set.

On the other hand A is a FO-set, since it is a OFR-set. Thus A is a FR-set, being both
FO- and FF-set.

Definition 3 A subset A of the ground set of a matroid M is called an inner-flat (=IF-

set) if Ao is a flat in M |A. If A ⊆
o

A, then A is called prespanning.

Lemma 3 In a matroid M = (E,O), if a subset A ⊆ E is a prespanning set and a
OFF-set, then A is open.

Proof. Since A is a OFF-set, we have A = O∩S where O is open and
o

S̄=
o

S . Because
A is prespanning, we have

A ⊆
o

Ā=
o

(O ∩ S)⊆ (Ō ∩ S̄)o ⊆
o

Ō ∩
o

S̄=
o

Ō ∩
o

S .

Hence

A = O ∩ S = (O ∩ S) ∩O ⊆ (
o

Ō ∩
o

S) ∩O = (
o

Ō ∩O)∩
o

S= O∩
o

S .

Notice A = O ∩ S ⊇ O∩
o

S, we have A = O∩
o

S .

Theorem 7 Let M = (E,O) be a matroid in which every OFR-set is a FO-set and
E ∈ O. Then for a subset A of the ground set of M the following are equivalent:

(1) A is open.
(2) A is a OFR-set and A is either prespanning or a IF-set.

Proof. (1)⇒ (2) is obvious.
(2)⇒ (1) If A is prespanning, then since A is also a OFF-set, it follows by Lemma 3

that A is open. If A is a IF-set, then A is again open, since A is also a FO-set.
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3. Some peculiar matroids

A matroid M = (E,O) is called extremally disconnected (=ED) if every open subset
has open closure or equivalently if every RF subset of E is open.

Theorem 8 Let M = (E,O) be an ED matroid in which every OFR-set is a FO-set. If
A is a OFR-set, then A is prespanning.

Proof. Let A be a OFR-set. Then A is a FO-set and so A ⊆ Ao. As Ao is open,

by assumption, Ao is open and hence Ao =
o

Ao . Thus A ⊆
o

Ao⊆
o

A . Therefore, A is
prespanning.

Theorem 9 For a matroid M = (E,O), in which every OFR-set is a FO-set and E ∈ O,
the following are equivalent:

(1) M is ED.
(2) O = OFR(M).
(3) Every OFR-set is open.

Proof. (1)⇒ (2) Let A be a OFR-set. By Theorem 8, it follows thatA is prespanning,
since M is ED. Moreover, A is a OFF-set and since it is prespanning, it follows from
Theorem 3 that A ∈ O. Hence OFR(M) ⊆ O. On the other hand it is obvious that
O ⊆OFR(M).

(2)⇒ (3) is obvious.
(3)⇒ (1) Let A be a RF-set. Then A is a OFR-set. By (3) A is open. So, M is ED.

Theorem 10 For a matroid M = (E,O), in which every OFR-set is a FO-set and
E ∈ O, the following are equivalent:

(1) M is maximal.
(2) Every prespanning set is a OFR-set.
(3) Every spanning set is a OFR-set.

Proof. (1)⇒ (2) Let A be a prespanning set. By (1), A is open, since in a maximal
matroid every prespanning set is open. Hence A is a OFR-set.

(2)⇒ (3) Every spanning set is a prespanning set.
(3) ⇒ (1) Let A be a spanning set. By (3), A is a OFR-set. Hence A is both

prespanning and a OFF-set. It follows by Theorem 8 that A is open. Thus M is
maximal.
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A matroid is called a partition matroid (=PM) if every open set is a flat.

Theorem 11 If M = (E,O) is a PM, every OFR-set is a flat.

Proof. Let A be a OFR-set. Then A is a OFF-set and hence A = O ∩ B, where O
is open and B is a FF-set. By assumption, O is a flat. On the other hand B̄ is open by

assumption and thus
o

B̄⊆ B ⊆ B̄ implies B =
o

B = B̄ and thus B is a flat. Thus A is a
flat being the intersection of two flats.

Theorem 12 For a matroid M = (E,O) in which E ∈ O, the following are equivalent:

(1) M ∼= U1,n for some positive integer n ≥ 1.

(2) The only OFF-sets in M are the trivial ones.

(3) The only ORF-sets in M are the trivial ones.

Proof. (1) ⇒ (2) If A is a OFF-set, then A = O ∩ B, where O is open and B is

FF-set (Bo = Bo). If A 6= ∅, then O 6= ∅ and by (1) O = E. Thus A = B and so

Ao = (Ā)o = Eo = E. Hence A = E.

(2)⇒ (3) Every ORF-set is a OFF-set.

(3)⇒ (1) Since every open set is a ORF-set, by (3) the only open sets in M are the
trivial ones.

Corollary 2 For a matroid M = (E,O) in which E ∈ O, the following are equivalent:

(1) M ∼= U1,n for some positive integer n ≥ 1.

(2) OFR(M) = {∅, E}.

Theorem 13 For a matroid M = (E,O), in which every OFR-set is a FO-set and
E ∈ O, the following are equivalent:

(1) M is free.

(2) Every subset of E is a OFR-set.

(3) Every singleton is a OFR-set.

Proof. (1)⇒ (2) and (2)⇒ (3) are obvious.

(3) ⇒ (1) Let e ∈ E. By (3), {e} is a OFR-set and hence a FO-set. Then {e} must
contain a non-void open subset. Since the only possibility is {e} itself, then each singleton
is open or equivalently M is free.
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A matroid M(E,O) is called hyperconnected if every open set is a spanning set.
M = (E,O) is called feeble-connected (=FC) if E cannot be expressed as the disjoint
union of two non-void FO-sets.

Theorem 14 For a matroid M = (E,O), in which every OFR-set is a FO-set and
E ∈ O, the following are equivalent:

(1) M is hyperconnected.
(2) Every OFR-set is spanning.

Proof. (1)⇒ (2) Let A be a OFR-set. Then A is a FO-set and hence there exists an

open set O such that O ⊆ A ⊆ Ō. By (1), O is spanning. Hence its superset A is also
spanning.

(2)⇒ (1) Every open set is a OFR-set and hence by (2) spanning.

Theorem 15 For a matroid M = (E,O), in which every OFR-set is a FO-set and
E ∈ O, the following are equivalent:

(1) M is FC.
(2) E is not the union of two disjoint non-void OFR-sets.

Proof. (1)⇒ (2) If E is the union of two disjoint non-void OFR-sets, then M is not
FC, since OFR-sets are FO-sets.

(2) ⇒ (1) If M is not FC, then M has a non-trivial FO-set A with FO complement.
Since both A and B = E\A are FR-sets, then A and B are OFR-sets. So E is the union
of two disjoint non-void OFR-sets, contradictory to (2).

4. OFR-strong maps

Decompositions of continuous maps have been studied by several authors, see for
example [2, 5, 6]. In this section, we study several decompositions of strong maps.

Definition 4 A map f : M1 = (E1,O1) → M2 = (E2,O2) is called ORF-strong (resp.

OFF-strong, OFR-strong) if the preimage of every open set in M2 is a ORF-set (resp.
OFF-set, OFR-set) of M1. f is hesitant if f(A) ⊆ f(A), for every subset A ⊆ E1, see
Al-Hawary [1].

All through this section, we only consider matroids in which the ground sets are
open and every OFR-set is a FO-set. It is easily observed that f is hesitant if and only
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if the inverse image of every subset of E2 is a FR-set in M1. The last four following
theorems are consequences of results from the beginning of this paper, therefore their
proofs are omitted. Theorem 16 gives the relations between OFR-strong maps and other
forms of “generalized strong maps”. Note that none of the implications in Theorem 16
is reversible. Theorem 17 gives a decomposition of OFR-strong maps, while Theorem
18 gives a decomposition of OFR-strong maps and Theorem 19 gives a decomposition of
strong dual to OFR-strong.

Theorem 16 (1) Every ORF-strong map is OFR-strong.

(2) Every hesitant map is OFR-strong.
(3) Every OFR-strong map is OFF-strong.

(4) Every OFR-strong map is feeble-strong.

Theorem 17 For a map f : M1 →M2, the following are equivalent:
(1) f is OFR-strong.

(2) f is feeble-strong and OFF-strong.
(3) f is FP-strong and OFF-strong.

Theorem 18 For a map f : M1 →M2, the following are equivalent:
(1) f is ORF-strong.
(2) f is FP-strong and prespanning-strong.

Theorem 19 For a map f : M1 →M2, the following are equivalent:
(1) f is strong.
(2) f is OFR-strong and either prestrong or IF-strong.
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