Turk J Math 25 (2001) , 445 – 455. © TÜBİTAK

Characterizations of Matroid VIA OFR-Sets

Talal Ali Al-Hawary

Abstract

The aim of this paper is to introduce the class of OFR-sets as the sets that are the intersection of an open set and a feeble-regular set. Several classes of matroids are studied via the new concept. New decompositions of strong maps are provided.

Key Words: Feeble-matroid, Strong map, Hesitant map, ORF-set, OFF-set, OFR-set.

1. Introduction

For an introduction on matroids see [3, 4, 7, 8, 9]. In particular, a *matroid* M is an ordered pair (E,\mathcal{O}) such that \mathcal{O} is a collection of subsets, called *open sets* of M, of a finite set E, called the *ground set* of M, such that \emptyset is an open set, unions of open sets are open and if O_1 and O_2 are open sets and $x \in O_1 \cap O_2$, there exists an open set O_3 such that

$$(O_1 \cup O_2) - (O_1 \cap O_2) \subseteq O_3 \subseteq (O_1 \cup O_2) - \{x\}.$$

An equivalent way of defining a matroid M, is that M is an ordered pair (E, \mathfrak{F}_M) such that \mathfrak{F}_M is a collection of subsets, called *flats* or *closed sets* of M, of a finite set E such that $E \in \mathfrak{F}_M$, intersections of flats are flats and if $F \in \mathfrak{F}_M$ and $\{F_1, F_2, ..., F_k\}$ is the set of minimal members of \mathfrak{F}_M (with respect to inclusion) that properly contain F, then $F_1 \cup F_2 \cup ... \cup F_k = E$. The *closure* of a subset $A \subseteq E$ will be denoted by \overline{A} . Clearly \overline{A} is the smallest flat containing A and $x \in \overline{A}$ if and only if for every open set O in M that contains $x, O \cap A \neq \emptyset$, see Oxley [4]. A is a spanning set of M if $\overline{A} = E$. Let $M_1 = (E_1, \mathcal{F}_1)$ and $M_2 = (E_2, \mathcal{F}_2)$ be matroids. A strong map f from M_1 to M_2 is a map $f : E_1 \to E_2$ such that the inverse image of any flat of M_2 is a flat of M_1 . We abbreviate

¹⁹⁹⁴ AMS Subject Classification. 05B35.

this as $f: M_1 \to M_2$. Clearly, f is strong if and only if the inverse image of any open set in M_2 is open in M_1 . A set $U \subseteq E$ is called a *feeble-open set* (=FO-set) in M if there exists an open set $O \in \mathcal{O}$ such that $O \subseteq U \subseteq \overline{O}$, see Al-Hawary [1]. A subset $A \subseteq E$ is *feeble-flat* (=FF-set) if its complement is an FO-set. Feeble-closure <u>A</u> of A can be defined in a manner analogous to the closure \overline{A} of A. The *inner* of A is the set

$$\stackrel{o}{A} =: \{ x \in A \mid \exists O \in \mathcal{O}, \, x \in O \subseteq A \}.$$

Clearly A is a FO-set if and only if $A \subseteq \overline{A}$ and A is a FF-set if and only if $A = \overline{A}$. Feebleinner A_o of A and feeble-spanning set can be defined an analogous manner to the inner and spanning set notions, respectively. A is called a *local-flat* (=LF-set) if A is open in $M|\overline{A}$ or equivalently if $A = O \cap F$, where O is open and F is a flat. A is called regular-open (=RO-set) if $A = \overline{A}$. Complements of RO-sets are called regular-flats (=RF-set). Clearly A is a RF-set if and only if A is a flat and $A = \overline{A}$. A is called a ORF-set (resp. a OFF-set) if $A = O \cap C$, where O is open and C is a RF-set (resp. FF-set). Clearly every ORF-set is a LF-set and every LF-set is a OFF-set. A is called a feeble-preopen (=FP-set) if $A \subseteq \overline{A}$.

The feeble-closure of A is the intersection of all FF supersets of A.

The concepts of ORF-sets, LF-sets and OFF-sets play an important role when strong maps are decomposed. A map $f: M_1 \to M_2$ is *feeble-strong* (=FS) if the inverse image of any open set in M_2 is feeble-open set in M_1 . f is called \hat{A} -strong if for every open set O in M_2 , the set $f^{-1}(O) \in \hat{A}$, where \hat{A} is a collection of subsets of E_1 . Most of the definitions of maps used through this paper are consequences of the definition of \hat{A} - strong map.

The aim of this paper is to introduce the classes of ORF-sets and OFF-sets and a class of sets very closely related to these classes, in fact properly placed between them, called *OFR-sets*. Under consideration are sets that can be represented as the intersection of an open set and a feeble-regular set. A subset A of the ground set of a matroid $M = (E, \mathcal{O})$ is called *feeble-regular set*(=*FR-set*) if it is both FO-set and FF-set.

Theorem 1 [1]Let $M = (E, \mathcal{O})$ be a matroid and $A \subseteq E$. Then $(\overline{A})^o \subseteq (\underline{A})_o$

Theorem 2 If a subset A of the ground set of a matroid $M = (E, \mathcal{O})$ is a FR-set, then there exists a RO-set O such that $O \subseteq A \subseteq \overline{O}$.

Proof. Let A be a FR-set and let $O = A^o$. As A is a FO-set, $A \subseteq \overset{o}{\overline{O}}$ or $O \subseteq \overset{o}{\overline{O}}$. On

the other hand, by Theorem 1, $(\bar{O})^o \subseteq (\underline{O})_o = (\underline{A}^o)_o = (A^o)_o = O_o \subseteq O$. Thus $O = \overset{o}{\bar{O}}$ and hence O is a RO-set such that $O \subseteq A \subseteq \bar{O}$.

In this paper, the connection of OFR-sets to the other classes of "generalized open" sets is investigated as well as several characterizations of matroids via OFR-sets are given. The concept of OFR-strong maps is also introduced. New decompositions of strong maps and decompositions of OFR-strong maps are produced at the end of the paper.

2. OFR-sets

Definition 1 A subset A of the ground set of a matroid M is called a OFR-set if $A = O \cap B$, where O is open and B is FR. The collection of all OFR-sets of M will be denoted by OFR(M).

Since RF-sets are FR-sets and since FR-sets are FF-sets, then the following implications are obvious.

$$ORF - set \Rightarrow OFR - set \Rightarrow OFF - set.$$

None of them of course is reversible as the following examples show:

Example 1 Let $E = \{a, b, c, d\}$ and let $\mathcal{O} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Set $A = \{a, b\}$. It is easily observed that A is a OFR-set but not a ORF-set.

Example 2 Let $E = \{a, b, c, d\}$ and let $\mathcal{O} = \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Set $A = \{c\}$. It is easily observed that $A = \{b, c\} \cap \{c, d\}$ is a OFF-set but not a OFR-set.

Next, the relation between ORF-sets and OFF-sets is shown but first consider the following lemma.

Lemma 1 The feeble-closure of every FP-set is a FR-set.

Proof. Let A be such that $A \subseteq \overline{\overline{A}}$ and $C = \bigcap \{B : A \subseteq B = \underline{B}\}$. Then $\underline{C} \subseteq \bigcap \{B : A \subseteq B = \underline{B}\} = C$ and as $C \subseteq \underline{C}$, C is a FF-set. Since $\overline{\overline{A}}$ is a flat, it is a FF-set and hence it equals its feeble-closure and as it contains A,

$$C \subseteq \overline{\overline{A}}.$$
 (2.1)

4	4	7
-	-	•

As \overline{A} is the smallest flat containing A and as every flat is a FF-set, $\overline{A} \subseteq C$. This together with 2.1 implies that $C \subseteq \overline{C^o}$ and hence C is a FO-set. Therefore, C is a FR-set.

Theorem 3 Let M be a matroid in which every OFR-set is a FO-set. Then for a subset A of the ground set of M the following are equivalent:

- (1) A is a OFR-set.
- (2) A is an FO- and OFF-set.
- (3) A is an FP- and OFF-set.

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (1)$ Since A is a OFF-set, then there exists an open set O such that $A = O \cap \underline{A}$. By Lemma 1, \underline{A} is a FR-set, since by (3) A is an FP-set. Thus A is a OFR-set.

Definition 2 A matroid M is called maximal if every spanning set is open and every OFR-set is a FO-set.

Let FP(M) denote the collection of all FP-sets in M. Then we obtain the following result.

Theorem 4 If $M = (E, \mathcal{O})$ is a maximal matroid, then every subset of E is a OFF-set.

Proof. Let $A \subseteq E$. Since every submatroid of a maximal matroid is maximal, then $M|\bar{A}$ is maximal. Since \underline{A} is a spanning in $M|\bar{A}$, A is open in $M|\bar{A}$. Thus $A = O \cap \bar{A}$ where O is an open set in M and \bar{A} is a FF-set in M. Thus A is a OFF-set.

Corollary 1 If $M = (E, \mathcal{O})$ is a maximal matroid, then OFR(M) = FP(M).

Proof. Since M is maximal, then by Theorem 4, every (FP-) set is a OFF-set. Thus by Theorem 3, every FP subset of E is a OFR-set. On the other hand, every OFR-set is a FP-set.

Lemma 2 In a matroid $M = (E, \mathcal{O})$, a LF-set that is also a FO-set is a ORF-set.

Proof. Let $A \subseteq E$ be both LF- and FO-set. Then $A \subseteq \overline{A}^{o}$ and $A = O \cap \overline{A}$ for some open set O. Thus $\overline{A} = \overline{A}^{o}$ and so A is a RF-set. Hence A is a ORF-set.

The class of LF-sets is also properly placed between the class of ORF- and OFF-sets but the concepts of OFR-sets and LF-sets are independent from each other: First, the set $A = \{a\}$ is a LF-set that is not a OFR-set in the matroid of Example 2, hence not

every LF-set is a OFR-set. Second, if every OFR-set would be a LF-set, then again it must be a ORF-set but as shown before not all OFR-sets are ORF-sets.

Let $M = (E, \mathcal{O})$ be a matroid and $A \subseteq E$. Define

$$Fr(A) := \{ e \in E : O \cap A \neq \emptyset \text{ and } O \cap E \setminus A \neq \emptyset, \forall O \in \mathcal{O} \}.$$

Then A is called an CIB if and only if $\overline{Fr(A)} = \emptyset$. The following result shows that the defined property coincides with the class of FF-sets.

Theorem 5 Let $M = (E, \mathcal{O})$ be a matroid in which $E \in \mathcal{O}$. Then the following are equivalent:

(1) $\overset{o}{\bar{A}} = \overset{o}{A}$.

(2) A is a FF-set.

(3) $E \setminus A$ is a FP-set and A is a OFF-set.

(4) $E \setminus A$ is a FP-set and A is a CIB-set.

Proof. (1) \Rightarrow (2) Since $\overset{o}{\overline{A}} = \overset{o}{A} \subseteq A$, then $E \setminus A \subseteq \overline{(E \setminus A)^o}$. Thus $E \setminus A$ is a FO-set, hence A is a FF-set.

 $(2) \Rightarrow (3)$ Every FF-set is trivially a FP-set. Since $A = E \cap A$, where E is open and A is FF-set, then A is a OFF-set.

 $(3) \Rightarrow (4)$ Clearly the intersection of two CIB-sets is a CIB-set. Since a OFF-set is an intersection of an (FO-set) open set and a FF-set, it is enough to show that every FO-set and every FF-set is a CIB-set. If A is a FO-set, then for some open set O we have $O \subseteq A \subseteq \overline{O}$. Since $Fr(A) = \overline{A} \cap \overline{E \setminus A} = \overline{O} \cap \overline{E \setminus O} = Fr(O)$, clearly $\overline{Fr(A)} = \emptyset$ as $\overline{Fr(O)} = \emptyset$. In fact, it is obvious that every open set is CIB. Thus FO-(and hence every FF-) is a CIB-set.

(4) \Rightarrow (1) Since A is a CIB-set, $B = E \setminus A$ is also a CIB-set. It is easy to see that from the identity

$$(Fr(B))^{o} = \stackrel{o}{\bar{B}} \cap \frac{\stackrel{o}{E \setminus B}}{=} \stackrel{o}{\bar{B}} \cap E \setminus \stackrel{o}{\bar{B}} = \stackrel{o}{\bar{B}} \setminus \stackrel{o}{\bar{B}},$$

it follows that $\overset{o}{\bar{B}} \subseteq \overline{\overset{o}{B}}$. Since B is a FP-set, $B \subseteq \overline{\overset{o}{\bar{B}}}$. Thus $B \subseteq \overline{\overset{o}{B}}$ or equivalently $\bar{B} = \overline{\overset{o}{B}}$. Since $B = E \setminus A$, $\overset{o}{\bar{A}} = \overset{o}{A}$.

Theorem 6 Let $M = (E, \mathcal{O})$ be a matroid in which every OFR-set is a FO-set and $E \in \mathcal{O}$. Then for a subset A of the ground set of M the following are equivalent:

- (1) A is a FR-set.
- (2) A is a FF-set and a OFR-set.
- (3) A is a OFR-set and $E \setminus A$ is a FP-set.

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (1) By Theorem 5 A is a FF-set, since $E \setminus A$ is a FP-set and A is a OFF-set. On the other hand A is a FO-set, since it is a OFR-set. Thus A is a FR-set, being both FO- and FF-set.

Definition 3 A subset A of the ground set of a matroid M is called an inner-flat (=IFset) if A^o is a flat in M|A. If $A \subseteq \overline{A}$, then A is called prespanning.

Lemma 3 In a matroid $M = (E, \mathcal{O})$, if a subset $A \subseteq E$ is a prespanning set and a OFF-set, then A is open.

Proof. Since A is a OFF-set, we have $A = O \cap S$ where O is open and $\overline{\tilde{S}} = \overset{o}{S}$. Because A is prespanning, we have

$$A \subseteq \stackrel{o}{\overline{A}} = \stackrel{o}{\overline{(O \cap S)}} \subseteq (\overline{O} \cap \overline{S})^o \subseteq \stackrel{o}{\overline{O}} \cap \stackrel{o}{\overline{S}} = \stackrel{o}{\overline{O}} \cap \stackrel{o}{S}.$$

Hence

$$A = O \cap S = (O \cap S) \cap O \subseteq (\overset{\circ}{\bar{O}} \cap \overset{\circ}{S}) \cap O = (\overset{\circ}{\bar{O}} \cap O) \cap \overset{\circ}{S} = O \cap \overset{\circ}{S}.$$

Notice $A = O \cap S \supseteq O \cap \overset{o}{S}$, we have $A = O \cap \overset{o}{S}$.

Theorem 7 Let $M = (E, \mathcal{O})$ be a matroid in which every OFR-set is a FO-set and $E \in \mathcal{O}$. Then for a subset A of the ground set of M the following are equivalent:

(1) A is open.

(2) A is a OFR-set and A is either prespanning or a IF-set.

Proof. $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (1)$ If A is prespanning, then since A is also a OFF-set, it follows by Lemma 3 that A is open. If A is a IF-set, then A is again open, since A is also a FO-set.

3. Some peculiar matroids

A matroid $M = (E, \mathcal{O})$ is called *extremally disconnected* (=ED) if every open subset has open closure or equivalently if every RF subset of E is open.

Theorem 8 Let $M = (E, \mathcal{O})$ be an ED matroid in which every OFR-set is a FO-set. If A is a OFR-set, then A is prespanning.

Proof. Let A be a OFR-set. Then A is a FO-set and so $A \subseteq \overline{A^o}$. As A^o is open, by assumption, $\overline{A^o}$ is open and hence $\overline{A^o} = \stackrel{o}{\overline{A^o}}$. Thus $A \subseteq \stackrel{o}{\overline{A^o}} \subseteq \stackrel{o}{\overline{A}}$. Therefore, A is prespanning.

Theorem 9 For a matroid $M = (E, \mathcal{O})$, in which every OFR-set is a FO-set and $E \in \mathcal{O}$, the following are equivalent:

(1) M is ED. (2) O = OFR(M).

(3) Every OFR-set is open.

Proof. (1) \Rightarrow (2) Let A be a OFR-set. By Theorem 8, it follows that A is prespanning, since M is ED. Moreover, A is a OFF-set and since it is prespanning, it follows from Theorem 3 that $A \in \mathcal{O}$. Hence $OFR(M) \subseteq \mathcal{O}$. On the other hand it is obvious that $\mathcal{O} \subseteq OFR(M)$.

 $(2) \Rightarrow (3)$ is obvious.

 $(3) \Rightarrow (1)$ Let A be a RF-set. Then A is a OFR-set. By (3) A is open. So, M is ED.

Theorem 10 For a matroid $M = (E, \mathcal{O})$, in which every OFR-set is a FO-set and $E \in \mathcal{O}$, the following are equivalent:

(1) M is maximal.

- (2) Every prespanning set is a OFR-set.
- (3) Every spanning set is a OFR-set.

Proof. (1) \Rightarrow (2) Let A be a prespanning set. By (1), A is open, since in a maximal matroid every prespanning set is open. Hence A is a OFR-set.

 $(2) \Rightarrow (3)$ Every spanning set is a prespanning set.

 $(3) \Rightarrow (1)$ Let A be a spanning set. By (3), A is a OFR-set. Hence A is both prespanning and a OFF-set. It follows by Theorem 8 that A is open. Thus M is maximal.

A matroid is called a *partition matroid* (=PM) if every open set is a flat.

Theorem 11 If $M = (E, \mathcal{O})$ is a PM, every OFR-set is a flat.

Proof. Let A be a OFR-set. Then A is a OFF-set and hence $A = O \cap B$, where O is open and B is a FF-set. By assumption, O is a flat. On the other hand \overline{B} is open by assumption and thus $\stackrel{o}{\overline{B}} \subseteq B \subseteq \overline{B}$ implies $B = B \stackrel{o}{=} \overline{B}$ and thus B is a flat. Thus A is a flat being the intersection of two flats.

Theorem 12 For a matroid $M = (E, \mathcal{O})$ in which $E \in \mathcal{O}$, the following are equivalent: (1) $M \cong U_{1,n}$ for some positive integer $n \ge 1$.

(2) The only OFF-sets in M are the trivial ones.

(3) The only ORF-sets in M are the trivial ones.

Proof. (1) \Rightarrow (2) If A is a OFF-set, then $A = O \cap B$, where O is open and B is FF-set $(B^o = \overline{B^o})$. If $A \neq \emptyset$, then $O \neq \emptyset$ and by (1) O = E. Thus A = B and so $A^o = (\overline{A})^o = E^o = E$. Hence A = E.

 $(2) \Rightarrow (3)$ Every ORF-set is a OFF-set.

 $(3) \Rightarrow (1)$ Since every open set is a ORF-set, by (3) the only open sets in M are the trivial ones.

Corollary 2 For a matroid $M = (E, \mathcal{O})$ in which $E \in \mathcal{O}$, the following are equivalent:

(1) M ≈ U_{1,n} for some positive integer n ≥ 1.
(2) OFR(M) = {Ø, E}.

Theorem 13 For a matroid $M = (E, \mathcal{O})$, in which every OFR-set is a FO-set and

 $E \in \mathcal{O}$, the following are equivalent:

- (1) M is free.
- (2) Every subset of E is a OFR-set.
- (3) Every singleton is a OFR-set.

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (1)$ Let $e \in E$. By (3), $\{e\}$ is a OFR-set and hence a FO-set. Then $\{e\}$ must contain a non-void open subset. Since the only possibility is $\{e\}$ itself, then each singleton is open or equivalently M is free.

A matroid $M(E, \mathcal{O})$ is called *hyperconnected* if every open set is a spanning set. $M = (E, \mathcal{O})$ is called *feeble-connected* (=FC) if E cannot be expressed as the disjoint union of two non-void FO-sets.

Theorem 14 For a matroid $M = (E, \mathcal{O})$, in which every OFR-set is a FO-set and $E \in \mathcal{O}$, the following are equivalent:

(1) M is hyperconnected.

(2) Every OFR-set is spanning.

Proof. (1) \Rightarrow (2) Let A be a OFR-set. Then A is a FO-set and hence there exists an open set O such that $O \subseteq A \subseteq \overline{O}$. By (1), O is spanning. Hence its superset A is also spanning.

 $(2) \Rightarrow (1)$ Every open set is a OFR-set and hence by (2) spanning.

Theorem 15 For a matroid $M = (E, \mathcal{O})$, in which every OFR-set is a FO-set and $E \in \mathcal{O}$, the following are equivalent:

(1) M is FC.

(2) E is not the union of two disjoint non-void OFR-sets.

Proof. (1) \Rightarrow (2) If *E* is the union of two disjoint non-void OFR-sets, then *M* is not FC, since OFR-sets are FO-sets.

 $(2) \Rightarrow (1)$ If M is not FC, then M has a non-trivial FO-set A with FO complement. Since both A and $B = E \setminus A$ are FR-sets, then A and B are OFR-sets. So E is the union of two disjoint non-void OFR-sets, contradictory to (2).

4. OFR-strong maps

Decompositions of continuous maps have been studied by several authors, see for example [2, 5, 6]. In this section, we study several decompositions of strong maps.

Definition 4 A map $f: M_1 = (E_1, \mathcal{O}_1) \to M_2 = (E_2, \mathcal{O}_2)$ is called ORF-strong (resp. OFF-strong, OFR-strong) if the preimage of every open set in M_2 is a ORF-set (resp. OFF-set, OFR-set) of M_1 . f is hesitant if $f(\underline{A}) \subseteq f(A)$, for every subset $A \subseteq E_1$, see Al-Hawary [1].

All through this section, we only consider matroids in which the ground sets are open and every OFR-set is a FO-set. It is easily observed that f is hesitant if and only

453

if the inverse image of every subset of E_2 is a FR-set in M_1 . The last four following theorems are consequences of results from the beginning of this paper, therefore their proofs are omitted. Theorem 16 gives the relations between OFR-strong maps and other forms of "generalized strong maps". Note that none of the implications in Theorem 16 is reversible. Theorem 17 gives a decomposition of OFR-strong maps, while Theorem 18 gives a decomposition of OFR-strong maps and Theorem 19 gives a decomposition of strong dual to OFR-strong.

Theorem 16 (1) Every ORF-strong map is OFR-strong.

- (2) Every hesitant map is OFR-strong.
- (3) Every OFR-strong map is OFF-strong.
- (4) Every OFR-strong map is feeble-strong.

Theorem 17 For a map $f: M_1 \to M_2$, the following are equivalent:

- (1) f is OFR-strong.
- (2) f is feeble-strong and OFF-strong.
- (3) f is FP-strong and OFF-strong.

Theorem 18 For a map $f: M_1 \to M_2$, the following are equivalent:

- (1) f is ORF-strong.
- (2) f is FP-strong and prespanning-strong.

Theorem 19 For a map $f: M_1 \to M_2$, the following are equivalent:

- (1) f is strong.
- (2) f is OFR-strong and either prestrong or IF-strong.

References

- [1] Al-Hawary, T.A.: Feeble-Matroids, to appear in Italian J. Pure Appl. Math., no. 16.
- [2] Ganster, M. and Reilly, I.: A Decomposition of Continuity, Acta Math. Hung. 56(3-4), 299-301, 1990.
- [3] Kung, J.: A Source Book in Matroid Theory. Birkhäuser Boston Inc. Basel 1986.
- [4] Oxley, J.O.: Matroid Theory. Oxford University Press. Oxford 1992.
- [5] Tong, J.: A Decomposition of Continuity, Acta Math. Hung. 48(1-2), 11-15, 1986.

- [6] Tong, J.: On Decomposition of Continuity in Topological Spaces, Acta Math. Hung. 54(1-2), 51-55, 1989.
- [7] Truemper, K.: Matroid Decomposition, New York, Academic Press INC., 1992.
- [8] White, W.: ed., Matroid Applications, Cambridge, Cambridge University Press, 1992.
- [9] White, W.: ed., Theory of Matroids. New York, Cambridge University Press., 1986.

Talal Ali AL-HAWARY Department of Mathematics & Statistics Mu'tah University P. O. Box 6, Karak-JORDAN Received 04.04.2001