Fuzzy Maximal Ideals of Gamma Near-Rings^{*}

Young Bae Jun, Kyung Ho Kim and Mehmet Ali Öztürk

Abstract

Fuzzy maximal ideals and complete normal fuzzy ideals in Γ -near-rings are considered, and related properties are investigated.

Key words and phrases: (normal) fuzzy ideal, fuzzy maximal ideal, complete normal fuzzy ideal.

1. Introduction

Γ-near-rings were defined by Satyanarayana [16], and the ideal theory in Γ-near-rings was studied by Satyanarayana [16] and Booth [1]. Fuzzy ideals of rings were introduced by Liu [11], and it has been studied by several authors [2, 8, 9, 17]. The notion of fuzzy ideals and its properties were applied to various areas: semigroups [10, 12, 4], BCKalgebras [7, 14], and semirings [5]. In [6], Jun et al. considered the fuzzification of left (resp. right) ideals of Γ-near-rings, and investigated the related properties. Jun et al. [3] also introduced the notion of fuzzy characteristic left (resp. right) ideals and normal fuzzy left (resp. right) ideals of Γ-near-rings, and studied some of their properties. As a continuation of the papers [6] and [3], we state fuzzy maximal ideals and complete normal fuzzy ideals in Γ-near-rings, and investigate its properties.

2. Preliminaries

We first recall some basic concepts for the sake of completeness. Recall from [13, p. 3] that a non-empty set R with two binary operations "+" (addition) and "." (multiplication) is called a *near-ring* if it satisfies the following axioms:

- (i) (R, +) is a group,
- (ii) (R, \cdot) is a semigroup,

²⁰⁰⁰ Mathematics Subject Classification: $16{\rm Y}30,\,03{\rm E}72.$

 $^{^{*}\}mathrm{This}$ paper is dedicated to the memory of Prof. Dr. Mehmet Sapanci.

(iii) $(x+y) \cdot z = x \cdot z + y \cdot z$ for all $x, y, z \in R$.

Precisely speaking, it is a right near-ring because it satisfies the right distributive law. We will use the word "near-ring" to mean "right near-ring". We denote xy instead of $x \cdot y$.

A Γ -near-ring ([16]) is a triple $(M, +, \Gamma)$ where

(i) (M, +) is a group,

(ii) Γ is a nonempty set of binary operators on M such that for each $\alpha \in \Gamma$, $(M, +, \alpha)$ is a near-ring,

(iii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

A subset A of a Γ -near-ring M is called a *left* (resp. *right*) *ideal* of M if

(i) (A, +) is a normal divisor of (M, +),

(ii) $u\alpha(x+v) - u\alpha v \in A$ ($x\alpha u \in A$) for all $x \in A$, $\alpha \in \Gamma$ and $u, v \in M$.

We now review some fuzzy logic concepts. A fuzzy set in a set M is a function $\mu : M \to [0,1]$. We shall use the notation $U(\mu;t)$, called a *level subset* of μ , for $\{x \in M \mid \mu(x) \ge t\}$ where $t \in [0,1]$.

3. Fuzzy maximal ideals of Γ -near-rings

In what follows let M denote a Γ -near-ring unless otherwise specified.

Definition 3.1 (Jun et al. [6]). A fuzzy set μ in M is called a *fuzzy left* (resp. *right*) *ideal* of M if

(i) μ is a fuzzy normal divisor with respect to the addition,

(ii) $\mu(u\alpha(x+v) - u\alpha v) \ge \mu(x)$ (resp. $\mu(x\alpha u) \ge \mu(x)$) for all $x, u, v \in M$ and $\alpha \in \Gamma$.

The condition (i) of Definition 3.1 means that μ satisfies:

- (i) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\},\$
- (ii) $\mu(y + x y) \ge \mu(x)$,

for all $x, y \in M$.

Note that if μ is a fuzzy left (resp. right) ideal of M, then $\mu(0) \ge \mu(x)$ for all $x \in M$, where 0 is the zero element of M. Note also that if μ is a fuzzy left (resp. right) ideal of M, then the set

$$M_{\mu} := \{ x \in M \mid \mu(x) = \mu(0) \}$$

is a left (resp. right) ideal of M (see [6]).

From now on, a (fuzzy) ideal shall mean a (fuzzy) left ideal. For a fuzzy ideal μ of M, we note that $\mu(0)$ is the largest value of μ . It is often convenient to have $\mu(0) = 1$.

Definition 3.2 (Jun et al. [3, Definition 3.16]). A fuzzy ideal μ of M is said to be

normal if $\mu(0) = 1$.

Lemma 3.3 (Jun et al. [3]). For an ideal A of M, if we define a fuzzy set in M by

$$\mu_A(x) := \begin{cases} 1 & \text{if } x \in A, \\ 0 & \text{otherwise} \end{cases}$$

for all $x \in M$, then μ_A is a normal fuzzy ideal of M and $M_{\mu_A} = A$.

Theorem 3.4. Let A and B be ideals of M. Then $A \subseteq B$ if and only if $\mu_A \subseteq \mu_B$. **Proof.** Straightforward.

Proposition 3.5. If μ and ν are normal fuzzy ideals of M, then $\mu \cap \nu$. is an ideal **Proof.** Straightforward.

Lemma 3.6 (Jun et al. [3, Theorem 3.17]). Let μ be a fuzzy ideal of M and let μ^* be a fuzzy set in M defined by $\mu^*(x) = \mu(x) + 1 - \mu(0)$ for all $x \in M$. Then μ^* is a normal fuzzy ideal of M containing μ .

Lemma 3.7 (Jun et al. [3, Corollary 3.18]). If μ is a fuzzy ideal of M satisfying $\mu^*(x) = 0$ for some $x \in M$, then $\mu(x) = 0$.

Lemma 3.8 (Jun et al. [3, Theorem 3.22]). Any fuzzy ideal μ of M is normal if and only if $\mu^* = \mu$.

Using a given fuzzy ideal μ of M, we will construct a new fuzzy ideal. Let t > 0 be a real number, and define a mapping $\mu^t : M \to [0,1]$ by $\mu^t(x) = (\mu(x))^t$ for all $x \in M$, where $(\mu(x))^t = \sqrt[2t]{\mu(x)}$ when 0 < t < 1.

Theorem 3.9. Let t > 0 be a real number. If μ is a normal fuzzy ideal of M, then μ^t is also a normal fuzzy ideal of M and $M_{\mu^t} = M_{\mu}$.

Proof. For any $x, y \in M$, we have

$$\begin{aligned} \mu^t(x-y) &= (\mu(x-y))^t \geq (\min\{\mu(x), \mu(y)\})^t \\ &= \min\{(\mu(x))^t, (\mu(y))^t\} = \min\{\mu^t(x), \mu^t(y)\} \end{aligned}$$

and $\mu^t(y+x-y) = (\mu(y+x-y))^t \ge (\mu(x))^t = \mu^t(x)$. Let $x, u, v \in M$ and $\alpha \in \Gamma$. Then

$$\mu^t (u\alpha(x+v) - u\alpha v) = (\mu(u\alpha(x+v) - u\alpha v))^t \\ \ge (\mu(x))^t = \mu^t(x).$$

Note that $\mu^t(0) = (\mu(0))^t = 1^t = 1$. Hence μ^t is a normal fuzzy ideal of M. Now

$$M_{\mu^{t}} = \{x \in M \mid \mu^{t}(x) = \mu^{t}(0)\} \\ = \{x \in M \mid (\mu(x))^{t} = 1\} \\ = \{x \in M \mid \mu(x) = 1\} \\ = \{x \in M \mid \mu(x) = \mu(0)\} \\ = M_{\mu}.$$

This completes the proof.

Let $\mathcal{I}(M)$ (resp. $\mathcal{N}(M)$) denote the set of all ideals (resp. normal fuzzy ideals) of M. We define functions $\phi : \mathcal{I}(M) \to \mathcal{N}(M)$ and $\psi : \mathcal{N}(M) \to \mathcal{I}(M)$ by $\phi(A) = \mu_A$ and $\psi(\mu) = M_{\mu}$, respectively, for all $A \in \mathcal{I}(M)$ and $\mu \in \mathcal{N}(M)$. Then $\psi \phi = 1_{\mathcal{I}(M)}$ and $\phi \psi(\mu) = \phi(M_{\mu}) = \mu_{M_{\mu}} \subseteq \mu$.

Theorem 3.10. If $A, B \in \mathcal{I}(M)$, then $\mu_{A \cap B} = \mu_A \cap \mu_B$, that is, $\phi(A \cap B) = \phi(A) \cap \phi(B)$. If $\mu, \nu \in \mathcal{N}(M)$, then $M_{\mu \cap \nu} = M_{\mu} \cap M_{\nu}$, that is, $\psi(\mu \cap \nu) = \psi(\mu) \cap \psi(\nu)$.

Proof. Let $x \in M$. If $x \in A \cap B$, then $\mu_{A \cap B}(x) = 1$. From $x \in A$ and $x \in B$ it follows that $\mu_A(x) = 1 = \mu_B(x)$. Hence

$$\mu_{A \cap B}(x) = 1 = \min\{\mu_A(x), \mu_B(x)\} = (\mu_A \cap \mu_B)(x).$$

If $x \notin A \cap B$, then $x \notin A$ or $x \notin B$. Thus

$$\mu_{A \cap B}(x) = 0 = \min\{\mu_A(x), \mu_B(x)\} = (\mu_A \cap \mu_B)(x).$$

Therefore $\mu_{A\cap B} = \mu_A \cap \mu_B$, and so $\phi(A \cap B) = \phi(A) \cap \phi(B)$ for all $A, B \in \mathcal{I}(M)$. Now let $\mu, \nu \in \mathcal{N}(M)$. Then

$$M_{\mu\cap\nu} = \{x \in M \mid (\mu \cap \nu)(x) = (\mu \cap \nu)(0)\} \\ = \{x \in M \mid \min\{\mu(x), \mu(y)\} = 1\} \\ = \{x \in M \mid \mu(x) = 1 \text{ and } \nu(x) = 1\} \\ = \{x \in M \mid \mu(x) = 1\} \cap \{x \in M \mid \nu(x) = 1\} \\ = \{x \in M \mid \mu(x) = \mu(0)\} \cap \{x \in M \mid \nu(x) = \nu(0)\} \\ = M_{\mu} \cap M_{\nu},$$

that is, $\psi(\mu \cap \nu) = M_{\mu \cap \nu} = M_{\mu} \cap M_{\nu} = \psi(\mu) \cap \psi(\nu)$. This completes the proof.

Definition 3.11. A fuzzy ideal μ of M is said to be *fuzzy maximal* if it satisfies:

(i) μ is non-constant,

(ii) μ^* is a maximal element of $(\mathcal{N}(M), \subseteq)$.

460

Lemma 3.12 (Jun et al. [3, Theorem 3.28]). Let μ be a non-constant normal fuzzy ideal of M, which is maximal in the poset of normal fuzzy ideals under set inclusion. Then μ takes only the values 0 and 1.

Theorem 3.13. If μ is a fuzzy maximal ideal of M, then

- (i) μ is normal,
- (ii) μ^* takes only the values 0 and 1,
- (iii) $\mu_{M_{\mu}} = \mu$,
- (iv) M_{μ} is a maximal ideal of M.

Proof. Let μ be a fuzzy maximal ideal of M. Then μ^* is a non-constant maximal element of the poset $(\mathcal{N}(M), \subseteq)$. It follows from Lemma 3.12 that μ^* takes only the values 0 and 1. Note that $\mu^*(x) = 1$ if and only if $\mu(x) = \mu(0)$, and $\mu^*(x) = 0$ if and only if $\mu(x) = \mu(0) - 1$. By Lemma 3.7, we have $\mu(x) = 0$, that is, $\mu(0) = 1$. Hence μ is normal. This proves (i) and (ii).

(iii) Clearly, $\mu_{M_{\mu}} \subseteq \mu$ and $\mu_{M_{\mu}}$ takes only the values 0 and 1. Let $x \in M$. If $\mu(x) = 0$, then obviously $\mu \subseteq \mu_{M_{\mu}}$. If $\mu(x) = 1$, then $x \in M_{\mu}$ and so $\mu_{M_{\mu}}(x) = 1$. This shows that $\mu \subseteq \mu_{M_{\mu}}$.

(iv) M_{μ} is a propser ideal of M because μ is non-constant. Let A be an ideal of M such that $M_{\mu} \subseteq A$. Using (iii) and Theorem 3.4, we have $\mu = \mu_{M_{\mu}} \subseteq \mu_A$. Since $\mu, \mu_A \in \mathcal{NN}(M)$ and $\mu = \mu^*$ is a maximal element of $\mathcal{N}(M)$, it follows that either $\mu = \mu_A$ or $\mu_A = \mathbf{1}$ where $\mathbf{1} : M \to [0, 1]$ is a fuzzy set defined by $\mathbf{1}(x) = 1$ for all $x \in M$. The later case implies that A = M. If $\mu = \mu_A$, then $M_{\mu} = M_{\mu_A} = A$ by Lemma 3.3. This proves that M_{μ} is a maximal ideal of M. This completes the proof. \Box

Definition 3.14. A normal fuzzy ideal μ of M is said to be *complete* if there exists $c \in M$ such that $\mu(c) = 0$.

Note that μ_A is a complete normal fuzzy ideal of M for every ideal A of M.

Denote by $\mathcal{C}(M)$ the set of all complete normal fuzzy ideals of M. Note that $\mathcal{C}(M) \subseteq \mathcal{N}(M)$ and the restriction of the partial ordering " \subseteq " of $\mathcal{N}(M)$ gives a partial ordering of $\mathcal{C}(M)$.

Theorem 3.15. Every non-constant maximal element of $(\mathcal{N}(M), \subseteq)$ is also a maximal element of $(\mathcal{C}(M), \subseteq)$.

Proof. Let μ be a non-constant maximal element of $(\mathcal{N}(M), \subseteq)$. By Lemma 3.12, μ takes only the values 0 and 1, and in fact $\mu(0) = 1$ and $\mu(c) = 0$ for some $c \neq 0 \in M$.

Hence μ is complete. Assume that there exists $\nu \in \mathcal{C}(M)$ such that $\mu \subseteq \nu$. It follows that $\mu \subseteq \nu$ in $\mathcal{N}(M)$. Since μ is maximal in $(\mathcal{N}(M), \subseteq)$ and since ν is non-constant, therefore $\mu = \nu$. Thus μ is a maximal element of $(\mathcal{C}(M), \subseteq)$.

Theorem 3.16. Every fuzzy maximal ideal of M is complete normal.

Proof. Let μ be a fuzzy maximal ideal of M. By Theorem 3.13 and Lemma 3.8, μ is normal and $\mu = \mu^*$ takes only the values 0 and 1. Since μ is non-constant and $\mu(0) = 1$, it is clear that there exists $c \neq 0 \in M$ such that $\mu(c) = 0$. Hence μ is complete. This completes the proof.

Acknowledgement

The authors are deeply grateful to the referee for the valuable suggestions.

References

- [1] G. L. Booth, A note on Γ-near-rings, Stud. Sci. Math. Hung. 23 (1988), 471-475.
- [2] V. N. Dixit, R. Kumar and N. Ajal, On fuzzy rings Fuzzy Sets and Systems, 49 (1992), 205-213.
- [3] Y. B. Jun, K. H. Kim and M. A. Ozturk, On fuzzy ideals of gamma near-rings, J. Fuzzy Math. 9(1) (2001), 51-58.
- [4] Y. B. Jun and S. Lajos, Fuzzy (1,2)-ideals in semigroups, PU. M. A. 8(1) (1997), 67-74.
- [5] Y. B. Jun, J. Neggers and H. S. Kim, Normal L-fuzzy ideals in semirings, Fuzzy Sets and Systems 82 (1996), 383-386.
- [6] Y. B. Jun, M. Sapanci and M. A. Ozturk, Fuzzy ideals in gamma near-rings, Tr. J. of Mathematics 22 (1998), 449-459.
- [7] Y. B. Jun and E. H. Roh, *Fuzzy commutative ideals of BCK-algebras*, Fuzzy Sets and Systems 64 (1994), 401-405.
- [8] R. Kumar, Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems 42 (1991), 369-379.
- [9] R. Kumar, Certain fuzzy ideals of rings redefined, Fuzzy Sets and Systems 46 (1992), 251-260.
- [10] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5 (1981), 203-205.
- [11] W. Liu, Fuzzy invariant subgroups and fuzzy ideals, Fuzzy Sets and Systems 8 (1982), 133-139.

- [12] R. G. Mclean and H. Kummer, Fuzzy ideals in semigroups, Fuzzy Sets and Systems 48 (1992), 137-140.
- [13] J. D. P. Meldrum, Near-rings and their links with groups, Pitman Advanced Publishing Program, Boston-London-Melbourne 1985.
- [14] J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems 89 (1997), 243-248.
- [15] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.
- [16] Bh. Satyanarayana, Contributions to near-ring theory, Doctoral Thesis, Nagarjuna Univ. 1984.
- [17] Z. Yue, Prime L-fuzzy ideals and primary L-fuzzy ideals, Fuzzy Sets and Systems 27 (1988), 345-350.

Received 16.08.2000

Y. B. JUN Department of Mathematics Education, Gyeongsang National University, Chinju 660-701-KOREA K. H. KIM Department of Mathematics, Chungju National University, Chungju 380-702-KOREA M. A. ÖZTÜRK Department of Mathematics, Faculty of Arts and Science, Cumhuriyet University, 58140 Sivas-TURKEY