Turk J Math 25 (2001) , 465 – 474. © TÜBİTAK

A General Fixed Point Theorem for Weakly Compatible Mappings in Compact Metric Spaces

Valeriu Popa

Abstract

A general fixed point theorem for weakly compatible mappings satisfying an implicit relation in compact metric spaces is proved generalizing the results by [1],[3],[13],[14] and others.

Key words and phrases: compact metric space, compatible mappings of type (A), compatible mappings of type (P), compatible mappings, weakly compatible mappings, implicit relation.

1. Introduction

Let S and T be self mappings of a metric space (X,d). Sessa [11] defines S and T to be weakly commuting if $d(STx, TSx) \leq d(Tx, Sx)$ for all x in X. Jungck [2] defines S and T to be compatible if

$$\lim d(STx_n, TSx_n) = 0$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim Sx_n = \lim Tx_n = t$$

for some $t \in X$. Clearly, commuting mappings are weakly commuting and weakly commuting mappings are compatible, but neither implications is reversible [12, Ex.1] and

AMS Mathematics Subject 'Classification' (2000):54H25,47H10

[2,Ex.2.2]. Recently, Jungck et al. [5] defines S and T to be compatible of type (A) if

$$\lim d(TSx_n, SSx_n) = 0$$

and

$$\lim d(STx_n, TTx_n) = 0$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim Sx_n = \lim Tx_n = t$$

for some $t \in X$. Clearly, weakly commuting mappings are compatible of type (A). By [5, Ex.2.2] follows that the implication is not reversible. By [5, Ex.2.1 and 2.2] follows that the notions of compatible mappings and compatible mappings of type (A) are independent. In [10] the concept of compatible mappings of type (P) was introduced and compared with compatible mappings of type (A) and compatible mappings. S and T are compatible of type (P) if

$$\lim d(SSx_n, TTx_n) = 0$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim Sx_n = \lim Tx_n = t$$

for some $t \in X$.

Lemma 1 [2] (resp. [5],[9]). Let f and g be compatible (resp. compatible of type (A),compatible of type (P)) self mappings on a metric space (X,d). If f(t)=g(t) for some $t \in X$, then fg(t)=gf(t).

Lemma 2 [5] (resp. [9]). Let $S, T : (X, d) \to (X, d)$ be continuous mappings. Then S and T are compatible if and only if they are compatible of type (A) (resp. compatible of type (P)).

In 1994, Pant [6] introduced the notion of R-weakly commuting mappings. Two self mappings A and S of a metric space (X,d) are called R-weakly commuting at a point $x \in X$ if $d(ASx, SAx) \leq Rd(Ax, Sx)$ for some R > 0. The mappings A and S are called pointwise R-weakly commuting on X if given x in X there exists R > 0 such that

 $d(ASx, SAx) \leq Rd(Ax, Sx)$. It is proved in [7] that the notion of pointwise R-weak commutativity is equivalent to commutativity in coincidence points.

Recently,Jungck [4] defined S and T to be weakly compatible if Sx=Tx implies STx=TSx. Thus S and T are weakly compatible if and only if S and T are pointwise R-weakly commuting mappings. However as shown in [8] there exist weakly compatible mappings which are not compatible.

By Lemma 1 it follows that if S and T are compatible (resp. compatible of type (A),compatible of type (P)) then S and T are weakly compatible.

The following example from [8] is an example of a weakly compatible mappings which are not compatible of type (A) (resp. compatible of type (P)).

Let X=[2,20] with the usual metric. Define

1

$$T = \begin{cases} 2 \text{ if } x = 2\\ 12 + x \text{ if } 2 < x \le 5\\ x - 3 \text{ if } x > 5 \end{cases}; S = \begin{cases} 2 \text{ if } x \in 2 \cup (5, 20]\\ 8 \text{ if } 2 < x \le 5 \end{cases}$$

S and T are weakly compatible since they commute at their coincidence points. To see that S and T are not compatible of type (A)(resp. compatible of type (P)) let us consider a decreasing sequence $\{x_n\}$ such that

$$\lim x_n = 5$$

Then $Tx_n = x_n - 3 \rightarrow 2$; $Sx_n = 2$; $STx_n = S(x_n - 3) = 8$ and $TTx_n = T(x_n - 3) = 12 + x_n - 3 \rightarrow 14$, that is

$$\lim d(STx_n, TTx_n) = 6 \neq 0$$

and hence S and T are noncompatible of type (A). $SSx_n = S(2) = 2$ and

$$\lim d(SSx_n, TTx_n) = d(2, 14) = 12 \neq 0$$

and hence S and T are noncompatible of type (P).

Lemma 3. Two continuous self maps of a compact metric space are compatible (resp.compatible of type (A),compatible of type (P)) if and only if they are weakly compatible.

2. Implicit Relations

Let \mathcal{F}^* be the set of real functions $F(t_1, ..., t_6) : R^6_+ \to R$ satisfying the following conditions:

 $(F_1^*): F$ is non increasing in variables t_5 and t_6 ,

 (F_2^*) : For every $u \ge 0, v > 0$

$$\begin{split} (F_a^*) &: F(u, v, v, u, u+v, 0) < 0 \text{ or} \\ (F_b^*) &: F(u, v, u, v, o, u+v) < 0 \end{split}$$

we have u < v.

 $(F_3^*): F(u, u, o, o, u, u) \ge 0, \forall u > 0.$ Ex.1. $F(t_1, ..., t_6) = t_1 - max\{t_2, t_3, t_4, \frac{1}{2}(t_5 + t_6)\}.$ (F_1^*) : Obviously. (F_2^*) : Let u > 0, v > 0 and $F(u, v, v, u, u + v, 0) = u - max\{u, v, \frac{1}{2}(u + v)\} < 0$. If $u \ge v$, then u < u, a contradiction. Thus u < v. If u = 0, v > 0, then u < v. Similary, if F(u, v, u, v, o, u + v) < 0 then u < v. $(F_3^*): F(u, u, o, o, u, u) = 0, \forall u > 0.$ Ex.2: $F(t_1, ..., t_6) = t_1^2 - c_1 max\{t_2^2, t_3^2, t_4^2\} - c_2 max\{t_3t_5, t_4t_6\} - c_3t_5t_6$ where $c_1 + 2c_2 \le 1$, $c_1 + c_3 \le 1$ and $c_1, c_2, c_3 \ge 0$. (F_1^*) : Obviously. (F_2^*) : Let u > 0, v > 0 and $F(u, v, v, u, u + v, o) = u^2 - c_1 max \{u^2, v^2\} - c_2 max \{v(u + v, v), u, u + v, o\} = u^2 - c_1 max \{u^2, v^2\} - c_2 max \{v(u + v, v), u, u + v, o\}$ v, 0 < 0. If $u \ge v$ then $u^2(1 - (c_1 + 2c_2)) < 0$, a contradiction. Thus u < v. If u = 0, v > 0, then u < v. Similary, F(u, v, u, v, o, u + v) < 0 implies u < v. $(F_3^*): F(u, u, 0, 0, u, u) = u^2(1 - (c_1 + c_3)) \ge 0, \forall u > 0.$ Ex.3. $F(t_1,...,t_6) = (1+pt_2)t_1 - pmax\{t_3t_4,t_5t_6\} - max\{t_2,t_3,t_4,\frac{1}{2}(t_5+t_6)\}$ where p > 0. (F_1^*) : Obviously. (F_2^*) : Let u > 0, v > 0 and $F(u, v, v, u, u+v, o) = (1+pv)u - puv - max\{u, v, \frac{1}{2}(u+v)\} < 0.$ If $u \ge v$, then u < u, a contradiction. Hence u < v. If u = 0, v > 0, then u < v. Similary, F(u, v, u, v, o, u + v) < 0 implies u < v. $(F_3^*): F(u, u, o, o, u, u) = (1 + pu)u - pu^2 - u = 0, \forall u > 0.$

Ex.4. $F(t_1, ..., t_6) = t_1 - max\{t_2, t_3, t_4, \frac{1}{2}(t_5 + t_6), b\sqrt{t_5t_6}\}, \text{ where } 0 < b < 1.$ (F_1^*) : Obviously. (F_2^*) : As in Ex.1. $(F_3^*): F(u, u, o, o, u, u) = u - max\{u, bu\} = u(1-b) \ge 0, \forall u > 0.$ Ex.5. $F(t_1, ..., t_6) = t_1^3 - at_1^2 t_2 - bt_1 t_3 t_4 - ct_5^2 t_6 - dt_5 t_6^2$, where $a, b, c, d \ge 0$ and a + b + c + d < 01. (F_1^*) : Obviously. (F_2^*) : Let u > 0, v > 0 and $F(u, v, v, u, u + v, 0) = u^3 - au^2v - bu^2v = u^2(u - (a + b)v) < 0$ which implies u < (a+b)v < v. If u = 0, v > 0 then u < v. Similary F(u, v, u, v, o, u+v) < v0 implies u < v. $(F_3): F(u, u, o, o, u, u) = u^3(1 - (a + c + d)) \ge 0, \forall u > 0$ Ex.6. $F(t_1, ..., t_6) = t_1^3 - c \frac{t_3^2 t_4^2 + t_5^2 t_6^2}{t_2 + t_3 + t_4 + 1}$, where $c \in (0, 1)$. (F_1^*) : Obviously. (F_2) : Let u > 0, v > 0 and $F(u, v, v, u, u, u + v, o) = u^3 - c \frac{u^2 v^2}{1 + 2v + u} < 0$. Then $u < \frac{cv^2}{2v+u+1} < cv < v$. If u = 0, v > 0 then u < v. Similarly, if F(u, v, u, v, o, u + v) < 0 then u < v. $(F_3): F(u, u, o, o, u, u) = u^3 \frac{(1-c)u+1}{u+1} > 0, \forall u > 0.$

3. Main Result

The following theorems are proved in [1], [3], [13] and [14].

Theorem 1. [1]. Let (X,d) be a compact metric space and let S and T be continuous self maps of X satisfying

 $(1)(1+pd(x,y))d(Sx,Ty) < pmax\{d(x,Sx)d(y,Ty),d(x,Ty)d(y,Sx)\}$

 $+ \max\{d(x, y), d(x, Sx), d(y, Ty), \frac{1}{2}(d(x, Ty) + d(y, Sx))\}$

for all x,y in X for which the right hand side of (1) is positive, where $p \ge 0$. Then S and T have a unique common fixed point.

Theorem 2. [2]. Let A,B,S,T be continuous self mappings of a compact metric space with $A(X) \subset T(X)$ and $B(X) \subset S(X)$. If $\{A, S\}$ and $\{B, T\}$ are compatible pairs and (2) $d(Ax, By) < max\{d(Sx, Ty), d(Ax, Sx), d(By, Ty), \frac{1}{2}(d(Ax, Ty) + d(By, Sx))\}$

for all x,y in X for which the right hand side of (2) is positive. Than A,B,S,T have a unique common fixed point.

Theorem 3. [13]. Let A,B,S and T be continuous self maps of a compact metric space (X,d) with $A(X) \subset T(X)$ and $B(X) \subset S(X)$. If $\{A, S\}$ and $\{B, T\}$ are compatible pairs and

$$(3) \ d^{2}(Ax, By) < cmax\{d^{2}(Sx, Ax), d^{2}(Ty, By), d^{2}(Sx, Ty)\}, \frac{1}{2}(1 - c)max\{d(Sx, Ax)d(Sx, By), d(Ax, Ty)d(By, Ty)\} + (1 - c)d(Sx, By)d(Ty, Ax)\}$$

for all x,y in X for which the right hand side of (3) is positive, where $c \in (0, 1)$. Then A,B,S and T have a common fixed point z.

Further, z is the unique common fixed point of A and S and of B and T.

Theorem 4. [14]. Let S and T be continuous self mappings of a compact metric space (X,d) satisfying inequality

$$(4)d(Sx,Ty) < max\{d(x,y), d(x,Sx), d(y,Ty), \frac{1}{2}d(x,Ty) + d(y,Sx)\},$$

 $b\sqrt{d(x,Ty)d(y,Sx)}$

for all x,y in X for which the right hand side of (4) is positive, where b > 0. Then S and T have a common fixed point. Further, if b < 1, then the common fixed point is unique.

The purpose of this paper is to prove a general fixed point theorem for weakly compatible mappings in compact metric spaces which generalizes Theorems 1-4 and others.

Theorem 5. Let f,g,I,J be self maps of a compact metric space (X,d) such that:

 $(a)f(X) \subset J(X) \text{ and } g(X) \subset I(X),$

(b)F(d(fx,gy),d(Ix,Jy),d(Ix,fx),d(Jy,gy),d(Ix,gy),d(Jy,fy)) < 0

for all x,y in X for which one of d(Ix,Jy), d(Ix,fx), d(Jy,gy) is positive, where $F \in \mathcal{F}^*$

(c) The pair $\{f, I\}$ is compatible (resp. compatible of type (A),compatible of type (P)) and the pair $\{g, J\}$ is weakly compatible,

(d) The functions f and I are continuous,

then f,g,I and J have a unique common fixed point z. Further z is the unique common fixed point of f and I and of g and J.

Proof. Let $m = inf\{d(fx, Ix) : x \in X\}$. Since X is compact metric space there is a convergent sequence $\{x_n\}$ with

$$\lim x_n = x_0$$

in X such that

$$\lim d(Ix_n, fx_n) = m.$$

Since

 $d(Ix_0, fx_0) \leq d(Ix_0, Ix_n) + d(Ix_n, fx_n) + d(fx_n, fx_0)$ then by continuity of f and I and

$$\lim x_n = x_0$$

we get $d(Ix_0, fx_0) \leq m$ and thus $d(Ix_0, fx_0) = m$. Since $f(X) \subset J(X)$, there exists a point y_0 in X such that $Jy_0 = fx_0$ and thus $d(Ix_0, Jy_0) = m$. Suppose that m > 0. Then by (b) we have successively $F(d(fx_0, gy_0), d(Ix_0, Jy_0), d(Ix_0, fx_0), d(Jy_0, gy_0), d(Ix_0, gy_0), d(Jy_0, fx_0)) < 0$ $F(d(Jy_0, gy_0), m, m, d(Jy_0, gy_0), d(Ix_0, Jy_0) + d(Jy_0, gy_0), 0) < 0$ $F(d(Jy_0, gy_0), m, m, d(Jy_0, gy_0), m + d(Jy_0, gy_0), 0) < 0$ By (F_a^*) follows that

$$(5)d(Jy_0, gy_0) < m.$$

Since $g(X) \subset I(X)$, then there is a point z_0 in X such that $Iz_0 = gy_0$ and thus $d(Iz_0, Jy_0) < m$. Since $d(Iz_0, fz_0) \ge m > 0$, by (b), we have $F(d(fz_0, gy_0), d(Iz_0, Jy_0), d(Iz_0, fz_0), d(Jy_0, gy_0), d(Iz_0, gy_0), d(Jy_0, fz_0)) < 0$

 $F(d(Iz_0, fz_0), d(Jy_0, gy_0), d(Iz_0, fz_0), d(Jy_0, g(y_0)), 0, d(Jy_0, gy_0) + d(gy_0, fz_0)) < 0$

 $F(d(Iz_0, fz_0), d(Jy_0, gy_0), d(Iz_0, fz_0), d(Jy_0, g(y_0)), 0, d(Jy_0, gy_0) + d(Iz_0, fz_0)) < 0$

By (F_b^*) follows that

$$(6)d(Iz_0, fz_0) < d(Jy_0, gy_0)$$

Then, by (5) and (6) we obtain

 $m \le d(Iz_0, fz_0) < d(Jy_0, gy_0) < m$. Thus m < m, a contradiction. Therefore, m = 0 which implies

$$(7)Ix_0 = Jy_0 = fx_0.$$

If $d(Jy_0, gy_0) > 0$, then by (b) we have successively $F(d(fx_0, gy_0), d(Ix_0, Jy_0), d(Ix_0, fx_0), d(Jy_0, gy_0), d(Ix_0, gy_0), d(Jy_0, fx_0)) < 0$, $F(d(Jy_0, gy_0), 0, 0, d(Jy_0, gy_0), d(Jy_0, gy_0), 0) < 0$ which implies by (F_a^*) that $d(Jy_0, gy_0) < 0$, a contradiction. Thus $d(Jy_0, gy_0) = 0$, which implies $Jy_0 = gy_0$. Therefore,

$$(8)Ix_0 = fx_0 = Jy_0 = gy_0.$$

Since I and f are compatible (resp.compatible of type (A), compatible of type (P)) and $Ix_0 = fx_0$, by Lemma 1 $Ifx_0 = fIx_0$. By (8)

$$f^2 x_0 = f I x_0 = I f x_0 = I^2 x_0.$$

If $I^2 x_0 \neq I x_0$ then $If x_0 \neq J y_0$ and by (b) we have successively $F(d(f^2 x_0, gy_0), d(If x_0, Jy_0), d(If x_0, f^2 x_0), d(Jy_0, gy_0), d(If x_0, gy_0), d(Jy_0, If x_0)) < 0$, $F(d(f^2 x_0, Ix_0), d(I^2 x_0, Ix_0), 0, 0, d(I^2 x_0, Ix_0), d(I^2 x_0, Ix_0)) < 0$ a contradiction of (F_3^*) . Therefore, $Ix_0 = I^2 x_0$. Hence

$$(9)fIx_0 = Ix_0 = I^2x_0.$$

Similary, we have

$$(10)gJy_0 = Jy_0 = J^2y_0.$$

Let $u = Ix_0 = Jy_0$. Then $fu = fIx_0 = Ifx_0 = I^2x_0 = Iu$, which implies fu = Iu. Similary, gu = Ju. Since $u = Ix_0 = I^2x_0$, then Iu = u. Similary, Ju = u. Therefore,

$$(11)f(u) = u = Iu = Ju = gu$$

and u is a common fixed point of f,g,I and J.

Suppose that g and J have another common fixed point $v \neq u$, then $d(u, v) \neq 0$ and by (b) we have successively

$$F(d(fu,gv),d(Iu,Jv),d(Iu,fu),d(Jv,gv),d(Iu,gv),d(Jv,fu))<0$$

F(d(u, v), d(u, v), 0, 0, d(u, v), d(u, v)) < 0, a contradiction of (F_3^*) .

Thus u = v. Similarly, u is unique common fixed point of f and I.

Corollary 1. Let f,g,I,J be self maps of a compact metric space (X,d) such that $a)f(X) \subset J(X)$ and $g(X) \subset I(X)$,

 $\begin{aligned} &(b')(1+pd(Ix,Jy))d(fx,gy) < pmax\{d(Ix,fx)d(Jy,gy),d(Ix,gy)d(Jy,fx)\} \\ &+ max\{d(Ix,Jy),d(Ix,fx),d(Jy,gy),\frac{1}{2}(d(Ix,gy)+d(Jy,fx))\} \end{aligned}$

for all x,y in X for which the right hand side of (b') is positive, where p > 0.

c) the pair $\{f, I\}$ is compatible (resp. compatible of type (A), compatible of type (P))

and the pair $\{g, J\}$ is weakly compatible,

d) f and I are continuous,

then f,g,I and J have a unique common fixed point.

Proof. Follows from Theorem 5 and Ex.3.

Remark. If I = J = id, by Corollary 1, Theorem 1 follows.

Corollary 2. Theorem 2.

Proof. Follows from Theorem 5 and Ex.1.

Corollary 3. Theorem 3.

Proof. Follows from Theorem 5 and Ex.2 for $c_1 = c$, $c_2 = \frac{1}{2}(1-c)$, $c_3 = 1-c$

Corollary 4. Theorem 4.

Proof. Follows from Theorem 5 and Ex.4 if f = S, g = T and I = J = id.

References

- B. Fisher, M. Telci and K. Tas, A generalization of fixed point theorem of Nesic, *Doga-Tr. J. Math.* 17, (1993), 247-250.
- [2] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9, (1986), 771-779.
- [3] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc., 103, 3 (1988), 977-983.
- G. Jungck, Common fixed points for noncontinuous nonself mappings on nonnumeric spaces, Far East J. Math. Sci. 4(2), (1996), 199-212.
- [5] G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, *Math. Japonica*, **36**, (1993), 381-390.
- [6] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188, (1994), 436-440.
- [7] R. P. Pant, Common fixed points for four mappings, Bull. Cal. Math. Soc., 90, (1998), 281-286.
- [8] R. P. Pant, Common fixed points theorems for contractive maps, J. Math. Anal. Appl. 226, (1998), 251-258.

- [9] H. K. Pathak, Y. J. Cho, S. M. Kang and B. S. Lee, Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming, *Le Mathematiche*, **50**, (1995), Fasc. I, 15-33.
- [10] H. K. Pathak, Y. J. Cho, S. S. Chang and S. M. Kang, Compatible mappings of type (P) and fixed point theorem in metric spaces and Probabilistic metric spaces, *Novi Sad J. Math.*, **26(2)**, (1996), 87-109.
- [11] S. Sessa, On a weak commutativity condition in a fixed point considerations, Publ. Inst. Math. 32(46), (1986), 149-153.
- [12] S. Sessa and B. Fisher, Common fixed points of weakly commuting mappings, Bull. Polish Acad. Sci. Math. 36, (1987), 341-349.
- [13] K. Tas, M. Telci and B. Fisher, Common fixed points theorems for compatible mappings, Internat. J. Math. Math. Sci., 19, 3, (1996), 451-456.
- [14] M. Telci, K. Tas and B. Fisher, A generalization of the fixed point theorem of Bhola and Sharma, Math. Balkanica, New Series, 9, (1995), Fasc. 2-3, 113-116.