A General Fixed Point Theorem for Weakly Compatible Mappings in Compact Metric Spaces

Valeriu Popa

Abstract

A general fixed point theorem for weakly compatible mappings satisfying an implicit relation in compact metric spaces is proved generalizing the results by [1],[3],[13],[14] and others.

Key words and phrases: compact metric space,compatible mappings of type (A), compatible mappings of type (P), compatible mappings,weakly compatible mappings,implicit relation.

1. Introduction

Let S and T be self mappings of a metric space (X,d). Sessa [11] defines S and T to be weakly commuting if $d(S T x, T S x) \leq d(T x, S x)$ for all x in X. Jungck [2] defines S and T to be compatible if

$$
\lim d\left(S T x_{n}, T S x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim S x_{n}=\lim T x_{n}=t
$$

for some $t \in X$.Clearly, commuting mappings are weakly commuting and weakly commuting mappings are compatible,but neither implications is reversible [12 ,Ex.1] and

[^0]
POPA

[2,Ex.2.2]. Recently,Jungck et al. [5] defines S and T to be compatible of type (A) if

$$
\lim d\left(T S x_{n}, S S x_{n}\right)=0
$$

and

$$
\lim d\left(S T x_{n}, T T x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim S x_{n}=\lim T x_{n}=t
$$

for some $t \in X$. Clearly, weakly commuting mappings are compatible of type (A). By [5 ,Ex.2.2] follows that the implication is not reversible. By [5 ,Ex.2.1 and 2.2] follows that the notions of compatible mappings and compatible mappings of type (A) are independent. In [10] the concept of compatible mappings of type (P) was introduced and compared with compatible mappings of type (A) and compatible mappings. S and T are compatible of type (P) if

$$
\lim d\left(S S x_{n}, T T x_{n}\right)=0
$$

whenever $\left\{x_{n}\right\}$ is a sequence in X such that

$$
\lim S x_{n}=\lim T x_{n}=t
$$

for some $t \in X$.
Lemma 1 [2] (resp. [5],[9]). Let f and g be compatible (resp. compatible of type (A), compatible of type (P)) self mappings on a metric space (X,d). If $f(t)=g(t)$ for some $t \in X$, then $\mathrm{fg}(\mathrm{t})=\mathrm{gf}(\mathrm{t})$.
Lemma 2 [5] (resp. [9]). Let $S, T:(X, d) \rightarrow(X, d)$ be continuous mappings. Then S and T are compatible if and only if they are compatible of type (A) (resp. compatible of type (P)).
In 1994 , Pant [6] introduced the notion of R-weakly commuting mappings. Two self mappings A and S of a metric space (X, d) are called R-weakly commuting at a point $x \in X$ if $d(A S x, S A x) \leq R d(A x, S x)$ for some $R>0$. The mappings A and S are called pointwise R-weakly commuting on X if given x in X there exists $R>0$ such that

POPA

$d(A S x, S A x) \leq R d(A x, S x)$. It is proved in [7] that the notion of pointwise R-weak commutativity is equivalent to commutativity in coincidence points.
Recently,Jungck [4] defined S and T to be weakly compatible if $S x=T x$ implies $S T x=T S x$. Thus S and T are weakly compatible if and only if S and T are pointwise R-weakly commuting mappings. However as shown in [8] there exist weakly compatible mappings which are not compatible.
By Lemma 1 it follows that if S and T are compatible (resp. compatible of type (A),compatible of type (P$)$) then S and T are weakly compatible.

The following example from [8] is an example of a weakly compatible mappings which are not compatible of type (A) (resp. compatible of type (P)).
Let $\mathrm{X}=[2,20]$ with the usual metric. Define
$\mathrm{T}=\left\{\begin{array}{l}2 \text { if } x=2 \\ 12+x \text { if } 2<x \leq 5 \\ x-3 \text { if } x>5\end{array} \quad ; \mathrm{S}=\left\{\begin{array}{l}2 \text { if } x \in 2 \cup(5,20] \\ 8 \text { if } 2<x \leq 5\end{array}\right.\right.$
S and T are weakly compatible since they commute at their coincidence points. To see that S and T are not compatible of type (A)(resp. compatible of type (P)) let us consider a decreasing sequence $\left\{x_{n}\right\}$ such that

$$
\lim x_{n}=5
$$

Then $T x_{n}=x_{n}-3 \rightarrow 2 ; S x_{n}=2 ; S T x_{n}=S\left(x_{n}-3\right)=8$ and $T T x_{n}=T\left(x_{n}-3\right)=12+x_{n}-3 \rightarrow 14$,that is

$$
\lim d\left(S T x_{n}, T T x_{n}\right)=6 \neq 0
$$

and hence S and T are noncompatible of type (A). $S S x_{n}=S(2)=2$ and

$$
\lim d\left(S S x_{n}, T T x_{n}\right)=d(2,14)=12 \neq 0
$$

and hence S and T are noncompatible of type (P).
Lemma 3. Two continuous self maps of a compact metric space are compatible (resp.compatible of type (A),compatible of type (P)) if and only if they are weakly compatible.

POPA

2. Implicit Relations

Let \mathcal{F}^{*} be the set of real functions $F\left(t_{1}, \ldots, t_{6}\right): R_{+}^{6} \rightarrow R$ satisfying the following conditions:
$\left(F_{1}^{*}\right): F$ is non increasing in variables t_{5} and t_{6},
$\left(F_{2}^{*}\right)$: For every $u \geq 0, v>0$

$$
\begin{gathered}
\left(F_{a}^{*}\right): F(u, v, v, u, u+v, 0)<0 \text { or } \\
\left(F_{b}^{*}\right): F(u, v, u, v, o, u+v)<0
\end{gathered}
$$

we have $u<v$.
$\left(F_{3}^{*}\right): F(u, u, o, o, u, u) \geq 0, \forall u>0$.
Ex.1. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{2}\left(t_{5}+t_{6}\right)\right\}$.
$\left(F_{1}^{*}\right)$: Obviously.
$\left(F_{2}^{*}\right):$ Let $u>0, v>0$ and $F(u, v, v, u, u+v, 0)=u-\max \left\{u, v, \frac{1}{2}(u+v)\right\}<0$. If $u \geq v$, then $u<u$, a contradiction. Thus $u<v$. If $u=0, v>0$, then $u<v$.
Similary, if $F(u, v, u, v, o, u+v)<0$ then $u<v$.
$\left(F_{3}^{*}\right): F(u, u, o, o, u, u)=0, \forall u>0$.
Ex.2: $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}-c_{1} \max \left\{t_{2}^{2}, t_{3}^{2}, t_{4}^{2}\right\}-c_{2} \max \left\{t_{3} t_{5}, t_{4} t_{6}\right\}-c_{3} t_{5} t_{6}$
where $c_{1}+2 c_{2} \leq 1, c_{1}+c_{3} \leq 1$ and $c_{1}, c_{2}, c_{3} \geq 0$.
$\left(F_{1}^{*}\right)$: Obviously.
$\left(F_{2}^{*}\right):$ Let $u>0, v>0$ and $F(u, v, v, u, u+v, o)=u^{2}-c_{1} \max \left\{u^{2}, v^{2}\right\}-c_{2} \max \{v(u+$ $v), 0\}<0$. If $u \geq v$ then $u^{2}\left(1-\left(c_{1}+2 c_{2}\right)\right)<0$, a contradiction. Thus $u<v$. If $u=0, v>0$, then $u<v$.
Similary, $F(u, v, u, v, o, u+v)<0$ implies $u<v$.
$\left(F_{3}^{*}\right): F(u, u, 0,0, u, u)=u^{2}\left(1-\left(c_{1}+c_{3}\right)\right) \geq 0, \forall u>0$.
Ex.3. $F\left(t_{1}, \ldots, t_{6}\right)=\left(1+p t_{2}\right) t_{1}-\operatorname{pmax}\left\{t_{3} t_{4}, t_{5} t_{6}\right\}-\max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{2}\left(t_{5}+t_{6}\right)\right\}$
where $p>0$.
$\left(F_{1}^{*}\right)$: Obviously.
$\left(F_{2}^{*}\right):$ Let $u>0, v>0$ and $F(u, v, v, u, u+v, o)=(1+p v) u-p u v-\max \left\{u, v, \frac{1}{2}(u+v)\right\}<0$.
If $u \geq v$, then $u<u$, a contradiction. Hence $u<v$. If $u=0, v>0$, then $u<v$.
Similary, $F(u, v, u, v, o, u+v)<0$ implies $u<v$.
$\left(F_{3}^{*}\right): F(u, u, o, o, u, u)=(1+p u) u-p u^{2}-u=0, \forall u>0$.

Ex.4. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-\max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{2}\left(t_{5}+t_{6}\right), b \sqrt{t_{5} t_{6}}\right\}$, where $0<b<1$.
$\left(F_{1}^{*}\right)$: Obviously.
$\left(F_{2}^{*}\right)$: As in Ex.1.
$\left(F_{3}^{*}\right): F(u, u, o, o, u, u)=u-\max \{u, b u\}=u(1-b) \geq 0, \forall u>0$.
Ex.5. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{3}-a t_{1}^{2} t_{2}-b t_{1} t_{3} t_{4}-c t_{5}^{2} t_{6}-d t_{5} t_{6}^{2}$, where $a, b, c, d \geq 0$ and $a+b+c+d<$ 1.
$\left(F_{1}^{*}\right)$: Obviously.
$\left(F_{2}^{*}\right):$ Let $u>0, v>0$ and $F(u, v, v, u, u+v, 0)=u^{3}-a u^{2} v-b u^{2} v=u^{2}(u-(a+b) v)<0$ which implies $u<(a+b) v<v$. If $u=0, v>0$ then $u<v$. Similary $F(u, v, u, v, o, u+v)<$ 0 implies $u<v$.
$\left(F_{3}\right): F(u, u, o, o, u, u)=u^{3}(1-(a+c+d)) \geq 0, \forall u>0$
Ex.6. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{3}-c \frac{t_{3}^{2} t_{4}^{2}+t_{5}^{2} t_{6}^{2}}{t_{2}+t_{3}+t_{4}+1}$, where $c \in(0,1)$.
$\left(F_{1}^{*}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u>0, v>0$ and $F(u, v, v, u, u, u+v, o)=u^{3}-c \frac{u^{2} v^{2}}{1+2 v+u}<0$. Then $u<\frac{c v^{2}}{2 v+u+1}<c v<v$. If $u=0, v>0$ then $u<v$.
Similary, if $F(u, v, u, v, o, u+v)<0$ then $u<v$.
$\left(F_{3}\right): F(u, u, o, o, u, u)=u^{3} \frac{(1-c) u+1}{u+1}>0, \forall u>0$.

3. Main Result

The following theorems are proved in [1], [3], [13] and [14].
Theorem 1. [1]. Let (X,d) be a compact metric space and let S and T be continuous self maps of X satisfying
$(1)(1+p d(x, y)) d(S x, T y)<\operatorname{pmax}\{d(x, S x) d(y, T y), d(x, T y) d(y, S x)\}$
$+\max \left\{d(x, y), d(x, S x), d(y, T y), \frac{1}{2}(d(x, T y)+d(y, S x))\right\}$
for all x, y in X for which the right hand side of (1) is positive, where $p \geq 0$. Then S and T have a unique common fixed point.
Theorem 2. [2]. Let A,B,S,T be continuous self mappings of a compact metric space with $A(X) \subset T(X)$ and $B(X) \subset S(X)$. If $\{A, S\}$ and $\{B, T\}$ are compatible pairs and (2) $d(A x, B y)<\max \left\{d(S x, T y), d(A x, S x), d(B y, T y), \frac{1}{2}(d(A x, T y)+d(B y, S x))\right\}$ for all x, y in X for which the right hand side of (2) is positive. Than $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}$ have a unique common fixed point.

Theorem 3. [13]. Let A, B, S and T be continuous self maps of a compact metric space (X,d) with $A(X) \subset T(X)$ and $B(X) \subset S(X)$. If $\{A, S\}$ and $\{B, T\}$ are compatible pairs and

$$
\begin{gathered}
(3) d^{2}(A x, B y)<\operatorname{cmax}\left\{d^{2}(S x, A x), d^{2}(T y, B y), d^{2}(S x, T y)\right\}, \frac{1}{2}(1- \\
\text { c) } \max \{d(S x, A x) d(S x, B y), d(A x, T y) d(B y, T y)\}+(1-c) d(S x, B y) d(T y, A x)
\end{gathered}
$$

for all x, y in X for which the right hand side of (3) is positive, where $c \in(0,1)$. Then $\mathrm{A}, \mathrm{B}, \mathrm{S}$ and T have a common fixed point z .
Further, z is the unique common fixed point of A and S and of B and T.
Theorem 4. [14]. Let S and T be continuous self mappings of a compact metric space (X,d) satisfying inequality
(4) $d(S x, T y)<\max \left\{d(x, y), d(x, S x), d(y, T y), \frac{1}{2} d(x, T y)+d(y, S x)\right)$, $b \sqrt{d(x, T y) d(y, S x)}\}$
for all x, y in X for which the right hand side of (4) is positive, where $b>0$. Then S and T have a common fixed point. Further, if $b<1$, then the common fixed point is unique.

The purpose of this paper is to prove a general fixed point theorem for weakly compatible mappings in compact metric spaces which generalizes Theorems 1-4 and others.
Theorem 5. Let $\mathrm{f}, \mathrm{g}, \mathrm{I}, \mathrm{J}$ be self maps of a compact metric space (X, d) such that:
(a) $f(X) \subset J(X)$ and $g(X) \subset I(X)$,
(b) $F(d(f x, g y), d(I x, J y), d(I x, f x), d(J y, g y), d(I x, g y), d(J y, f y))<0$
for all x, y in X for which one of $\mathrm{d}(\mathrm{Ix}, \mathrm{Jy}), \mathrm{d}(\mathrm{Ix}, \mathrm{fx}), \mathrm{d}(\mathrm{Jy}, \mathrm{gy})$ is positive, where $F \in \mathcal{F}^{*}$
(c) The pair $\{f, I\}$ is compatible (resp. compatible of type (A),compatible of type (P)) and the pair $\{g, J\}$ is weakly compatible,
(d) The functions f and I are continuous,
then $\mathrm{f}, \mathrm{g}, \mathrm{I}$ and J have a unique common fixed point z . Further z is the unique common fixed point of f and I and of g and J.
Proof. Let $m=\inf \{d(f x, I x): x \in X\}$. Since X is compact metric space there is a convergent sequence $\left\{x_{n}\right\}$ with

$$
\lim x_{n}=x_{0}
$$

POPA

in X such that

$$
\lim d\left(I x_{n}, f x_{n}\right)=m .
$$

Since
$d\left(I x_{0}, f x_{0}\right) \leq d\left(I x_{0}, I x_{n}\right)+d\left(I x_{n}, f x_{n}\right)+d\left(f x_{n}, f x_{0}\right)$
then by continuity of f and I and

$$
\lim x_{n}=x_{0}
$$

we get $d\left(I x_{0}, f x_{0}\right) \leq m$ and thus $d\left(I x_{0}, f x_{0}\right)=m$.
Since $f(X) \subset J(X)$, there exists a point y_{0} in X such that $J y_{0}=f x_{0}$ and thus $d\left(I x_{0}, J y_{0}\right)=m$. Suppose that $m>0$. Then by (b) we have successively $F\left(d\left(f x_{0}, g y_{0}\right), d\left(I x_{0}, J y_{0}\right), d\left(I x_{0}, f x_{0}\right), d\left(J y_{0}, g y_{0}\right), d\left(I x_{0}, g y_{0}\right), d\left(J y_{0}, f x_{0}\right)\right)<0$
$F\left(d\left(J y_{0}, g y_{0}\right), m, m, d\left(J y_{0}, g y_{0}\right), d\left(I x_{0}, J y_{0}\right)+d\left(J y_{0}, g y_{0}\right), 0\right)<0$
$F\left(d\left(J y_{0}, g y_{0}\right), m, m, d\left(J y_{0}, g y_{0}\right), m+d\left(J y_{0}, g y_{0}\right), 0\right)<0$
By $\left(F_{a}^{*}\right)$ follows that

$$
(5) d\left(J y_{0}, g y_{0}\right)<m .
$$

Since $g(X) \subset I(X)$, then there is a point z_{0} in X such that $I z_{0}=g y_{0}$ and thus $d\left(I z_{0}, J y_{0}\right)<m$. Since $d\left(I z_{0}, f z_{0}\right) \geq m>0$, by (b), we have $F\left(d\left(f z_{0}, g y_{0}\right), d\left(I z_{0}, J y_{0}\right), d\left(I z_{0}, f z_{0}\right), d\left(J y_{0}, g y_{0}\right), d\left(I z_{0}, g y_{0}\right), d\left(J y_{0}, f z_{0}\right)\right)<0$

$$
\begin{aligned}
& F\left(d\left(I z_{0}, f z_{0}\right), d\left(J y_{0}, g y_{0}\right), d\left(I z_{0}, f z_{0}\right), d\left(J y_{0}, g\left(y_{0}\right)\right), 0, d\left(J y_{0}, g y_{0}\right)+d\left(g y_{0}, f z_{0}\right)\right)<0 \\
& F\left(d\left(I z_{0}, f z_{0}\right), d\left(J y_{0}, g y_{0}\right), d\left(I z_{0}, f z_{0}\right), d\left(J y_{0}, g\left(y_{0}\right)\right), 0, d\left(J y_{0}, g y_{0}\right)+d\left(I z_{0}, f z_{0}\right)\right)<0
\end{aligned}
$$

By $\left(F_{b}^{*}\right)$ follows that

$$
(6) d\left(I z_{0}, f z_{0}\right)<d\left(J y_{0}, g y_{0}\right) .
$$

Then, by (5) and (6) we obtain
$m \leq d\left(I z_{0}, f z_{0}\right)<d\left(J y_{0}, g y_{0}\right)<m$. Thus $m<m$, a contradiction.
Therefore, $m=0$ which implies

$$
\text { (7) } I x_{0}=J y_{0}=f x_{0} .
$$

POPA

If $d\left(J y_{0}, g y_{0}\right)>0$, then by (b) we have successively
$F\left(d\left(f x_{0}, g y_{0}\right), d\left(I x_{0}, J y_{0}\right), d\left(I x_{0}, f x_{0}\right), d\left(J y_{0}, g y_{0}\right), d\left(I x_{0}, g y_{0}\right), d\left(J y_{0}, f x_{0}\right)\right)<0$,
$F\left(d\left(J y_{0}, g y_{0}\right), 0,0, d\left(J y_{0}, g y_{0}\right), d\left(J y_{0}, g y_{0}\right), 0\right)<0$
which implies by $\left(F_{a}^{*}\right)$ that $d\left(J y_{0}, g y_{0}\right)<0$, a contradiction. Thus $d\left(J y_{0}, g y_{0}\right)=0$, which implies $J y_{0}=g y_{0}$. Therefore,

$$
\text { (8) } I x_{0}=f x_{0}=J y_{0}=g y_{0} .
$$

Since I and f are compatible (resp.compatible of type (A), compatible of type (P)) and $I x_{0}=f x_{0}$, by Lemma $1 I f x_{0}=f I x_{0}$. By (8)

$$
f^{2} x_{0}=f I x_{0}=I f x_{0}=I^{2} x_{0}
$$

If $I^{2} x_{0} \neq I x_{0}$ then $I f x_{0} \neq J y_{0}$ and by (b) we have successively
$F\left(d\left(f^{2} x_{0}, g y_{0}\right), d\left(I f x_{0}, J y_{0}\right), d\left(I f x_{0}, f^{2} x_{0}\right), d\left(J y_{0}, g y_{0}\right), d\left(I f x_{0}, g y_{0}\right), d\left(J y_{0}, I f x_{0}\right)\right)<0$, $F\left(d\left(f^{2} x_{0}, I x_{0}\right), d\left(I^{2} x_{0}, I x_{0}\right), 0,0, d\left(I^{2} x_{0}, I x_{0}\right), d\left(I^{2} x_{0}, I x_{0}\right)\right)<0$
a contradiction of $\left(F_{3}^{*}\right)$. Therefore, $I x_{0}=I^{2} x_{0}$. Hence

$$
\text { (9) } f I x_{0}=I x_{0}=I^{2} x_{0} \text {. }
$$

Similary, we have

$$
\text { (10) } g J y_{0}=J y_{0}=J^{2} y_{0} .
$$

Let $u=I x_{0}=J y_{0}$. Then $f u=f I x_{0}=I f x_{0}=I^{2} x_{0}=I u$, which implies $f u=I u$.
Similary, $g u=J u$. Since $u=I x_{0}=I^{2} x_{0}$, then $I u=u$. Similary, $J u=u$. Therefore,

$$
\text { (11) } f(u)=u=I u=J u=g u
$$

and u is a common fixed point of f, g, I and J.
Suppose that g and J have another common fixed point $v \neq u$, then $d(u, v) \neq 0$ and by (b) we have successively
$F(d(f u, g v), d(I u, J v), d(I u, f u), d(J v, g v), d(I u, g v), d(J v, f u))<0$
$F(d(u, v), d(u, v), 0,0, d(u, v), d(u, v))<0$, a contradiction of $\left(F_{3}^{*}\right)$.
Thus $u=v$. Similarly, u is unique common fixed point of f and I .
Corollary 1. Let f,g,I,J be self maps of a compact metric space (X,d) such that
a) $f(X) \subset J(X)$ and $g(X) \subset I(X)$,
$\left(b^{\prime}\right)(1+p d(I x, J y)) d(f x, g y)<\operatorname{pmax}\{d(I x, f x) d(J y, g y), d(I x, g y) d(J y, f x)\}$
$+\max \left\{d(I x, J y), d(I x, f x), d(J y, g y), \frac{1}{2}(d(I x, g y)+d(J y, f x))\right\}$
for all x, y in X for which the right hand side of (b ') is positive, where $p>0$.
c) the pair $\{f, I\}$ is compatible (resp. compatible of type (A), compatible of type (P)) and the pair $\{g, J\}$ is weakly compatible,
d) f and I are continuous,
then f, g, I and J have a unique common fixed point.
Proof. Follows from Theorem 5 and Ex.3.
Remark. If $I=J=i d$, by Corollary 1, Theorem 1 follows.
Corollary 2. Theorem 2.
Proof. Follows from Theorem 5 and Ex.1.
Corollary 3. Theorem 3.
Proof. Follows from Theorem 5 and Ex. 2 for $c_{1}=c, c_{2}=\frac{1}{2}(1-c), c_{3}=1-c$
Corollary 4. Theorem 4.
Proof. Follows from Theorem 5 and Ex. 4 if $f=S, g=T$ and $I=J=i d$.

References

[1] B. Fisher, M. Telci and K. Tas, A generalization of fixed point theorem of Nesic, Doga-Tr. J. Math. 17, (1993), 247-250.
[2] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9, (1986), 771-779.
[3] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc., 103, 3 (1988), 977-983.
[4] G. Jungck, Common fixed points for noncontinuous nonself mappings on nonnumeric spaces, Far East J. Math. Sci. 4(2), (1996), 199-212.
[5] G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japonica, 36, (1993), 381-390.
[6] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188, (1994), 436-440.
[7] R. P. Pant, Common fixed points for four mappings, Bull. Cal. Math. Soc., 90, (1998), 281-286.
[8] R. P. Pant, Common fixed points theorems for contractive maps, J. Math. Anal. Appl. 226, (1998), 251-258.

POPA

[9] H. K. Pathak, Y. J. Cho, S. M. Kang and B. S. Lee, Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming, Le Mathematiche, 50, (1995), Fasc. I, 15-33.
[10] H. K. Pathak, Y. J. Cho, S. S. Chang and S. M. Kang, Compatible mappings of type (P) and fixed point theorem in metric spaces and Probabilistic metric spaces, Novi Sad J. Math., 26(2), (1996), 87-109.
[11] S. Sessa, On a weak commutativity condition in a fixed point considerations, Publ. Inst. Math. 32(46), (1986), 149-153.
[12] S. Sessa and B. Fisher, Common fixed points of weakly commuting mappings, Bull. Polish Acad. Sci. Math. 36, (1987), 341-349.
[13] K. Tas, M. Telci and B. Fisher, Common fixed points theorems for compatible mappings, Internat. J. Math. Math. Sci., 19, 3, (1996), 451-456.
[14] M. Telci, K. Tas and B. Fisher, A generalization of the fixed point theorem of Bhola and Sharma, Math. Balkanica, New Series, 9, (1995), Fasc. 2-3, 113-116.

[^0]: AMS Mathematics Subject 'Classification' (2000):54H25,47H10

