Turk J Math
25 (2001) , 465 — 474.
© TUBITAK
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Abstract

A general fixed point theorem for weakly compatible mappings satisfying an
implicit relation in compact metric spaces is proved generalizing the results by
[1],[3],[13],[14] and others.
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1. Introduction

Let S and T be self mappings of a metric space (X,d). Sessa [11] defines S and T to
be weakly commuting if d(STz, T'Sz) < d(Tz, Sz) for all x in X. Jungck [2] defines S and
T to be compatible if

limd(STzy, TSz,) =0
whenever {x,} is a sequence in X such that
lim Sz, =limTz, =t

for some ¢t € X.Clearly, commuting mappings are weakly commuting and weakly com-

muting mappings are compatible,but neither implications is reversible [12 JEx.1] and
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[2,Ex.2.2]. Recently,Jungck et al. [5] defines S and T to be compatible of type (A) if
limd(T Sz, SSz,) =0

and
limd(STxy, TTxzy,) =0

whenever {x,} is a sequence in X such that
lim Sz, =limTz, =t

for some t € X. Clearly, weakly commuting mappings are compatible of type (A).
By [5 ,Ex.2.2] follows that the implication is not reversible. By [5 ;Ex.2.1 and 2.2 |
follows that the notions of compatible mappings and compatible mappings of type (A)
are independent. In [10] the concept of compatible mappings of type (P) was introduced
and compared with compatible mappings of type (A) and compatible mappings. S and
T are compatible of type (P) if

limd(SSzy,, TTx,) =0
whenever {x,} is a sequence in X such that
lim Sz, =limTz, =t

for some t € X.

Lemma 1 [2] (resp. [5],[9]). Let f and g be compatible (resp. compatible of type
(A),compatible of type (P)) self mappings on a metric space (X,d). If f(t)=g(t) for
some t € X, then fg(t)=gf(t).

Lemma 2 [5] (resp. [9] ). Let S,T : (X,d) — (X,d) be continuous mappings. Then S
and T are compatible if and only if they are compatible of type (A) (resp. compatible of
type (P)).

In 1994 , Pant [6] introduced the notion of R-weakly commuting mappings. Two self
mappings A and S of a metric space (X,d) are called R-weakly commuting at a point
x € X if d(ASz, SAz) < Rd(Az,Sz) for some R > 0. The mappings A and S are

called pointwise R-weakly commuting on X if given x in X there exists R > 0 such that
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d(ASz,SAx) < Rd(Az,Sz). Tt is proved in [7] that the notion of pointwise R-weak
commutativity is equivalent to commutativity in coincidence points.

Recently,Jungck [4] defined S and T to be weakly compatible if Sx=Tx implies STx=TSx.
Thus S and T are weakly compatible if and only if S and T are pointwise R-weakly
commuting mappings. However as shown in [8] there exist weakly compatible mappings
which are not compatible.

By Lemma 1 it follows that if S and T are compatible (resp. compatible of type
(A),compatible of type (P)) then S and T are weakly compatible.

The following example from [8] is an example of a weakly compatible mappings which
are not compatible of type (A) (resp. compatible of type (P)).

Let X=[2,20] with the usual metric. Define

2ifx =2 )
2if z € 2U (5, 20]
T=< 124+zif2<z<5 ;S=
) 8if2<z<5
r—3ifx>5H

S and T are weakly compatible since they commute at their coincidence points. To see
that S and T are not compatible of type (A)(resp. compatible of type (P)) let us consider
a decreasing sequence {z,} such that

limx,, = 5.

Then Tz, =, — 3 — 2; Sz, = 2; STz, = S(x, —3) =8 and
TTx, =T (v, —3) =124z, — 3 — 14 ,that is

limd(STxy, TTz,) =6#0

and hence S and T are noncompatible of type (A). SSz, = S(2) =2 and

limd(SSxz,, TTx,) =d(2,14) =12 #0

and hence S and T are noncompatible of type (P).

Lemma 3. Two continuous self maps of a compact metric space are compatible (resp.compatible

of type (A),compatible of type (P)) if and only if they are weakly compatible.
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2. Implicit Relations

Let F* be the set of real functions F(t1,...,tg) : RS — R satisfying the following
conditions:
(F}) : F is non increasing in variables t5 and ¢g,

(F¥) : For every u > 0,0 >0

(F¥): F(u,v,v,u,u+v,0) <0 or
(Fy) : F(u,v,u,v,0,u+v) <0

we have u < v.

(F¥): F(u,u,0,0,u,u) > 0,Yu > 0.

Ex.1. F(t1,....ts) = t1 — max{ta, ts, ta, 1 (ts + t6)}

(F}) : Obviously.

(Fy) : Let w > 0w > 0 and F(u,v,v,u,u + v,0) = u — max{u,v,%(u +0v)} < 0. If
u > v,then u < w, a contradiction. Thus u < v. If w = 0,v > 0,then u < v.

Similary,if F(u,v,u,v,0,u~+ v) < 0 then u < v.

(F5) : F(u,u,0,0,u,u) =0, Yu > 0.

Ex.2: F(ty,...,te) = t3 — cymax{t3, 13,13} — comax{tsts, tate} — catsts

where ¢; +2¢c3 < 1,¢1+c¢3 <1 and ¢, c2,c3 > 0.

(FY) : Obviously.

(F3): Let u > 0,0 > 0 and F(u,v,v,u,u+v,0) = u? — ecymax{u? v?} — comaz{v(u +
v),0} < 0. If u > v then u?(1 — (c; + 2¢2)) < 0, a contradiction. Thus u < v. If
u = 0,v > 0, then u < v.

Similary, F(u, v, u,v,0,u+ v) < 0 implies u < v.

(F}) : F(u,u,0,0,u,u) = u?(1 — (c1 +¢3)) > 0,Vu > 0.

Ex.3. F(t1,....ts) = (1 + pta)t1 — pmax{tsta, tste} — maz{ts, ts, ta, 3(ts + t6)}

where p > 0.

(F}) : Obviously.

(F¥) :Let u > 0,v > 0and F(u, v, v, u, u+v,0) = (14pv)u—puv—maz{u, v, %(u—l—v)} < 0.
If u > v,then u < u , a contradiction. Hence u < v. If u = 0,v > 0, then u < v.
Similary, F(u, v, u,v,0,u+ v) < 0 implies u < v.

(F3): F(u,u,0,0,u,u) = (14 pu)u — pu? —u = 0,Vu > 0.
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Ex.4. F(t1,....ts) = t1 — maz{ts, ts, ta, 2 (ts + t6), by/Isls}, where 0 <b< 1.

(F}) : Obviously.

(F¥): As in Ex.1.

(F¥) : F(u,u,0,0,u,u) = u —max{u,bu} = u(l —b) > 0,Vu > 0.

Ex.5. F(t1,...,te) = t3—atito—bt1tzty—ctits—dtst?, where a, b, c,d > 0 and a+b+c+d <

(F}) : Obviously.

(F3):Let u> 0,v > 0 and F(u,v,v,u,u+v,0) = u? —au?v—bu?v = u?(u—(a+b)v) <0
which implies 4 < (a+b)v < v. If u = 0,v > 0 then v < v. Similary F(u, v, u, v, o, u+v) <
0 implies u < v.

(F3) : F(u,u,0,0,u,u) =u3(1 - (a+c+d))>0,Yu >0

Ex.6. F(t1,....,te) =13 — cﬁi—fﬁfﬁ'—l, where ¢ € (0, 1).

(F}) : Obviously.

(F3) : Let w > 0,0 > 0 and F(u,v,v,u,u,u + v,0) = u® —

2 2
v

Cm < 0. Then

u<%§+1<cv<v. If u=0,v >0 then u < v.
Similary, if F'(u,v,u,v,0,u+ v) <0 then u < v.
(F3) : F(u,u,o,o,u,u)zug’% > 0,Vu > 0.

3. Main Result

The following theorems are proved in [1] , [3] , [13] and [14] .
Theorem 1. [1]. Let (X,d) be a compact metric space and let S and T be continuous
self maps of X satisfying
(DA + pd(z,y))d(Sz, Ty) < pmax{d(x, Sx)d(y, Ty), d(z, Ty)d(y, Sx)}
+ maz{d(z,y), d(z, Sx),d(y, Ty), 5(d(z, Ty) + d(y, Sz))}
for all x,y in X for which the right hand side of (1) is positive, where p > 0. Then S and
T have a unique common fixed point.
Theorem 2. [2]. Let A,B,S,T be continuous self mappings of a compact metric space
with A(X) C T(X) and B(X) C S(X). If {A, S} and {B, T} are compatible pairs and
(2) d(Az, By) < maz{d(Sz,Ty),d(Az, Sz),d(By, Ty), 3(d(Az, Ty) + d(By, Sz))}
for all x,y in X for which the right hand side of (2) is positive. Than A,B,S,T have a

unique common fixed point.
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Theorem 3. [13]. Let A,B,S and T be continuous self maps of a compact metric space
(X,d) with A(X) C T(X) and B(X) C S(X). If {4, S} and {B,T} are compatible pairs

and

(3) d*(Ax, By) < cmaz{d*(Sz, Az), d*(Ty, By), d*(Sz, Ty)}, %(1
c)maz{d(Sz, Ar)d(Sz, By), d(Azx, Ty)d(By, Ty)} + (1 — ¢)d(Sz, By)d

for all x,y in X for which the right hand side of (3) is positive, where ¢ € (0,1). Then

A B,S and T have a common fixed point z.

Further, z is the unique common fixed point of A and S and of B and T.

Theorem 4. [14]. Let S and T be continuous self mappings of a compact metric space

(X,d) satisfying inequality

(4)d(Sz, Ty) < max{d(z,y),d(z, Sx),d(y, Ty), d(z, Ty) + d(y, Sx)),

by/d(x, Ty)d(y, Sz)}

for all x,y in X for which the right hand side of (4) is positive, where b > 0. Then S and

T have a common fixed point. Further, if b < 1, then the common fixed point is unique.
The purpose of this paper is to prove a general fixed point theorem for weakly

compatible mappings in compact metric spaces which generalizes Theorems 1-4 and

others.

Theorem 5. Let f,g,I,J be self maps of a compact metric space (X,d) such that:

(a)f(X) € J(X) and g(X) C I(X),

(O)F(d(fz, gy),d(Iz, Jy),d(Iz, fz),d(Jy, gy), d(Iz, gy), d(Jy, fy)) <O

for all x,y in X for which one of d(Ix,Jy),d(Ix,fx),d(Jy,gy) is positive, where F' € F*

(¢) The pair {f, I} is compatible (resp. compatible of type (A),compatible of type (P))

and the pair {g, J} is weakly compatible,

(d) The functions f and I are continuous,

then f,g,I and J have a unique common fixed point z. Further z is the unique common

fixed point of f and I and of g and J.

Proof. Let m = inf{d(fx,Ix) : x € X}. Since X is compact metric space there is a

convergent sequence {z,} with
limx,, = xo
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in X such that
limd(Iz,, fx,) =m.

Since
d(Ian f-rO) S d(Ian I$n) + d(Ixna f-rn) + d(fl'n, f-rO)
then by continuity of f and I and

limx,, = xo

we get d(Ixg, fxg) < m and thus d(Ixg, fzg) =m.

Since f(X) C J(X), there exists a point yo in X such that Jyo = fxo and thus
d(Ixg, Jyo) = m. Suppose that m > 0. Then by (b) we have successively
F(d(fxo, gyo), d(Izo, Jyo), d(1z0, fro), d(JYo, gy0), d(I70, gyo), d(Jyo, fro)) < O
F(d(Jyo, 9yo), m, m, d(Jyo, gyo), d(Ixo, Jyo) + d(Jyo, 9¥0),0) < 0

F(d(Jyo, gyo), m, m, d(Jyo, gy0), m + d(Jyo, 9¥0),0) <0

By (F?) follows that

(5)d(Jyo, gyo) < m.

Since g(X) C I(X), then there is a point zp in X such that Izyp = gyo and thus
d(Izp, Jyo) < m. Since d(Izg, fzo) > m > 0, by (b), we have
F(d(fZOagyO)a d(IZOa J?JO); d(IZOa fZO)a d(JyOagyO); d(IZOagyO)) d(JyOa fZO)) <0

F(d(Izo0, f20), d(Jyo, gy0), d(I1z0, fz0), d(Jyo, 9(y0)) 0, d(Jyo, gyo) + d(gyo. f20)) <0
F(d(Izo, fz0), d(Jyo, gy0), d(1z0, fz0), d(Jyo, 9(y0)) 0, d(Jyo, gyo) + d(Lz0, fz0)) <O
By (Fy) follows that
(6)d(Iz0, fz0) < d(JYo, gY0)-

Then, by (5) and (6) we obtain
m < d(Izo, fz0) < d(Jyo, gyo) < m. Thus m < m, a contradiction.

Therefore, m = 0 which implies
(Mo = Jyo = fzo.
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If d(Jyo, gyo) > 0, then by (b) we have successively

F(d(fzxo, gyo), d(Izo, Jyo), d(Iz0, fx0), d(JYo, 9y0), d(Ix0, gyo), d(JYo, fo)) < O,
F(d(Jyo, 9%0),0,0,d(Jyo, gy0), d(Jyo, gy0),0) < 0

which implies by (F.*) that d(Jyo, gyo) < 0, a contradiction. Thus d(Jyo, gyo) = 0, which
implies Jyo = gyo. Therefore,

(8)Izo = fro = Jyo = gyo-
Since I and f are compatible (resp.compatible of type (A), compatible of type (P)) and
Ixg = fxg, by Lemma 1 I fzg = fIxg. By (8)
f2$0 = f].%'o = If.%'o = IQxQ.

If I’z # Izo then Ifxg # Jyo and by (b) we have successively

F(d(foo,ng),d(IfJJQ, JyO)ad(IfanfoO)ad(‘]yOagyO)ad(IfangyO)ad(JyoaIfxO)) < Oa
F(d(f2$0, Ixo), d([2$0, Ixo), 0,0, d([2$0, Ixo), d([2$0, I$Q)) <0

a contradiction of (Fy). Therefore, Izg = I?zo. Hence
(g)fll'o = Ixo = IQxQ.
Similary, we have

(10)gJyo = Jyo = J?yo.

Let u = Izg = Jyo. Then fu = flxg = [ fxg = I?x¢ = Iu, which implies fu = ITu.

Similary, gu = Ju. Since v = Izg = I?xg,then Tu = u. Similary, Ju = u. Therefore,
(1) f(uw)=u=Tu=Ju=gu

and u is a common fixed point of f,g,I and J.

Suppose that g and J have another common fixed point v # u, then d(u,v) # 0 and by
(b) we have successively

F(d(fu, gv),d(Iu, Jv),d(ITu, fu),d(Jv, gv),d(Iu, gv),d(Jv, fu)) <0
F(d(u,v),d(u,v),0,0,d(u,v),d(u,v)) < 0, a contradiction of (Fy).

Thus v = v. Similarly, u is unique common fixed point of f and I.

Corollary 1. Let f,g,I,J be self maps of a compact metric space (X,d) such that

@) F(X) € J(X) and g(X) € I(X),
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O + pd(Iz, Jy))d(fz, gy) < pmaz{d(Iz, fx)d(Jy, gy), d(Iz, gy)d(Jy, fr)}
+maz{d(Iz, Jy),d(Iz, fr),d(Jy, gy), 5(d(Iz, gy) + d(Jy, fr))}

for all x,y in X for which the right hand side of (b’) is positive, where p > 0.
¢) the pair {f, I} is compatible (resp. compatible of type (A), compatible of type (P))
and the pair {g, J} is weakly compatible,

d) f and T are continuous,

then f,g.I and J have a unique common fixed point.

Proof. Follows from Theorem 5 and Ex.3.

Remark. If I = J =id, by Corollary 1 , Theorem 1 follows.

Corollary 2. Theorem 2.

Proof. Follows from Theorem 5 and Ex.1.

Corollary 3. Theorem 3.

Proof. Follows from Theorem 5 and Ex.2 for ¢; = ¢,co = %(1 —¢),ecs=1—c
Corollary 4. Theorem 4.

Proof. Follows from Theorem 5 and Ex.4 if f =S5,g=T and I = J =id.
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