Diagonal Lift in the Cotangent Bundle and its Applications

S. Akbulut, M. Özdemir, A. A. Salimov

Abstract

The purpose of this paper is to define a diagonal lift ${ }^{\mathcal{D}} g$ of a Riemannian metric g of a manifold M_{n} to the cotangent bundle $T^{*}\left(M_{n}\right)$ of M_{n}, to associate with ${ }^{\mathcal{D}} g$ an Levi-Civita connection of $T^{*}\left(M_{n}\right)$ in a natural way and to investigate applications of the diagonal lifts.

Key words and phrases: Cotangent bundle, Riemannian metric, diagonal lift, Levi-Civita connection, B-manifold, Killing vector field, geodesic.

1. Introduction

Let M_{n} be an n-dimensional differentiable manifold of class C^{∞} and $T^{*}\left(M_{n}\right)$ the cotangent bundle over M_{n}. If x^{i} are local coordinates in a neighborhood U of a point $x \in M_{n}$, then a covector p at x which is an element of $T^{*}\left(M_{n}\right)$ is expressible in the form $\left(x^{i}, p_{i}\right)$, where p_{i} are components of P with respect to the natural frame ∂_{i}. We may consider $\left(x^{i}, p_{i}\right)=\left(x^{i}, x^{\bar{i}}\right)=\left(x^{J}\right), i=1, \ldots, n ; \bar{i}=n+1, \ldots, 2 n ; J=1, \ldots, 2 n$ as local coordinates in a neigborhood $\pi^{-1}(U)\left(\pi\right.$ is the natural projection $T^{*}\left(M_{n}\right)$ onto $\left.M_{n}\right)$.

Let now M_{n} be a Riemannian manifold with nondegenarate metric g whose components in a coordinate neighborhood U are $g_{i j}$ and denote by $\Gamma_{j i}^{h}$ the Christoffel symbols formed with $g_{j i}$.

Subject classification number: Primary 53A45, Secondary 53B21

AKBULUT, ÖZDEMİR, SALiMOV

We denote by $\mathcal{T}_{s}^{r}\left(M_{n}\right)$ the module over $F\left(M_{n}\right)\left(F\left(M_{n}\right)\right.$ is the ring of C^{∞} functions in M_{n}) all tensor fields of class C^{∞} and of type (r, s) in M_{n}. Let $X \in \mathcal{T}_{0}^{1}\left(M_{n}\right)$ and $w \in \mathcal{T}_{1}^{0}\left(M_{n}\right)$. Then ${ }^{C} X$ (complete lift), ${ }^{H} X$ (horizontal lift) and ${ }^{V} w$ (vertical lift) have, respectively, components [5]

$$
\begin{equation*}
{ }^{C} X=\binom{X^{h}}{-p_{m} \partial_{h} X^{m}}, \quad{ }^{H} X=\binom{X^{h}}{p_{m} \Gamma_{h i}^{m} X^{i}}, \quad{ }^{V} w=\binom{0}{w_{h}} \tag{1}
\end{equation*}
$$

with respect to the coordinates $\left(x^{h}, x^{\bar{h}}\right)$ in $T^{*}\left(M_{n}\right)$, where X^{h} and w_{h} are respectively local components of X and w.

In each coordinate neighborhood $U\left(x^{h}\right)$ of M_{n}, we put

$$
X_{(j)}=\frac{\partial}{\partial x^{j}}, \quad w^{(j)}=d x^{j}
$$

Taking account of (1), we easily see that the components of ${ }^{H} X_{(j)}$ and ${ }^{V} w^{(j)}$ are respectively given by

$$
{ }^{H} X_{(j)}=\left(A_{j}{ }^{H}\right)=\binom{\delta_{j}^{h}}{p_{m} \Gamma_{j h}^{m}}, \quad V_{w} w^{(j)}=\left(A_{\bar{j}}{ }^{H}\right)=\binom{0}{\delta_{h}^{j}}
$$

with respect to the coordinates $\left(x^{h}, x^{\bar{h}}\right)$. We call the set $\left\{{ }^{H} X_{(j)},{ }^{V} w^{(j)}\right\}$ the frame adapted to the Riemannian connection Γ in $\pi^{-1}(U) \subset T^{*}\left(M_{n}\right)$. On putting

$$
A_{(j)}={ }^{H} X_{(j)}, \quad A_{(\bar{j})}={ }^{V} w^{(j)}
$$

we write the adapted frame as $\left\{A_{(\beta)}\right\}=\left\{A_{(j)}, A_{(\bar{j})}\right\}$.
It is easily verified that $2 n$ local 1 -forms

$$
\begin{gather*}
\tilde{\mathrm{A}}^{(i)}=\left(\tilde{\mathrm{A}}_{H}^{(i)}\right)=\left(\tilde{\mathrm{A}}_{h}^{(i)}, \tilde{\mathrm{A}}^{(i)}{ }_{h}\right)=\left(\delta_{h}^{i}, 0\right)=d x^{i} \quad i=1, \ldots, n, \\
\tilde{\mathrm{~A}}^{(i)}=\left(\tilde{\mathrm{A}}^{(i)}\right)=\left(\tilde{\mathrm{A}}_{h}^{(i)}, \tilde{\mathrm{A}}^{(i)}{ }_{h}\right)=\left(-p_{m} \Gamma_{h i}^{m} \delta_{h i}\right)=d p_{i}-p_{m} \Gamma_{h i}^{m} d x^{h}=\delta p_{i} \quad \bar{i}=n+1, \ldots, 2 n \tag{2}
\end{gather*}
$$

form a coframe $\left\{\tilde{A}^{\alpha}\right\}=\left\{\tilde{A}^{(i)}, \tilde{A}^{(\bar{i})}\right\}$ dual to the adapted frame $\left\{A_{(\beta)}\right\}$, i.e. $\tilde{A}_{H}^{(\alpha)} A_{(\beta)}{ }^{H}=$ δ_{β}^{α}.

492

AKBULUT, ÖZDEMİR, SALiMOV

2. Lift ${ }^{\mathcal{D}} g$ of a Riemannian g to $T^{*}\left(M_{n}\right)$

On putting locally

$$
\begin{equation*}
{ }^{\mathcal{D}} g=g_{j i} \tilde{A}^{(j)} \otimes \tilde{A}^{(i)}+\sum_{j, i=1}^{n} g^{j i} \tilde{A}^{(\bar{j})} \otimes \tilde{A}^{(\bar{i})} \tag{3}
\end{equation*}
$$

in $T^{*}\left(M_{n}\right)$, we see that ${ }^{\mathcal{D}} g$ defines a tensor field of type $(0,2)$ in $T^{*}\left(M_{n}\right)$, which called the diagonal lift of the tensor field g to $T^{*}\left(M_{n}\right)$ with respect to Γ. From (2) and (3) we prove that ${ }^{\mathcal{D}} g$ has components of the form

$$
\left({ }^{\mathcal{D}} g_{\beta \alpha}\right)=\left(\begin{array}{c|c}
g_{j i} & 0 \tag{4}\\
\hline 0 & g^{j i}
\end{array}\right)
$$

with respect to the coframe $\left\{\tilde{A}^{(\alpha)}\right\}$ (or with respect to the adapted frame $\left\{A_{(\beta)}\right\}$) in $T^{*}\left(M_{n}\right)$ and components

$$
{ }^{\mathcal{D}} g=\left(\begin{array}{c|c}
g_{j i}+g^{k s} p_{m} p_{\ell} \Gamma_{j k}^{m} \Gamma_{i s}^{\ell} & -g^{i s} p_{\ell} \Gamma_{j s}^{\ell} \tag{5}\\
\hline-g^{j s} p_{\ell} \Gamma_{i s}^{\ell} & g^{j i}
\end{array}\right)
$$

with respect to the local coordinates $\left(x^{j}, x^{\bar{j}}\right)$, where $g^{j i}$ denote contravariant components of g.

From (4) it easily follows that if g is a Riemannian metric in M_{n}, then ${ }^{\mathcal{D}} g$ is a Riemannian metric in $T^{*}\left(M_{n}\right)$. The metric ${ }^{\mathcal{D}} g$ is similar to that of the Riemannian extension studied by S. Sasaki in the tangent bundle [4] (for the frame bundle, see [2]).

From (1) and (5) we have

$$
{ }^{\mathcal{D}} g\left({ }^{H} X,{ }^{H} Y\right)=g(X, Y)
$$

We hence have
Theorem 1. Let $X, Y \in \mathcal{T}_{0}^{1}\left(M_{n}\right)$. Then the inner product of the horizontal lifts ${ }^{H} X$ and ${ }^{H} Y$ to $T^{*}\left(M_{n}\right)$ with the metric ${ }^{\mathcal{D}} g$ is equal to the vertical lift of the inner product of X and Y in M_{n}.

From (1) and (5) we have also

$$
{ }^{\mathcal{D}} g\left({ }^{V} w,{ }^{V} \theta\right)={ }^{V}(g(w, \theta)), \quad \forall w, \theta \in \mathcal{T}_{1}^{0}\left(M_{n}\right),
$$

AKBULUT, ÖZDEMİR, SALiMOV

$$
\begin{gather*}
\begin{aligned}
\mathcal{D}_{g}\left({ }^{V} w,{ }^{C} X\right) & =-g^{j s} w_{j} p_{\ell}\left(\partial_{s} X^{\ell}+\Gamma_{s i}^{\ell} X^{i}\right) \\
& =-g^{j s} w_{j}(\iota(\nabla X))_{s} \\
& =-^{V}(g(w, \iota(\nabla X)),
\end{aligned} \\
\begin{aligned}
\mathcal{D}\left({ }^{C}\left({ }^{C} X,{ }^{C} Y\right)\right. & =g_{j i} x^{j} y^{i}+g^{j i} p_{k} p_{\ell}\left(\nabla_{j} X^{k}\right)\left(\nabla_{i} Y^{\ell}\right) \\
& =g_{j i} x^{j} y^{i}+g^{j i}(\iota(\nabla X))_{j}(\iota(\nabla Y))_{i} \\
& ={ }^{V}(g(X, Y))+{ }^{V}(g(\iota(\nabla X), \iota(\nabla Y))), \forall X, Y \in \mathcal{T}_{0}^{1}\left(M_{n}\right), \forall w \in \mathcal{T}_{1}^{0}\left(M_{n}\right),
\end{aligned}
\end{gather*}
$$

where $(\iota(\nabla X)$ is a 1-form with local expression:

$$
\iota(\nabla X)=p_{\ell} \nabla_{s} X^{\ell} d x^{s}
$$

We recall that any element $t \in \mathcal{T}_{r}^{0}\left(T^{*}\left(M_{n}\right)\right)$ is completely determined by its action on lifts of the type ${ }^{C} X_{1},{ }^{C} X_{2}, \cdots,{ }^{C} X_{r}$, where $X_{i}, i=1, \ldots, r$ are arbitrary vector fields in $M_{n}[5, \mathrm{p} .237]$. Then ${ }^{\mathcal{D}} g$ is completely determined by (6).

3. Levi-Civita Connection of ${ }^{\mathcal{D}} g$

The components of the adapted frame $\left\{A_{(\beta)}\right\}$ are given by

$$
\left(A_{\beta}{ }^{H}\right)=\left(A_{j}{ }^{H}, A_{\bar{j}}{ }^{H}\right)=\left(\begin{array}{c|c}
\delta_{j}^{h} & 0 \tag{7}\\
\hline p_{m} \Gamma_{j h}^{m} & \delta_{h}^{j}
\end{array}\right) .
$$

The indices $\alpha, \beta, \ldots=1, \ldots, 2 n$ indicate the indices with respect to the adapted frame. The inverse of the matrix (7) is given by

$$
\begin{equation*}
\left(\tilde{A}_{H}^{\beta}\right)=\binom{\tilde{A}^{j}{ }_{H}}{\tilde{A}^{j}}, \tag{7'}
\end{equation*}
$$

$\tilde{A}^{j}{ }_{H}$ and $\tilde{A}^{\bar{j}}{ }_{H}$ being defined by

$$
\tilde{A}^{j}{ }_{H}=\left(\delta_{h}^{j}, 0\right), \tilde{A}_{H}^{\bar{j}}=\left(-p_{m} \Gamma_{h j}^{m}, \delta_{j}^{h}\right) .
$$

AKBULUT, ÖZDEMİR, SALiMOV

We now consider local vector fields A_{β} defined in $\pi^{-1}(U)$ by

$$
A_{\beta}=A_{\beta}{ }^{H} \partial_{H}
$$

which will give for various types of indices

$$
\begin{equation*}
A_{j}=\partial_{j}+\sum_{h=1}^{n} p_{m} \Gamma_{j h}^{m} \partial_{\bar{h}}, \quad A_{\bar{j}}=\partial_{\bar{j}} \tag{8}
\end{equation*}
$$

If $\Omega_{\gamma \beta}{ }^{\alpha}$ denote the non-holonomic object with respect to the vector fields A_{β}, then we have

$$
\left[A_{\gamma}, A_{\beta}\right]=\Omega_{\gamma \beta}{ }^{\alpha} A_{\alpha} .
$$

According to (7), (7^{\prime}) and (8), the components of the non-holonomic object are given by

$$
\Omega_{\gamma \beta}{ }^{\alpha}=\left(A_{\gamma} A_{\beta}{ }^{C}-A_{\beta} A_{\gamma}{ }^{C}\right) A^{\alpha}{ }_{C} .
$$

The only non-vanishing components of $\Omega_{\gamma \beta}{ }^{\alpha}$ are

$$
\begin{gather*}
\Omega_{j i}^{\bar{h}}=p_{m} R_{j i h}^{m}, \\
\Omega_{i j} \bar{h}=-p_{m} R_{j i h}^{m}, \tag{9}\\
\Omega_{j \bar{i}}^{\bar{h}}=-\Gamma_{j h}^{i}, \\
\Omega_{\overline{i j}}^{\bar{h}}=\Gamma_{j h}^{i},
\end{gather*}
$$

where $R_{j i h}{ }^{m}$ are components of the curvature tensor of Γ with metric $g_{i j}$.
Components of the Riemannian connection determined by the metric ${ }^{\mathcal{D}} g$ are given by

$$
\begin{equation*}
{ }^{\mathcal{D}} \Gamma_{\gamma \beta}^{\alpha}=\frac{1}{2}{ }^{\mathcal{D}} g^{\alpha \epsilon}\left(A_{\gamma}{ }^{\mathcal{D}} g_{\epsilon \beta}+A_{\beta}{ }^{\mathcal{D}} g_{\gamma \epsilon}-A_{\epsilon}{ }^{\mathcal{D}} g_{\gamma \beta}\right)+\frac{1}{2}\left(\Omega_{\gamma \beta}^{\alpha}+\Omega^{\alpha}{ }_{\gamma \beta}+\Omega^{\alpha}{ }_{\beta \gamma}\right), \tag{10}
\end{equation*}
$$

where $\Omega^{\alpha}{ }_{\gamma \beta}={ }^{\mathcal{D}} g^{\alpha \epsilon} \mathcal{D} g_{\delta \beta} \Omega_{\epsilon \gamma}{ }^{\delta},{ }^{\mathcal{D}} g^{\alpha \epsilon}$ are the contravariant components of the metric ${ }^{\mathcal{D}} g$ with respect to the adapted frame:

$$
\left({ }^{\mathcal{D}} g^{\beta \alpha}\right)=\left(\begin{array}{c|c}
g^{j i} & 0 \tag{11}\\
\hline 0 & g_{j i}
\end{array}\right)
$$

AKBULUT, ÖZDEMİR, SALiMOV

Thus, according to (8), (9), (10) and (11), the components ${ }^{\mathcal{D}} \Gamma_{\gamma \beta}^{\alpha}$ with respect to adapted frame are given by

$$
\begin{align*}
{ }^{\mathcal{D}} \Gamma_{j i}^{h} & =\Gamma_{j i}^{h}, \quad{ }^{\mathcal{D}} \Gamma_{j \bar{i}}^{h}=\frac{1}{2} p_{m} R_{j}^{h i m}, \tag{12}\\
{ }^{\mathcal{D}} \Gamma_{\bar{j} i}^{h} & =\frac{1}{2} p_{m} R_{i}^{h}{ }^{j m}, \quad \Gamma_{\bar{j} \bar{i}}^{h}=0, \\
{ }^{\mathcal{D}} \Gamma_{j i}^{\bar{h}} & =\frac{1}{2} p_{m} R_{j i \mathrm{~h}}{ }^{m}, \quad{ }^{\mathcal{D}} \Gamma_{j \bar{i}}^{\bar{h}}=-\Gamma_{j h}^{i}, \quad{ }^{\mathcal{D}} \Gamma_{\bar{j} i}^{\bar{h}}=0, \\
\Gamma_{\bar{j} \bar{i}}^{\bar{h}} & =0,
\end{align*}
$$

where $R_{j}^{h i m}=g^{h l} g^{k i} R_{l j k}{ }^{m}$.
The covariant derivative of the diagonal lift ${ }^{\mathcal{D}} \varphi\left(\varphi \in \mathcal{T}_{1}^{1}\left(M_{n}\right)\right)$ has components

$$
{ }^{\mathcal{D}} \nabla_{\delta}{ }^{\mathcal{D}} \varphi_{\beta}^{\alpha}=A_{\delta}{ }^{\mathcal{D}} \varphi_{\beta}^{\alpha}+{ }^{\mathcal{D}} \Gamma_{\delta \epsilon}^{\alpha}{ }^{\mathcal{D}} \varphi_{\beta}^{\epsilon}-{ }^{\mathcal{D}} \Gamma_{\delta \beta}^{\epsilon}{ }^{\mathcal{D}} \varphi_{\epsilon}^{\alpha}
$$

with respect to the adapted frame, where the components of ${ }^{\mathcal{D}} \varphi$ are given by [5, p. 291]

$$
{ }^{\mathcal{D}} \varphi_{\beta}^{\alpha}=\left(\begin{array}{c|c}
\varphi_{j}^{i} & 0 \tag{13}\\
\hline 0 & -\varphi_{i}^{j}
\end{array}\right)
$$

with respect to the adapted frame.
Let us consider a 2 n -dimensional Riemannian manifold $M_{2 n}$ with the almost complex structure φ. If tensor of Riemann metric $g_{i j}$ satisfies

$$
g_{m j} \varphi_{i}^{m}=g_{i m} \varphi_{j}^{m}
$$

then we call this Riemann metric a pure metric in an almost complex manifold $M_{2 n}$ and call an almost \mathcal{B}-manifold an almost complex space with a pure metric.
Now, if a pure metric satisfies

$$
\nabla_{j} F_{i}^{h}=0 \quad \text { or } \quad \phi_{k} g_{i j}=0
$$

where ϕ is the Tachibana operator, then we call this manifold a \mathcal{B}-manifold (see [1], [3]) (∇_{k} denotes the covariant differention with respect to the Christoffel symbols formed with $g_{i j}$). Taking account of (8) and (12), we find that ${ }^{\mathcal{D}} \nabla^{\mathcal{D}} \varphi$ has components given

AKBULUT, ÖZDEMİR, SALiMOV

by

$$
\begin{aligned}
& { }^{\mathcal{D}} \nabla_{k}{ }^{\mathcal{D}} \varphi_{j}^{i}=\nabla_{k} \varphi_{j}^{i}, \\
& { }^{\mathcal{D}} \nabla_{k}{ }^{\mathcal{D}} \varphi_{j}^{\bar{i}}=-\nabla_{k} \varphi_{i}^{j}, \\
& { }^{\mathcal{D}} \nabla_{\bar{k}}{ }^{\mathcal{D}} \varphi_{j}^{i}=\frac{1}{2} p_{\ell}\left(R_{m}^{i}{ }^{k} \varphi_{j}^{m}-R^{m}{ }_{j}{ }^{k \ell} \varphi_{m}^{i}\right), \\
& { }^{\mathcal{D}} \nabla_{k}{ }^{\mathcal{D}} \varphi_{j}^{i}=-\frac{1}{2} p_{\ell}\left(R_{k}^{i}{ }_{k}{ }^{\ell \ell} \varphi_{m}^{j}+R^{m}{ }_{k}{ }^{j \ell} \varphi_{m}^{i}\right), \\
& { }^{\mathcal{D}} \nabla_{k}{ }^{\mathcal{D}} \varphi_{j}^{\bar{i}}=\frac{1}{2} p_{\ell}\left(R_{k m i}{ }^{\ell} \varphi_{j}^{m}+R_{k j m}{ }^{\ell} \varphi_{i}^{m}\right) .
\end{aligned}
$$

all the others being zero, with respect to the adapted frame.
From (11) and (13) we easily find that ${ }^{\mathcal{D}} g$ is pure with respect to the structure ${ }^{\mathcal{D}} \varphi$. Thus we have

Theorem 2. The cotangent bundle of \mathcal{B}-manifold is \mathcal{B}-manifold with respect to the metric ${ }^{\mathcal{D}} g$ and the structure ${ }^{\mathcal{D}} \varphi$ if and only if the Riemannian manifold is locally flat.

4. Killing vector fields

A vector field $X \in T_{0}^{1}\left(M_{n}\right)$ is said to be an infinitesimal isometry or a Killing vector field of a Riemannian manifold with metric g, if $\mathcal{L}_{X} g=0[5, \mathrm{p} 78]$. In terms of components $g_{j i}$ of g, X is a Killing vector field if and only if

$$
\mathcal{L}_{X} g_{j i}=X^{\alpha} \nabla_{\alpha} g_{j i}+g_{\alpha i} \nabla_{j} X^{\alpha}+g_{j \alpha} \nabla_{i} X^{\alpha}=\nabla_{j} X_{i}+\nabla_{i} X_{j}=0,
$$

X^{α} being components of X, where ∇ is the Riemannian connection of the metric g.
Let \tilde{X} be a covector field in $T^{*}\left(M_{n}\right)$ and

$$
\left(\tilde{X}_{\alpha}\right)=\left(\tilde{X}_{h}, \tilde{X}_{\bar{h}}\right)
$$

its components with respect to the adapted frame. Then the covariant derivative ${ }^{\mathcal{D}} \nabla \tilde{X}$ has components

$$
\begin{equation*}
{ }^{\mathcal{D}} \nabla_{\beta} \tilde{X}_{\alpha}=A_{\beta} \tilde{X}_{\alpha}+{ }^{\mathcal{D}} \Gamma_{\beta \alpha}^{\gamma} \tilde{X}_{\gamma}, \tag{14}
\end{equation*}
$$

AKBULUT, ÖZDEMİR, SALiMOV

${ }^{\mathcal{D}} \Gamma_{\beta \alpha}$ being given by (12), with respect to the adapted frame. From (1) we see that components of ${ }^{C} X,{ }^{H} X$ and ${ }^{V} w$

$$
{ }^{C} X^{\alpha}=A_{A}^{\alpha}{ }^{C} X^{A},{ }^{H} X^{\alpha}=A_{A}^{\alpha}{ }^{H} X^{A}, \quad{ }^{V} w^{\alpha}=A_{A}^{\alpha}{ }^{V} w^{A}
$$

with respect to the adapted frame ${ }^{C} X,{ }^{H} X$ and ${ }^{V} w$ are given respectively by

$$
\left({ }^{C} X^{\alpha}\right)=\binom{X^{h}}{-p_{m} \nabla_{h} X^{m}}, \quad\left({ }^{H} X^{\alpha}\right)=\binom{X^{h}}{0}, \quad\left({ }^{V} w^{\alpha}\right)=\binom{0}{w_{h}}
$$

by virtue of (7^{\prime}).
The associated covector fields of the complete, horizontal and vertical lifts to $T^{*}\left(M_{n}\right)$ with the metric ${ }^{\mathcal{D}} g$ are given respectively by

$$
\begin{gather*}
\left({ }^{C} X_{\beta}\right)=\left({ }^{\mathcal{D}} g_{\beta \alpha}{ }^{C} X^{\alpha}\right)=\left(X_{j},-g^{j i} p_{m} \nabla_{i} X^{m}\right) \\
\left({ }^{H} X_{\beta}\right)=\left({ }^{\mathcal{D}} g_{\beta \alpha}{ }^{H} X^{\alpha}\right)=\left(X_{j}, 0\right) \tag{15}\\
\left({ }^{V} w_{\beta}\right)=\left({ }^{\mathcal{D}} g_{\beta \alpha}{ }^{V} w^{\alpha}\right)=\left(0, w^{j}\right)
\end{gather*}
$$

with respect to the adapted frame, where $X_{j}=g_{j i} X^{i}, w^{j}=g^{j i} w_{i}$.
We now compute the Lie derivatives of the metric ${ }^{\mathcal{D}} g$ with respect to ${ }^{C} X,{ }^{H} X$ and ${ }^{V} w$, by means of (14) and (15). The Lie derivatives of ${ }^{\mathcal{D}} g$ with respect to ${ }^{C} X,{ }^{H} X$ and ${ }^{V} w$ have respectively components

$$
\begin{align*}
&\left(\mathcal{L}_{C X}{ }^{\mathcal{D}} g_{\beta \alpha}\right)=\left({ }^{\mathcal{D}} \nabla_{\beta}{ }^{C} X_{\alpha}+{ }^{\mathcal{D}} \nabla_{\alpha}{ }^{C} X_{\beta}\right) \\
&=\left(\begin{array}{c|c|c}
& \nabla_{j} X_{i}+\nabla_{i} X_{j} & -p_{m} g^{k i} g^{\mathrm{tm}}\left(\nabla_{j} \nabla_{k} X_{t}+R_{\ell j k t} X^{\ell}\right) \\
\hline-p_{m} g^{k j} g^{\mathrm{tm}}\left(\nabla_{i} \nabla_{k} X_{t}+R_{\ell i k t} X^{\ell}\right) & -\left(g^{i s} \nabla_{s} X^{j}+g^{j s} \nabla_{s} X^{i}\right)
\end{array}\right), \tag{16}\\
&\left(\mathcal{L}_{H X}{ }^{\mathcal{D}} g_{\beta \alpha}\right)=\left({ }^{\mathcal{D}} \nabla_{\beta}{ }^{H} X_{\alpha}+{ }^{\mathcal{D}} \nabla_{\alpha}{ }^{H} X_{\beta}\right)=\left(\begin{array}{c|c}
\nabla_{j} X_{i}+\nabla_{i} X_{j} & -p_{m} g^{k i} R_{\ell j k}{ }^{m} X^{\ell} \\
\hline-p_{m} g^{k j} R_{\ell i k}{ }^{m} X^{\ell} & 0
\end{array}\right), \\
& \quad\left(\mathcal{L}_{V}{ }^{\mathcal{D}} g_{\beta \alpha}\right)=\left({ }^{\mathcal{D}} \nabla_{\beta}{ }^{V} w_{\alpha}+{ }^{\mathcal{D}} \nabla_{\alpha}{ }^{V} w_{\beta}\right)=\left(\begin{array}{c|c}
0 & g^{i s} \nabla_{j} w_{s} \\
\hline g^{j s} \nabla_{i} w_{s} & 0
\end{array}\right)
\end{align*}
$$

AKBULUT, ÖZDEMİR, SALiMOV

with respect to the adapted frame in $T^{*}\left(M_{n}\right)$.
Since we have

$$
\nabla_{i} \nabla_{k} X_{t}+R_{\ell i k t} X^{\ell}=0, \quad \mathcal{L}_{X} g^{j i}=-\left(g^{j s} \nabla_{s} X^{i}+g^{i s} \nabla_{s} X^{j}\right)=0
$$

as a consequence of $\mathcal{L}_{X} g_{j i}=\nabla_{j} X_{i}+\nabla_{i} X_{j}=0$ (see [6, p.17]), we conclude by means of (16) that the complete lift ${ }^{C} X$ is a Killing vector field in $T^{*}\left(M_{n}\right)$ if and only if X is a Killing vector field in M_{n}.

We next have

$$
R_{\ell i k}{ }^{m} X^{\ell}=0
$$

as a consequence of the vanishing of the second covariant derivative of X. Conversely, the conditions $\mathcal{L}_{X} g_{j i}=\nabla_{j} X_{i}+\nabla_{i} X_{j}=0$ and $R_{\ell i k}{ }^{m} X^{\ell}=0$ imply that the second covariant derivative of X vanishes. Summing up these results, we have

Theorem 3. Necessary and sufficient conditions in order that the
a) complete ${ }^{C} X \in \mathcal{T}_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$,
b) horizontal ${ }^{H} X \in \mathcal{T}_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$ and
c) vertical ${ }^{V} w \in \mathcal{T}_{0}^{1}\left(T^{*}\left(M_{n}\right)\right)$
lifts to $T^{*}\left(M_{n}\right)$ with the metric ${ }^{\mathcal{D}} g$, of a vector field X and covector field w in M_{n} be a Killing vector field in $T^{*}\left(M_{n}\right)$ are that,
a) X is a Killing vector field in M_{n},
b) X is a Killing vector field with vanishing second covariant derivative in M_{n} and
c) w is parallel in M_{n}.

5. Geodesics in $T^{*}\left(M_{n}\right)$ with metric ${ }^{\mathcal{D}} g$

Let C be a curve in M_{n} expressed locally by $x^{h}=x^{h}(t)$ and $w_{h}(t)$ be a covector field along C. Then, in the cotangent bundle $T^{*}\left(M_{n}\right)$, we define a curve \tilde{C} by

$$
\begin{equation*}
x^{h}=x^{h}(t), x^{\tilde{h}} \stackrel{\text { def }}{=} p_{h}=w_{h}(t) \tag{17}
\end{equation*}
$$

If the curve C satisfies at all the points the relation

$$
\begin{equation*}
\frac{\delta w_{n}}{d t}=\frac{d w_{n}}{d t}-\Gamma_{j h}^{i} \frac{d x^{j}}{d t} w_{i}=0 \tag{18}
\end{equation*}
$$

AKBULUT, ÖZDEMİR, SALiMOV

then the curve \tilde{C} is said to be a horizontal lift of the curve C in M_{n}. Thus, if the initial condition $w_{h}=w_{h}^{0}$ for $t=t_{0}$ is given, there exists a unique horizontal lift expressed by (17).

We now consider differential equations of the geodesics of the cotangent bundle $T^{*}\left(M_{n}\right)$ with the metric ${ }^{\mathcal{D}} g$. If t is the arc lenght of a curve $x^{A}=x^{A}(t)$ in $T^{*}\left(M_{n}\right)$, equations of geodesic in $T^{*}\left(M_{n}\right)$ have the usual form

$$
\begin{equation*}
\frac{\delta^{2} x^{A}}{d t^{2}}=\frac{d^{2} x^{A}}{d t^{2}}+{ }^{\mathcal{D}} \Gamma_{C}{ }^{A}{ }_{B} \frac{d x^{C}}{d t} \frac{d x^{B}}{d t}=0 \tag{19}
\end{equation*}
$$

with respect to the induced coordinates $\left(x^{i}, x^{\bar{i}}\right)=\left(x^{i}, \rho_{i}\right)$ in $T^{*}\left(M_{n}\right)$.
We find it more convenient to refer equations (19) to the adapted frame $\left\{A_{(i)}, A_{(\bar{i})}\right\}$. Using (2), we now write

$$
\begin{aligned}
& \theta^{h}=A_{A}^{(h)} d x^{A}=d x^{h}, \\
& \theta^{\bar{h}}=A_{A}^{(\bar{h})} d x^{A}=\delta p_{h},
\end{aligned}
$$

and put

$$
\begin{gathered}
\frac{\theta^{h}}{d t}=A_{A}^{(h)} \frac{d x^{A}}{d t}=\frac{d x^{h}}{d t}, \\
\frac{\theta^{\bar{h}}}{d t}=A_{A}^{(\bar{h})} \frac{d x^{A}}{d t}=\frac{\delta p_{h}}{d t}=\frac{\delta p_{h}}{d t}-\Gamma_{j}{ }^{i}{ }_{h} \frac{d x^{j}}{d t} p_{i}
\end{gathered}
$$

along a curve $x^{A}=x^{A}(t)$, i.e., $x^{h}=x^{h}(t), p_{h}=p_{h}(t)$ in $T^{*}\left(M_{n}\right)$.
If we therefore write down the form equivalent to (19), namely,

$$
\frac{d}{d t}\left(\frac{\theta^{\alpha}}{d t}\right)+{ }^{\mathcal{D}} \Gamma_{\delta}{ }_{\beta}^{\alpha}\left(\frac{\theta^{\gamma}}{d t}\right)\left(\frac{\theta^{\beta}}{d t}\right)=0
$$

with respect to the adapted frame and take account of (12), then we have

$$
\left\{\begin{array}{l}
\frac{\delta^{2} x^{h}}{d t^{2}}+p_{m} R_{j}^{h i m} \frac{d x^{j}}{d t} \frac{\delta p_{i}}{d t}=0 \tag{20}\\
\frac{\delta^{2} p_{h}}{d t^{2}}+\frac{1}{2} p_{m} R_{j i h^{m}}{ }^{\frac{d x^{j}}{d t} \frac{d x^{i}}{d t}=0}
\end{array}\right.
$$

AKBULUT, ÖZDEMİR, SALiMOV

Since we have

$$
R_{j i h}^{m} \frac{d x^{j}}{d t} \frac{d x^{i}}{d t}=0
$$

as a consequence of $R_{(j i) h}{ }^{m}=0$, we conclude by means of (20) that a curve $x^{i}=x^{i}(t)$, $p_{h}=p_{h}(t)$ in $T^{*}\left(M_{n}\right)$ with the metric ${ }^{\mathcal{D}} g$ is a geodesic in $T^{*}\left(M_{n}\right)$, if and only if

$$
\left\{\begin{array}{l}
\frac{\delta^{2} x^{h}}{d t^{2}}+p_{m} R_{j}^{h}{ }_{j}{ }^{2 m} \frac{d x^{j}}{d t} \frac{\delta p_{i}}{d t}=0, \tag{21}\\
\frac{\delta^{2} p_{h}}{d t^{2}}=0
\end{array}\right.
$$

If a curve satisfying (21) lies on a fibre given by $x^{h}=$ const, then $(20,(b))$ reduces to

$$
\frac{d^{2} p_{h}}{d t^{2}}=0
$$

so that $p_{h}=a_{h} t+b_{h}, a_{h}$ and b_{h} being constant. Thus we have
Theorem 4. If geodesic $x^{h}=x^{h(t)}, p_{h}=p_{h}(t)$ lies in a fibre of $T^{*}\left(M_{n}\right)$ with the metric ${ }^{\mathcal{D}} g$, the a geodesic is expressed by linear equations $x^{h}=c^{h}, p_{h}=a_{h} t+b_{h}$, where a_{h}, b_{h} and c^{h} are constant.

From (18) and (21), we have
Theorem 5. The horizontal lift of a geodesic in M_{n} is always geodesic in $T^{*}\left(M_{n}\right)$ with the metric ${ }^{\mathcal{D}} g$.

References

[1] Kruchkovich G.I., Hypercomplex structures on manifolds, I. Trudy Sem. vector.tensor anal. Moscow Univer.(1972), N16, 174-201.
[2] Mok K.P.,On the differential geometry of the frame bundles of Riemannian manifolds, J. reine angew. Math.,302,16-31 (1976).
[3] Salimov A. A., Almost integrable polyaffinor structure. Izv. VUZ. Math. (1988), No. 6 (313), 87-80, English transl.in Soviet Math., 32 (1988).
[4] Sasaki S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J, 10, 338-354(1958).

AKBULUT, ÖZDEMİR, SALiMOV

[5] Yano K., Ishihara S., Tangent and Cotangent Bundles, Marcel Dekker, Inc. New York (1973).
[6] Yano K., The Theory of Lie Derivatives and Its Applications, Amsterdam, (1957).

Sezgin AKBULUT, Murat ÖZDEMİR \&
A. Arif SALiMOV

Atatürk Üniversitesi,
Fen-Edebiyat Fakültesi,
Matematik Bölümü
25240, Erzurum-TURKEY
e-mail: sezginakbulut@hotmail.com
e-mail: mozdemir@crosswinds.net
e-mail: asalimov@hotmail.com

