Turk J Math 25 (2001) , 491 – 502. © TÜBİTAK

Diagonal Lift in the Cotangent Bundle and its Applications

S. Akbulut, M. Özdemir, A. A. Salimov

Abstract

The purpose of this paper is to define a diagonal lift \mathcal{D}_g of a Riemannian metric g of a manifold M_n to the cotangent bundle $T^*(M_n)$ of M_n , to associate with \mathcal{D}_g an Levi-Civita connection of $T^*(M_n)$ in a natural way and to investigate applications of the diagonal lifts.

Key words and phrases: Cotangent bundle, Riemannian metric, diagonal lift, Levi-Civita connection, B-manifold, Killing vector field, geodesic.

1. Introduction

Let M_n be an *n*-dimensional differentiable manifold of class C^{∞} and $T^*(M_n)$ the cotangent bundle over M_n . If x^i are local coordinates in a neighborhood U of a point $x \in M_n$, then a covector p at x which is an element of $T^*(M_n)$ is expressible in the form (x^i, p_i) , where p_i are components of P with respect to the natural frame ∂_i . We may consider $(x^i, p_i)=(x^i, x^{\overline{i}})=(x^J), i=1,\ldots,n; \overline{i}=n+1,\ldots,2n; J=1,\ldots,2n$ as local coordinates in a neighborhood $\pi^{-1}(U)$ (π is the natural projection $T^*(M_n)$ onto M_n).

Let now M_n be a Riemannian manifold with nondegenarate metric g whose components in a coordinate neighborhood U are g_{ij} and denote by Γ_{ji}^h the Christoffel symbols formed with g_{ji} .

Subject classification number: Primary 53A45, Secondary 53B21

We denote by $\mathcal{T}_s^r(M_n)$ the module over $F(M_n)$ ($F(M_n)$ is the ring of C^{∞} functions in M_n) all tensor fields of class C^{∞} and of type (r, s) in M_n . Let $X \in \mathcal{T}_0^1(M_n)$ and $w \in \mathcal{T}_1^0(M_n)$. Then $^C X$ (complete lift), $^H X$ (horizontal lift) and $^V w$ (vertical lift) have, respectively, components [5]

$${}^{C}X = \begin{pmatrix} X^{h} \\ -p_{m}\partial_{h}X^{m} \end{pmatrix}, \quad {}^{H}X = \begin{pmatrix} X^{h} \\ p_{m}\Gamma_{hi}^{m}X^{i} \end{pmatrix}, \quad {}^{V}w = \begin{pmatrix} 0 \\ w_{h} \end{pmatrix}$$
(1)

with respect to the coordinates $(x^h, x^{\overline{h}})$ in $T^*(M_n)$, where X^h and w_h are respectively local components of X and w.

In each coordinate neighborhood $U(x^h)$ of M_n , we put

$$X_{(j)} = \frac{\partial}{\partial x^j} , \quad w^{(j)} = dx^j.$$

Taking account of (1), we easily see that the components of ${}^{H}X_{(j)}$ and ${}^{V}w^{(j)}$ are respectively given by

$${}^{H}X_{(j)} = (A_{j}{}^{H}) = \begin{pmatrix} \delta_{j}^{h} \\ p_{m}\Gamma_{jh}^{m} \end{pmatrix}, \quad {}^{V}w^{(j)} = (A_{\overline{j}}{}^{H}) = \begin{pmatrix} 0 \\ \delta_{h}^{j} \end{pmatrix}$$

with respect to the coordinates $(x^h, x^{\overline{h}})$. We call the set $\{{}^{H}X_{(j)}, {}^{V}w^{(j)}\}$ the frame adapted to the Riemannian connection Γ in $\pi^{-1}(U) \subset T^*(M_n)$. On putting

$$A_{(j)} = {}^{H} X_{(j)}, \qquad A_{(\overline{j})} = {}^{V} w^{(j)}$$

we write the adapted frame as $\{A_{(\beta)}\} = \{A_{(j)}, A_{(j)}\}$.

It is easily verified that 2n local 1-forms

$$\tilde{\mathbf{A}}^{(i)} = \left(\tilde{\mathbf{A}}^{(i)}_{\ H}\right) = \left(\tilde{\mathbf{A}}^{(i)}_{\ h}, \tilde{\mathbf{A}}^{(i)}_{\ \overline{h}}\right) = \left(\delta^{i}_{\ h}, 0\right) = dx^{i} \quad i = 1, \dots, n,$$
$$\tilde{\mathbf{A}}^{(i)} = \left(\tilde{\mathbf{A}}^{(i)}_{\ H}\right) = \left(\tilde{\mathbf{A}}^{(i)}_{\ h}, \tilde{\mathbf{A}}^{(i)}_{\ \overline{h}}\right) = \left(-p_{m}\Gamma^{m}_{hi}\delta_{hi}\right) = dp_{i} - p_{m}\Gamma^{m}_{hi}dx^{h} = \delta p_{i} \quad \overline{i} = n+1, \dots, 2n$$

form a coframe $\{\tilde{A}^{\alpha}\} = \{\tilde{A}^{(i)}, \tilde{A}^{(i)}\}$ dual to the adapted frame $\{A_{(\beta)}\}$, i.e. $\tilde{A}^{(\alpha)}_{\ \ H}A_{(\beta)}^{\ \ H} =$

(2)

 δ^{α}_{β} .

2. Lift \mathcal{D}_g of a Riemannian g to $T^*(M_n)$

On putting locally

$${}^{\mathcal{D}}g = g_{ji}\tilde{A}^{(j)} \otimes \tilde{A}^{(i)} + \sum_{j,i=1}^{n} g^{ji}\tilde{A}^{(\overline{j})} \otimes \tilde{A}^{(\overline{i})}$$
(3)

in $T^*(M_n)$, we see that \mathcal{D}_g defines a tensor field of type (0,2) in $T^*(M_n)$, which called the diagonal lift of the tensor field g to $T^*(M_n)$ with respect to Γ . From (2) and (3) we prove that \mathcal{D}_g has components of the form

$$(^{\mathcal{D}}g_{\beta\alpha}) = \begin{pmatrix} g_{ji} & 0\\ \hline 0 & g^{ji} \end{pmatrix}$$
 (4)

with respect to the coframe $\{\tilde{A}^{(\alpha)}\}\)$ (or with respect to the adapted frame $\{A_{(\beta)}\}\)$ in $T^*(M_n)$ and components

$${}^{\mathcal{D}}g = \left(\begin{array}{c|c} g_{ji} + g^{ks} p_m p_\ell \Gamma^m_{jk} \Gamma^\ell_{is} & -g^{is} p_\ell \Gamma^\ell_{js} \\ \hline -g^{js} p_\ell \Gamma^\ell_{is} & g^{ji} \end{array}\right)$$
(5)

with respect to the local coordinates $(x^j, x^{\overline{j}})$, where g^{ji} denote contravariant components of g.

From (4) it easily follows that if g is a Riemannian metric in M_n , then ${}^{\mathcal{D}}g$ is a Riemannian metric in $T^*(M_n)$. The metric ${}^{\mathcal{D}}g$ is similar to that of the Riemannian extension studied by S. Sasaki in the tangent bundle [4] (for the frame bundle, see [2]).

From (1) and (5) we have

$${}^{\mathcal{D}}g\left({}^{H}X,{}^{H}Y\right) = g(X,Y).$$

We hence have

Theorem 1. Let $X, Y \in \mathcal{T}_0^1(M_n)$. Then the inner product of the horizontal lifts ${}^{H}X$ and ${}^{H}Y$ to $T^*(M_n)$ with the metric ${}^{\mathcal{D}}g$ is equal to the vertical lift of the inner product of X and Y in M_n .

From (1) and (5) we have also

$${}^{\mathcal{D}}g({}^{V}w,{}^{V}\theta) = {}^{V}(g(w,\theta)), \quad \forall w,\theta \in \mathcal{T}_{1}^{0}(M_{n}),$$

$$\mathcal{D}g(^{V}w,^{C}X) = -g^{js}w_{j}p_{\ell}(\partial_{s}X^{\ell} + \Gamma^{\ell}_{si}X^{i})$$
$$= -g^{js}w_{j}(\iota(\nabla X))_{s}$$
$$= -^{V}(g(w,\iota(\nabla X)),$$

$$\mathcal{D}g(^{C}X,^{C}Y) = g_{ji}x^{j}y^{i} + g^{ji}p_{k}p_{\ell}(\nabla_{j}X^{k})(\nabla_{i}Y^{\ell})$$

$$= g_{ji}x^{j}y^{i} + g^{ji}(\iota(\nabla X))_{j}(\iota(\nabla Y))_{i}$$

$$=^{V}(g(X,Y)) +^{V}(g(\iota(\nabla X),\iota(\nabla Y))), \forall X,Y \in \mathcal{T}_{0}^{1}(M_{n}), \forall w \in \mathcal{T}_{1}^{0}(M_{n}),$$
(6)

where $(\iota(\nabla X)$ is a 1-form with local expression:

$$\iota(\nabla X) = p_\ell \nabla_s X^\ell dx^s.$$

We recall that any element $t \in \mathcal{T}_r^0(T^*(M_n))$ is completely determined by its action on lifts of the type ${}^CX_1, {}^CX_2, \cdots, {}^CX_r$, where $X_i, i = 1, \ldots, r$ are arbitrary vector fields in M_n [5,p. 237]. Then ${}^{\mathcal{D}}g$ is completely determined by (6).

3. Levi-Civita Connection of ${}^{\mathcal{D}}g$

The components of the adapted frame $\{A_{(\beta)}\}\$ are given by

$$(A_{\beta}^{\ H}) = (A_{j}^{\ H}, A_{\overline{j}}^{\ H}) = \begin{pmatrix} \delta_{j}^{h} & 0\\ \hline p_{m}\Gamma_{jh}^{m} & \delta_{h}^{j} \end{pmatrix}.$$
(7)

The indices $\alpha, \beta, \ldots = 1, \ldots, 2n$ indicate the indices with respect to the adapted frame. The inverse of the matrix (7) is given by

$$(\tilde{A}^{\beta}{}_{H}) = \begin{pmatrix} \tilde{A}^{j}{}_{H} \\ \tilde{A}^{\overline{j}}{}_{H} \end{pmatrix}, \qquad (7')$$

 $\tilde{A}^{j}_{\ \ H}$ and $\tilde{A}^{\overline{j}}_{\ \ H}$ being defined by

$$\tilde{A}^{j}{}_{H} = (\delta^{j}_{h}, 0), \ \tilde{A}^{\overline{j}}{}_{H} = (-p_{m}\Gamma^{m}_{hj}, \delta^{h}_{j}).$$

We now consider local vector fields A_{β} defined in $\pi^{-1}(U)$ by

$$A_{\beta} = A_{\beta}{}^{H}\partial_{H}$$

which will give for various types of indices

$$A_j = \partial_j + \sum_{h=1}^n p_m \Gamma_{jh}^m \partial_{\overline{h}}, \ A_{\overline{j}} = \partial_{\overline{j}}.$$
 (8)

If $\Omega_{\gamma\beta}{}^{\alpha}$ denote the non-holonomic object with respect to the vector fields A_{β} , then we have

$$[A_{\gamma}, A_{\beta}] = \Omega_{\gamma\beta} \,^{\alpha} A_{\alpha}.$$

According to (7), (7') and (8), the components of the non-holonomic object are given by

$$\Omega_{\gamma\beta}{}^{\alpha} = (A_{\gamma}A_{\beta}{}^{C} - A_{\beta}A_{\gamma}{}^{C})A^{\alpha}{}_{C}$$

The only non-vanishing components of $\Omega_{\gamma\beta}{}^\alpha$ are

$$\Omega_{ji}{}^{h} = p_m R_{jih}{}^{m},$$

$$\Omega_{ij}{}^{\overline{h}} = -p_m R_{jih}{}^{m},$$

$$\Omega_{j\overline{i}}{}^{\overline{h}} = -\Gamma_{jh}{}^{i},$$

$$\Omega_{j\overline{i}}{}^{\overline{h}} = \Gamma_{jh}{}^{i},$$

$$\Omega_{\overline{ij}}{}^{\overline{h}} = \Gamma_{jh}{}^{i},$$
(9)

where R_{jih}^{m} are components of the curvature tensor of Γ with metric g_{ij} .

Components of the Riemannian connection determined by the metric ${}^{\mathcal{D}}g$ are given by

$${}^{\mathcal{D}}\Gamma^{\alpha}_{\gamma\beta} = \frac{1}{2} {}^{\mathcal{D}}g^{\alpha\epsilon} (A_{\gamma} {}^{\mathcal{D}}g_{\epsilon\beta} + A_{\beta} {}^{\mathcal{D}}g_{\gamma\epsilon} - A_{\epsilon} {}^{\mathcal{D}}g_{\gamma\beta}) + \frac{1}{2} (\Omega_{\gamma\beta} {}^{\alpha} + \Omega^{\alpha} {}_{\gamma\beta} + \Omega^{\alpha} {}_{\beta\gamma}), \quad (10)$$

where $\Omega^{\alpha}_{\gamma\beta} = \mathcal{D} g^{\alpha\epsilon} \mathcal{D}_{g\delta\beta} \Omega_{\epsilon\gamma}^{\delta} \delta$, $\mathcal{D} g^{\alpha\epsilon}$ are the contravariant components of the metric $\mathcal{D} g$ with respect to the adapted frame:

$$\begin{pmatrix} \mathcal{D}g^{\beta\alpha} \end{pmatrix} = \begin{pmatrix} g^{ji} & 0\\ \hline 0 & g_{ji} \end{pmatrix}$$
(11)

Thus, according to (8), (9), (10) and (11), the components ${}^{\mathcal{D}}\Gamma^{\alpha}_{\gamma\beta}$ with respect to adapted frame are given by

$${}^{\mathcal{D}}\Gamma^{h}_{ji} = \Gamma^{h}_{ji}, \quad {}^{\mathcal{D}}\Gamma^{h}_{j\overline{i}} = \frac{1}{2}p_{m}R^{h\ im}_{\ j}, \qquad (12)$$
$${}^{\mathcal{D}}\Gamma^{h}_{\overline{j}i} = \frac{1}{2}p_{m}R^{h\ jm}_{\ i}, \quad \Gamma^{h}_{\overline{j}\overline{i}} = 0,$$
$${}^{\mathcal{D}}\Gamma^{\overline{h}}_{\overline{j}i} = \frac{1}{2}p_{m}R_{jih}^{\ m}, \quad {}^{\mathcal{D}}\Gamma^{\overline{h}}_{\overline{j}\overline{i}} = -\Gamma^{i}_{jh}, \quad {}^{\mathcal{D}}\Gamma^{\overline{h}}_{\overline{j}\overline{i}} = 0,$$
$${}^{\Gamma^{\overline{h}}_{\overline{j}\overline{i}}} = 0,$$

where $R_{j}^{h\ im} = g^{hl}g^{ki}R_{ljk}^{\ m}$.

The covariant derivative of the diagonal lift ${}^{\mathcal{D}}\varphi(\varphi \in \mathcal{T}_1^1(M_n))$ has components

$${}^{\mathcal{D}}\nabla_{\delta} {}^{\mathcal{D}}\varphi^{\alpha}_{\beta} = A_{\delta} {}^{\mathcal{D}}\varphi^{\alpha}_{\beta} + {}^{\mathcal{D}}\Gamma^{\alpha}_{\delta\epsilon} {}^{\mathcal{D}}\varphi^{\epsilon}_{\beta} - {}^{\mathcal{D}}\Gamma^{\epsilon}_{\delta\beta} {}^{\mathcal{D}}\varphi^{\alpha}_{\epsilon}$$

with respect to the adapted frame, where the components of ${}^{\mathcal{D}}\varphi$ are given by [5, p. 291]

$${}^{\mathcal{D}}\varphi^{\alpha}_{\beta} = \left(\begin{array}{c|c} \varphi^i_j & 0\\ \hline 0 & -\varphi^j_i \end{array}\right) \tag{13}$$

with respect to the adapted frame.

Let us consider a 2n-dimensional Riemannian manifold M_{2n} with the almost complex structure φ . If tensor of Riemann metric g_{ij} satisfies

$$g_{mj}\varphi_i^m = g_{im}\varphi_j^m,$$

then we call this Riemann metric a pure metric in an almost complex manifold M_{2n} and call an almost \mathcal{B} -manifold an almost complex space with a pure metric.

Now, if a pure metric satisfies

$$\nabla_j F_i^h = 0 \text{ or } \phi_k g_{ij} = 0,$$

where ϕ is the Tachibana operator, then we call this manifold a \mathcal{B} -manifold (see [1], [3]) (∇_k denotes the covariant differention with respect to the Christoffel symbols formed with g_{ij}). Taking account of (8) and (12), we find that ${}^{\mathcal{D}}\nabla^{\mathcal{D}}\varphi$ has components given

by

$${}^{\mathcal{D}}\nabla_{k} {}^{\mathcal{D}}\varphi_{j}^{i} = \nabla_{k}\varphi_{j}^{i},$$

$${}^{\mathcal{D}}\nabla_{k} {}^{\mathcal{D}}\varphi_{j}^{\overline{i}} = -\nabla_{k}\varphi_{i}^{j},$$

$${}^{\mathcal{D}}\nabla_{\overline{k}} {}^{\mathcal{D}}\varphi_{j}^{i} = \frac{1}{2}p_{\ell} \left(R_{m}^{i} {}^{k\ell}\varphi_{j}^{m} - R_{j}^{m} {}^{k\ell}\varphi_{m}^{i} \right),$$

$${}^{\mathcal{D}}\nabla_{k} {}^{\mathcal{D}}\varphi_{\overline{j}}^{i} = -\frac{1}{2}p_{\ell} \left(R_{k}^{i} {}^{m\ell}\varphi_{m}^{j} + R_{k}^{m} {}^{j\ell}\varphi_{m}^{i} \right),$$

$${}^{\mathcal{D}}\nabla_{k} {}^{\mathcal{D}}\varphi_{\overline{j}}^{\overline{i}} = \frac{1}{2}p_{\ell} \left(R_{kmi} {}^{\ell}\varphi_{j}^{m} + R_{kjm} {}^{\ell}\varphi_{i}^{m} \right).$$

all the others being zero, with respect to the adapted frame.

From (11) and (13) we easily find that ${}^{\mathcal{D}}g$ is pure with respect to the structure ${}^{\mathcal{D}}\varphi$. Thus we have

Theorem 2. The cotangent bundle of \mathcal{B} -manifold is \mathcal{B} -manifold with respect to the metric $\mathcal{D}g$ and the structure $\mathcal{D}\varphi$ if and only if the Riemannian manifold is locally flat.

4. Killing vector fields

A vector field $X \in T_0^1(M_n)$ is said to be an infinitesimal isometry or a Killing vector field of a Riemannian manifold with metric g, if $\mathcal{L}_X g = 0$ [5, p78]. In terms of components g_{ji} of g, X is a Killing vector field if and only if

$$\mathcal{L}_X g_{ji} = X^{\alpha} \nabla_{\alpha} g_{ji} + g_{\alpha i} \nabla_j X^{\alpha} + g_{j\alpha} \nabla_i X^{\alpha} = \nabla_j X_i + \nabla_i X_j = 0,$$

 X^{α} being components of X, where ∇ is the Riemannian connection of the metric g.

Let \tilde{X} be a covector field in $T^*(M_n)$ and

$$\left(\tilde{X}_{\alpha}\right) = \left(\tilde{X}_{h}, \tilde{X}_{\overline{h}}\right)$$

its components with respect to the adapted frame. Then the covariant derivative ${}^{\mathcal{D}}\nabla\tilde{X}$ has components

$${}^{\mathcal{D}}\nabla_{\beta}\tilde{X}_{\alpha} = A_{\beta}\tilde{X}_{\alpha} + {}^{\mathcal{D}}\Gamma^{\gamma}_{\beta\alpha}\tilde{X}_{\gamma}, \tag{14}$$

 ${}^{\mathcal{D}}\Gamma_{\beta\alpha}$ being given by (12), with respect to the adapted frame. From (1) we see that components of ${}^{C}X$, ${}^{H}X$ and ${}^{V}w$

$$^{C}X^{\alpha}=A^{\alpha}{}_{A}{}^{C}X^{A}, \ ^{H}X^{\alpha}=A^{\alpha}{}_{A}{}^{H}X^{A}, \ ^{V}w^{\alpha}=A^{\alpha}{}_{A}{}^{V}w^{A}$$

with respect to the adapted frame ${}^{C}X$, ${}^{H}X$ and ${}^{V}w$ are given respectively by

$$\binom{C}{X^{\alpha}} = \binom{X^{h}}{-p_{m}\nabla_{h}X^{m}}, \quad \binom{H}{X^{\alpha}} = \binom{X^{h}}{0}, \quad \binom{V}{w^{\alpha}} = \binom{0}{w_{h}}$$

by virtue of (7').

The associated covector fields of the complete, horizontal and vertical lifts to $T^*(M_n)$ with the metric $\mathcal{D}g$ are given respectively by

$$\begin{pmatrix} {}^{C}X_{\beta} \end{pmatrix} = \begin{pmatrix} {}^{\mathcal{D}}g_{\beta\alpha} {}^{C}X^{\alpha} \end{pmatrix} = \begin{pmatrix} X_{j}, -g^{ji}p_{m}\nabla_{i}X^{m} \end{pmatrix}, \begin{pmatrix} {}^{H}X_{\beta} \end{pmatrix} = \begin{pmatrix} {}^{\mathcal{D}}g_{\beta\alpha} {}^{H}X^{\alpha} \end{pmatrix} = (X_{j}, 0), \begin{pmatrix} {}^{V}w_{\beta} \end{pmatrix} = \begin{pmatrix} {}^{\mathcal{D}}g_{\beta\alpha} {}^{V}w^{\alpha} \end{pmatrix} = (0, w^{j})$$
 (15)

with respect to the adapted frame, where $X_j = g_{ji}X^i$, $w^j = g^{ji}w_i$.

We now compute the Lie derivatives of the metric \mathcal{D}_g with respect to CX , HX and Vw , by means of (14) and (15). The Lie derivatives of \mathcal{D}_g with respect to CX , HX and Vw have respectively components

$$(\mathcal{L}_{^{C}X} {}^{\mathcal{D}}g_{\beta\alpha}) = ({}^{\mathcal{D}}\nabla_{\beta} {}^{^{C}}X_{\alpha} + {}^{\mathcal{D}}\nabla_{\alpha} {}^{^{C}}X_{\beta})$$

$$= \left(\frac{\nabla_{j}X_{i} + \nabla_{i}X_{j}}{-p_{m}g^{kj}g^{tm}\left(\nabla_{i}\nabla_{k}X_{t} + R_{\ell ikt}X^{\ell}\right)} - \left(g^{is}\nabla_{s}X^{j} + g^{js}\nabla_{s}X^{i}\right) - \left(g^{is}\nabla_{s}X^{j} + g^{js}\nabla_{s}X^{i}\right) \right)$$

$$(16)$$

$$\left(\mathcal{L}_{H_X} {}^{\mathcal{D}} g_{\beta \alpha} \right) = \begin{pmatrix} {}^{\mathcal{D}} \nabla_{\beta} {}^{H} X_{\alpha} + {}^{\mathcal{D}} \nabla_{\alpha} {}^{H} X_{\beta} \end{pmatrix} = \begin{pmatrix} \frac{\nabla_{j} X_i + \nabla_i X_j & \left| -p_m g^{ki} R_{\ell j k} {}^m X^{\ell} \right| \\ \left| -p_m g^{kj} R_{\ell i k} {}^m X^{\ell} \right| & 0 \end{pmatrix},$$

$$\left(\mathcal{L}_{V_w} {}^{\mathcal{D}} g_{\beta \alpha} \right) = \begin{pmatrix} {}^{\mathcal{D}} \nabla_{\beta} {}^{V} w_{\alpha} + {}^{\mathcal{D}} \nabla_{\alpha} {}^{V} w_{\beta} \end{pmatrix} = \begin{pmatrix} \frac{0}{g^{is} \nabla_j w_s} \\ 0 \end{pmatrix}$$

with respect to the adapted frame in $T^*(M_n)$.

Since we have

$$\nabla_i \nabla_k X_t + R_{\ell i k t} X^{\ell} = 0, \quad \mathcal{L}_X g^{j i} = -\left(g^{j s} \nabla_s X^i + g^{i s} \nabla_s X^j\right) = 0$$

as a consequence of $\mathcal{L}_X g_{ji} = \nabla_j X_i + \nabla_i X_j = 0$ (see [6, p.17]), we conclude by means of (16) that the complete lift $^C X$ is a Killing vector field in $T^*(M_n)$ if and only if X is a Killing vector field in M_n .

We next have

$$R_{\ell ik}^{\ m} X^{\ell} = 0$$

as a consequence of the vanishing of the second covariant derivative of X. Conversely, the conditions $\mathcal{L}_X g_{ji} = \nabla_j X_i + \nabla_i X_j = 0$ and $R_{\ell i k}{}^m X^{\ell} = 0$ imply that the second covariant derivative of X vanishes. Summing up these results, we have

Theorem 3. Necessary and sufficient conditions in order that the

- a) complete ${}^{C}X \in \mathcal{T}_0^1(T^*(M_n)),$
- b) horizontal ${}^{H}X \in \mathcal{T}_{0}^{1}(T^{*}(M_{n}))$ and
- c) vertical $^{V}w \in \mathcal{T}_{0}^{1}(T^{*}(M_{n}))$

lifts to $T^*(M_n)$ with the metric \mathcal{D}_g , of a vector field X and covector field w in M_n be a Killing vector field in $T^*(M_n)$ are that,

- a) X is a Killing vector field in M_n ,
- b) X is a Killing vector field with vanishing second covariant derivative in M_n and
- c) w is parallel in M_n .

5. Geodesics in $T^*(M_n)$ with metric $\mathcal{D}g$

Let C be a curve in M_n expressed locally by $x^h = x^h(t)$ and $w_h(t)$ be a covector field along C. Then, in the cotangent bundle $T^*(M_n)$, we define a curve \tilde{C} by

$$x^{h} = x^{h}(t), \quad x^{\tilde{h}} \stackrel{\text{def}}{=} p_{h} = w_{h}(t) \tag{17}$$

If the curve C satisfies at all the points the relation

$$\frac{\delta w_n}{dt} = \frac{dw_n}{dt} - \Gamma_j^i {}_h \frac{dx^j}{dt} w_i = 0, \qquad (18)$$

Λ	a	Q
4	9	9

then the curve \tilde{C} is said to be a horizontal lift of the curve C in M_n . Thus, if the initial condition $w_h = w_h^0$ for $t = t_0$ is given, there exists a unique horizontal lift expressed by (17).

We now consider differential equations of the geodesics of the cotangent bundle $T^*(M_n)$ with the metric $\mathcal{D}g$. If t is the arc lenght of a curve $x^A = x^A(t)$ in $T^*(M_n)$, equations of geodesic in $T^*(M_n)$ have the usual form

$$\frac{\delta^2 x^A}{dt^2} = \frac{d^2 x^A}{dt^2} + \mathcal{D} \Gamma_C^{\ A}{}_B \frac{dx^C}{dt} \frac{dx^B}{dt} = 0 \tag{19}$$

with respect to the induced coordinates $(x^i, x^{\overline{i}}) = (x^i, \rho_i)$ in $T^*(M_n)$.

We find it more convenient to refer equations (19) to the adapted frame $\{A_{(i)}, A_{(i)}\}$. Using (2), we now write

$$\theta^{h} = A^{(h)}_{\ A} dx^{A} = dx^{h},$$
$$\theta^{\overline{h}} = A^{(\overline{h})}_{\ A} dx^{A} = \delta p_{h},$$

and put

$$\frac{\theta^h}{dt} = A^{(h)}{}_A \frac{dx^A}{dt} = \frac{dx^h}{dt},$$

$$\frac{\overline{\theta^{h}}}{dt} = A^{(\overline{h})}{}_{A} \frac{dx^{A}}{dt} = \frac{\delta p_{h}}{dt} = \frac{\delta p_{h}}{dt} - \Gamma_{j}{}^{i}{}_{h} \frac{dx^{j}}{dt} p_{i}$$

along a curve $x^{A} = x^{A}(t)$, i.e., $x^{h} = x^{h}(t)$, $p_{h} = p_{h}(t)$ in $T^{*}(M_{n})$.

If we therefore write down the form equivalent to (19), namely,

$$\frac{d}{dt} \left(\frac{\theta^{\alpha}}{dt} \right) + {}^{\mathcal{D}} \Gamma_{\delta} {}_{\beta} {}^{\alpha} \left(\frac{\theta^{\gamma}}{dt} \right) \left(\frac{\theta^{\beta}}{dt} \right) = 0$$

with respect to the adapted frame and take account of (12), then we have

$$\begin{cases} \frac{\delta^2 x^h}{dt^2} + p_m R^h_{\ j} \stackrel{im}{m} \frac{dx^j}{dt} \frac{\delta p_i}{dt} = 0, \\ \frac{\delta^2 p_h}{dt^2} + \frac{1}{2} p_m R_{j \ i} \stackrel{m}{h} \frac{dx^j}{dt} \frac{dx^i}{dt} = 0 \end{cases}$$
(20)

Since we have

$$R_{j\,i\,h}^{\ m}\,\frac{dx^j}{dt}\frac{dx^i}{dt} = 0$$

as a consequence of $R_{(j\,i)\,h}{}^m = 0$, we conclude by means of (20) that a curve $x^i = x^i(t)$, $p_h = p_h(t)$ in $T^*(M_n)$ with the metric ${}^{\mathcal{D}}g$ is a geodesic in $T^*(M_n)$, if and only if

$$\begin{cases} \frac{\delta^2 x^h}{dt^2} + p_m R^h_{\ j} \ ^{im} \ \frac{dx^j}{dt} \frac{\delta p_i}{dt} = 0, \quad (a) \\ \frac{\delta^2 p_h}{dt^2} = 0 \qquad (b) \end{cases}$$

If a curve satisfying (21) lies on a fibre given by $x^{h} = \text{const}$, then (20, (b)) reduces to

$$\frac{d^2 p_h}{dt^2} = 0$$

so that $p_h = a_h t + b_h$, a_h and b_h being constant. Thus we have

Theorem 4. If geodesic $x^h = x^{h(t)}$, $p_h = p_h(t)$ lies in a fibre of $T^*(M_n)$ with the metric \mathcal{D}_g , the a geodesic is expressed by linear equations $x^h = c^h$, $p_h = a_h t + b_h$, where a_h , b_h and c^h are constant.

From (18) and (21), we have

Theorem 5. The horizontal lift of a geodesic in M_n is always geodesic in $T^*(M_n)$ with the metric \mathcal{D}_g .

References

- Kruchkovich G.I., Hypercomplex structures on manifolds, I. Trudy Sem. vector.tensor anal. Moscow Univer.(1972), N16, 174-201.
- [2] Mok K.P., On the differential geometry of the frame bundles of Riemannian manifolds, J. reine angew. Math., 302, 16-31 (1976).
- Salimov A. A., Almost integrable polyaffinor structure. Izv. VUZ. Math. (1988), No.6 (313), 87-80, English transl.in Soviet Math., 32 (1988).
- [4] Sasaki S., On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J, 10, 338-354(1958).

[5] Yano K., Ishihara S., Tangent and Cotangent Bundles, Marcel Dekker, Inc. New York (1973).

Received 04.04.2001

[6] Yano K., The Theory of Lie Derivatives and Its Applications, Amsterdam, (1957).

Sezgin AKBULUT, Murat ÖZDEMİR & A. Arif SALiMOV Atatürk Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü 25240, Erzurum-TURKEY e-mail: sezginakbulut@hotmail.com e-mail: mozdemir@crosswinds.net

e-mail: asalimov@hotmail.com