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Absolutely Representing Systems of Exponentials in

the Spaces of In�nitely-Di�erentiable Functions and

Extendability in the Sense of Whitney

Yu. F. Korobeinik∗

Abstract

Let Q be a compactum in Rp, p > 1, such that intQ 6= ? and Q = intQ. De-

note by C∞[Q] the space of functions from C∞(intQ) uniformly continuous in intQ

together with all their partial derivatives. The conditions of the existence of abso-
lutely representing systems of exponentials with purely imaginary exponents in the

space C∞[Q] and some of its subspaces of Denjoy�Carleman type are investigated.

It is also proved under rather general assumptions that there is no such absolutely

representing systems in the space E(G) = proj
←−−−−
Q∈FG

E[Q] where G is an arbitrary open

set in Rp, E[Q] is C∞[Q] or its subspace mentioned above and FG is the totality of

all non-empty compact sets K in G with the property K = intK.

1.

Let Q be a set in Rp, p > 1, and let
◦
Q be its interior. A compactum Q is said to be fat

if
◦
Q 6= ∅ and Q =

◦
Q. Denote by FG the totality of all fat compacta containing an open

set G. If G = Rp we write F instead of FRp . Let C∞[F ] and F ∈ F , be the Frechet space

of all complex-valued functions in�nitely di�erentiable in
◦
F and uniformly continuous

in
◦
K together with all their partial derivatives. The topology in C∞[F ] is de�ned by

norms ‖y‖m := sup{ |yα(x)| : x ∈
◦
K |α|p 6 m }, m = 0, 1, . . . . Here α = (α1, ...αp) ∈ N p

0 ,

|α|p =
∑p

k=1 |αk| =
∑p

k=1 αk.
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If G is an arbitrary non-void open set in Rp, then C∞(G) is the Frechet space of all

functions in�nitely di�erentiable in G, with the topology de�ned by the system of norms

‖y‖m,F := sup{ |y(α)(x)| : |α|p 6 m, x ∈ F }, m = 0, 1, . . . ; F ∈ FG. It is evident that

C∞(G) ⊂→C∞[K], ∀K ∈ FG, and C∞(Rp) ⊂→ C∞(G), C∞(Rp) ⊂→C∞[K] for all open sets

G ⊆ Rp and all K from F .
Let us introduce the system

Eµ :=
{

exp
(
i

p∑
j=1

µj,kxj

)
:

k = (k1, . . . kp), kj = 0,±1, . . . ; j = 1, . . . , p
}
, (1)

µj,k ∈ R. We are interested in �nding conditions of the existence of at least one absolutely

representing system of the form (1) in the spaces C∞[F ] and C∞(G). It is worth

reminding that the sequence (xk)∞k=1 of nonzero elements xk from a complete locally

convex space H is said to be an absolutely representing system (ARS) in H [4], if every

element x from H can be represented in the form of a series x =
∑∞

k=1 ckxk, absolutely

converging in H.

An ARS X in H is said to be e�ective (EARS) [4] if for each element x the coe�cients

ck of at least one series with the sum equal to x can be found constructively.

Let us say that a fat compactum K is a Whitney-compactum(W.-c.) if ∀f ∈ C∞[K]
∃g ∈ C∞(Rp) : g|K = f .

Lemma 1 For every series

∞∑
|l|p=0

cl exp
(
i

p∑
j=1

µj,lxj

)
, (2)

the following assertions are equivalent:

1. the series (2) converges absolutely in C∞[K] for some K ∈ F ;

2. the series (2) converges absolutely in C∞[K], ∀K ∈ F ;

3.
∑∞
|l|p=0 |cl||µl|α <∞, ∀α ∈ N p

0 , where |µl|α = |µ1,l|α1...|µp,l|αp.

4. the series (2) converges absolutely in C∞(G) for some nonvoid open set G from Rp;
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5. the series (2) converges absolutely in C∞(G) for all open sets G ⊆ Rp;

6. the series (2) converges absolutely in C∞(Rp).

The proof of Lemma 1 is very simple by virtue of the equality:

∣∣∣∣ exp
(
i

p∑
j=1

µjxj

)∣∣∣∣ = 1,

with ∀x ∈ Rp, ∀µ = (µj)
p
j=1 ∈ Rp. Indeed, we have the evident implications 6)⇒ 5)⇒

4)⇒ 1)⇒3)⇒6)⇒ 2)⇒ 1).

2.

Theorem 1 Let K be a W.-c. and let T be an arbitrary open rectangular parallelepiped

containing K, T = { x : aj < xj < bj, j = 1, 2, ...p }. Then the system

ETp :=

 exp
(

2πi
p∑
j=1

kjxj
bj − aj

)
: ks = 0,±1, . . . ; s = 1, 2, . . . , p

 (3)

is an EARS in C∞[K].

Proof. If G is an arbitrary open set in Rp, let us denote by C∞0 (G) the totality of all

functions from C∞0 (G) with support in G. In other words, f ∈ C∞0 (G) i� f ∈ C∞(G)
and there exists compactum K ⊂ G such that f ≡ 0 in G \ K. Let y(x) be an

arbitrary function from C∞[K] and let Y be its extension to C∞(Rp): Y ∈ C∞(Rp),
Y |K = y. We put d = ρ(K, ∂T ) = min{ |x − v|p : x ∈ K, v ∈ ∂T }. A simple

analysis of the proof of Theorem 1.4.1 from [3] shows that in the case X = Rp it is

possible to determine e�ectively the function W from C∞0 (Rp) such that W |K ≡ 1 and

suppW ⊂ (K) d
2

= { x ∈ Rp : ρ(x,K) ≤ d

2
}. Then w1 := w · Y ∈ C∞0 (T ) and w1|K ≡ y.

Let us form the Fourier series of the function w1 with respect to the system ETp :

w1 ∼
∞∑
|k|p=0

vk exp
〈
i2πk,

x

b − a

〉
, (4)
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where
〈
i2πk,

x

b− a

〉
:= 2πi

∑p
j=1

kjxj
bj − aj

and

p∏
j=1

(bj − aj)vk =

b1∫
a1

· · ·
bp∫
ap

w1(x) exp
〈
−2πki,

x

b− a

〉
dx, ∀k ∈ Zp (5)

(as usual, Z = { 0,±1,±2, . . .}).

Integrating by parts the equality (5) and taking into account that W
(γ)
1 (x) ≡ 0 near

the boundary T for all γ ∈ Np
0 , we obtain ∀β ∈ N

p
0 :

p∏
j=1

(bj − aj)|vk| ≤
(b− a)β

(2π)|β|p |k|β

b1∫
a1

· · ·
bp∫
ap

|w(β)
1 (x)| dx,

where (b − a)β :=
p∏
j=1

(bj − aj)βj , |k|β = |k1|β1 ...|kp|βp; (0)βj = 1, 1 6 j 6 p. Hence

(2π)|β|p |vk| ≤
(b− a)β

|k|β sup{|w(β)
1 (x)| : x ∈ T}, k ∈ Zp, β ∈ N p

0 (6)

Further, ∀k ∈ Zp, ∀m ∈ N p
0 and for F = T

∥∥∥∥vk exp
〈
2πki,

x

b− a
〉∥∥∥∥
m,F

≤

≤|vk|(2π)mmax
{
|k|γ(b− a)−γ : |γ|p 6 m

}
. (7)

We put βj = γj + 2p, j = 1, 2, ..., p, for each γ ∈ N p
0 such that |γ|p 6 m. Then

|β|p 6 m+ 2p2 and sup
{
|w(β)

1 (x)| : x ∈ T
}
≤ ‖w1‖m+2p2,F . The relations (6), (7) imply

the following inequality

∥∥∥∥vk exp
〈
2πki,

x

b− a
〉∥∥∥∥
m,F

6 Am‖w1‖m+2p2,F |k|−2p,

k ∈ Zp, m > 0, F = T .

Therefore the series in the right-hand side of (4) converges absolutely in C∞[T ] moreover
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this series converges uniformly on T . Hence

w1(x) =
∞∑
|k|p=0

vk exp
〈
2πki,

x

b− a
〉
, x ∈ T , (8)

and the series (8) converges absolutely in C∞[T ]. Consequently, the series at the right-

hand side of (8) converges absolutely in C∞[K], and its sum is equal to y(x) for all x

from K. We are done. 2

Corollary Let −∞ < a < 0 < b < +∞. The sequence

E(θ) :=
{

exp
i2kxπ
(b− a)

θ

}∞
|k|=0

, k ∈ Z0,

is an EARS in C∞[a, b] for each θ ∈ (0, 1).

Indeed, ∀θ ∈ (0, 1),
(
a
θ
, b
θ

)
⊃ [a, b], and we can put in Theorem 1 p = 1, T =

(
a
θ
, b
θ

)
.

The last result is exact. To show it we remark that for each θ > 1 we have a
θ ∈ [a, b],

b
θ
∈ [a, b], and for every function v(x) from the closure in C∞[a, b] of linear span of Eθ

the equality v
(
a
θ

)
= v

(
b
θ

)
is valid. But the last equality is not true, for example, for the

function y(x) = x from C∞[a, b]. Therefore the system E(θ) is not even complete in the

space C∞[a, b] for each θ > 1. A fortiori Eθ is not an ARS in C∞[a, b], if θ > 1.

3.

The following result is nearly evident.

Theorem 2 Let K be an arbitrary fat compactum in Rp. Suppose that there exists at

least one ARS of the form (1) in C∞[K]. Then K is a W.-c.

Proof. If Eµ (1) is an ARS in C∞[K] and if y(x) is an arbitrary function from C∞[K],
then there exists the series

∞∑
|k|p=0

yk exp
(
i

p∑
j=1

µj,kxj

)
(9)

converging absolutely to y(x) in C∞[K]. By Lemma 1 the series (9) converges absolutely

in C∞(Rp). If Y (x) is its sum, then Y ∈ C∞(Rp) and Y |K = y. 2
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Remark 2.1 If the series (9) converges absolutely in C∞(Rp), then by the same Lemma 1

condition (3) is ful�lled. Hence every series

∞∑
|k|p=0

yk

(
exp
(
i

p∑
j=1

µj,kxj

))(α)

, α ∈ N p
0 , (10)

converges absolutely at each point x from Rp. If Y (x) is the sum of the series (9) in Rp,
then ∀x ⊂ Rp |Y (x)| ≤

∑∞
|k|p=0 |yk| <∞, and for all α ∈ N p

0 .

|Y (α)(x)| 6
∞∑
|k|p=0

|yk||µk|α <∞.

Denote by BC∞(Rp) the set of all functions from C∞(Rp) bounded in Rp together

with every their derivative.
Then we can formulate some strengthening of Theorem 2.

Theorem 3 Let all assumptions of Theorem 2 be ful�lled. Then for each y ∈ C∞[K] ∃Y ∈
BC∞(Rp) : Y |K = y.

Now we can formulate the summarizing result.

Theorem 4 Let K be an arbitrary fat compactum in Rp. Then the following assertions
are equivalent:

1. K is a W.-c.;

2. ∀y ∈ C∞[K] ∃Y ∈ BC∞(Rp) : Y |K = y;

3. there exists an ARS in C∞[K] of the form (1);

4. there exists an EARS in C∞[K] of the form(1);

5. if T is an arbitrary rectangular open parallelepiped containing K, then the corre-

sponding system ETp (3) is an EARS in C∞[K].

Proof. Implications 5) ⇒ 4) ⇒ 3), 2) ⇒ 1) are evident. By Theorem 3 3) ⇒ 2).
Finally Theorem 1 is equivalent to the implication 1)⇒ 5). 2
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Remark 4.1 If any of equivalent assertions 1)�5) takes place, then each function y

from C∞[K] can be extented to Rp as the sum Y of a certain series (8) absolutely

converging in C∞(Rp). But the function Y (x) is p−periodic: Y (X1) = Y (X2), if

(X1)m = (X2)m + (bm − am), m = 1, 2, . . . , p. This period of the extension Y (x) of

the function y(x) can vary in rather broad limits. Namely we can construct the required

extension Y (x) with period (α1, α2, . . . , αp), if there exists the point (a1, . . . , ap) such that

K ⊂ { x : aj < xj < aj + αj), j = 1, 2, . . . , p }.

Remark 4.2 According to [7] a connected fat compactum K in Rp is a W.-c., if K has

the property (P): there exists constants M < ∞ and γ ∈ (0, 1] such that every pair of

points X(1), X(2) from K can be connected by a recti�able curve L in K of length not

exceedingM
(
|X(1)−X(2)|p

)γ
and with ends in X(1) and X(2). In particular, each convex

fat compactum in Rp has the property (P). According to theorem 4 the space C∞[K] has
an EARS of the form (3) for every connected fat compact set with the property (P) and

in particular for each convex fat compactum K.

4.

Let us investigate now the problem of the existence of an ARS of exponentials of the

form (1) in the space C∞(G), where G is an arbitrary nonempty open set in Rp. We

shall see that in this case the results will di�er essentially from those obtained above for

C∞[K], K ∈ F .

Lemma 2 Let G be an arbitrary open nonempty set in Rp. Suppose that C∞(G) has at

least one ARS of the form (1). Then

∀y ∈ C∞(G) ∃Y ∈ BC∞(Rp) : Y |G = y.

Proof. Let us �x an arbitrary y(x) from C∞(G). If Eµ(1) is an ARS in C∞(G) then
there exists a series

∞∑
|k|p=0

yk exp
〈
i

p∑
j=1

µj,kxj

〉
(11)

converging to y(x) absolutely in C∞(G). By Lemma 1 the series (11) converges absolutely

in C∞(Rp). By virtue of remark to Theorem 2 the sum Y (x) of the series (11) belongs

to BC∞(Rp). It is clear that Y |G = y. 2
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Corollary If G is such as in Lemma 2 and if C∞(G) contains at least one function

unbounded in G, then C∞(G) has no ARS of the form (1).

Theorem 5 If G is an arbitrary nonempty open set in Rp, then there exists no ARS of

the form (1) in the space C∞(G).

Proof. If the set G is unbounded, then the function f(x) :=
p∑
j=1

(xj)2 belongs to

C∞(G) but is not bounded in G. Suppose now that the set G is bounded. Then G has

at least one �nite boundary point γ = (γ1, . . . , γp). It is easy to see that the function

ϕ(x) =
1

p∑
j=1

(xj − γj)2

belongs to C∞(G) but is not bounded in G. It remains only to

exploit the corollary of Lemma 2. 2

5.

Now we apply the results obtained above to the problem of stability of an ARS under

the passage to projective limit. This problem was posed in [4] and can be formulated in

the following manner. Let Hn be a complete locally convex space, ∀n > 1Hn+1 ⊂→Hn.

Let

H := proj
←

Hn

be the space
⋂∞
k=1Hk with the topology of projective limit. Let xk 6= 0, xk ∈ Hn,

∀k, n > 1. Suppose that X := (xk)∞k=1 is an ARS in each Hn, n = 1, 2, . . . . Will X

be an ARS in H? This problem has been �rst investigated in one special situation,

when H is the Frechet space H(G) of all functions analytic in the convex domain G ⊂
Cp, xk = exp < λk, z > are exponentials with complex exponents λk ∈ Cp, p > 1, and
Hn = H(Gn), where (Gn)∞n=1 is an increasing sequence of convex domains Gn ⊂ G

approximating G: Gn ⊂ Gn+1 ⊂ G =
⋃∞
m=1 Gm. The �rst results (for p = 1) belong to

Korobeinik [4]. Later, Abanin obtained rather general but not �nal results for p > 1 ([4],

[1]) as well as for the regarded special situation.

The �rst results concerning the general situation appeared in the paper [2] (The-

orems 2.1 and 2.2). We show here only Theorem 2.1(the reader can �nd easily the
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formulation of Theorem 2.2 in [2]).

TheoremA[[2], theorem 2.1] LetHn be a nuclear Frechet space with the topology de�ned

by seminorms (pnj )∞j=1, n > 1. Let Hn+1 ⊂→Hn for all n > 1. Suppose that U := (uk)∞k=1

is the sequence of elements from H such that ∀n > 1, U is an ARS in Hn and

lim
k→∞

pnj (uk)/pnj+1(uk) = 0, ∀j, n > 1. (12)

Then U is an ARS in H.
In 1994 Abanin found an error in the proof of Theorem A on page 202 of [2]. In

connection with this fact he remarked in [1], ch.1, �8, that the validity of Theorem A and

of all its corollaries obtained in [2] remain to be open. A bit later, Korobeinik found a

similar error in the proof of Theorem 2.2 ([2], p. 205).

Consequently the last theorem together with its Corollary 2.2 from [2] remained

unproved as well. We shall show in this paragraph with the help of results obtained

above that Theorem A is not true. As we shall see further, theorem 2.2 [2] is also false.

Theorem 6 Theorem A is not true.

Proof. Let us �x an arbitrary bounded convex domain G in Rp, p > 1, and some
bounded open rectangular parallelepiped T containing G. We can always construct a

sequence of nonempty convex compact sets Kn in G such that ∀n > 1 Kn ⊆
◦
Kn+1 ⊂

G =
⋃∞
m=1 Km. Taking into account Remark 4.2, to Theorem 4 at the end of �3 we state

that ETp (3) is an EARS in every space C∞[Kn], n > 1. Since by the same Remark 4.2

every convex compactum Kn is a W.-c., the space C∞[Kn] coincides both algebraically

and topologically with the space C∞[Kn] of traces on Kn of all functions from the nuclear

Frechet space C∞(Rp). Hence (see e.g.[6]) C∞(Kn) is a nuclear Frechet space. Let us put

uk = exp
〈

2πik,
x

b− a

〉
, k ∈ Zp, pnj (y) = max

{
|y(α)(x)| : |α|p 6 j, x ∈ Kn

}
. Then

pnj (uk) = max
{ (2π)|α|p |k|α

(b− a)|α|p
: |α|p 6 j

}
,

and
lim
|k|p→∞

pnj (uk)/pnj+1(uk) = 0.

If, in particular, p = 1, the last equality implies the Relation (12). By Theorem A ET1 is

an ARS in
C∞(G) = proj

←
C∞[Kn],
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where G = (−R,+R), 0 < R < ∞, T = [a, b],−∞ < a < −R < +R < b < +∞,Kn =
[−Rn, Rn], 0 < Rn ↑ R. On the other hand, according to Theorem 5 there is no ARS

ET1 of the form (3) in the space C∞(−R,R). 2

6.

Assertions similar to Tsheorems 1�5 can be obtained for some subspaces of C∞[K]
and C∞(G). Let us consider as example of such a subspace the Carleman�Beurling�type

space. Let F ∈ F ,M0 = 1,Ml > 0,Ml →∞, h ∈ (0,+∞). We put

E(Ml)[F, h] :=
{
y(x) ∈ C∞[F ] :

‖y‖h := sup
[ |y(α)(x)|
h|α|pM|α|p

: x ∈
◦
F, α ∈ N p

0

]
<∞

}
.

It is easy to check that E(Ml)[F, h] is a Banach space with the norm ‖y‖h. We put for

each d ∈ [0,+∞):

E(Ml)[F ]d := proj
←−−
h>d

E(Ml)[F, h].

Let us �x d ∈ [0,+∞). The set of Carleman�Beurling spaces {E(Ml)[F ]d}F∈F has

the following properties:

1) ∀F ∈ F E(Ml)[F ]d ⊂→ C∞[F ];

2) if F1 ⊆ F2, Fj ∈ F , j = 1, 2, then E(Ml)[F2]d ⊂→E(Ml)[F1]d.

Suppose that the numbers (Ml) tend to in�nity su�ciently fast that

lim
l→∞

(Ml)1/l =∞. (13)

Then condition (13) implies the additional property of the set E(Ml)[F ]d, F ∈ F : 3) ∀µ ∈
Rp ∀F ∈ F exp〈iµ, x〉 ∈ E(Ml)[F ]d. For an arbitrary open set G ⊆ Rp we introduce the
space

E(Ml)(G)d := proj
←−−−−
F∈FG

E(Ml)[F ]d.

It is evident that 4) E(Ml)(Rp)d ⊂→E(Ml)(G)d for all open sets G fromRp; 5) E(Ml)(Rp)d ⊂
→E(Ml)[F ]d, ∀F ∈ F ; 6) E(Ml)(G)d ⊂→E(Ml)[F ]d, ∀F ∈ FG.
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At last, for every series (1) the following assertions are equivalent:

a7) the series (1) converges absolutely in E(Ml)[F ]d for some F ∈ F ;
b7) the series (1) converges absolutely in E(Ml)(R

p)d;

c7) the series (1) converges absolutely in E(Ml)[F ]d, ∀F ∈ F ;
d7) the series (1) converges absolutely in E(Ml)(G)d for some nonempty open set G;

e7) the series (1) converges absolutely in E(Ml)(G)d for all nonempty open set G from

Rp.
It is easy to prove an analogue of Lemma 1 according to which each of the assertions

a7)�e7) is equivalent to the following one:

f7)
∞∑
|l|p=0

|cl| sup

{
|µl|α

h|α|pM|α|p
: α ∈ N

}
<∞, ∀h > d.

We shall say that a fat compactum K ⊂ Rp is a Carleman�Beurling d�compactum

(CBdC) if ∀y ∈ E(Ml)[K]d ∃Y ∈ E(Ml)(Rp)d : Y |K = y. As in the case of C∞[K] we can

obtain the following results.

Theorem 7 Let K be a CBdC and let T be an arbitrary open rectangular parallelepiped

containg K, T = { x : aj < bj < dj, j = 1, 2, ...p }. Suppose that the numbersMl have the

following properties:

∞∑
l=1

Ml−1

Ml
<∞; (14)

lim sup
l→∞

 l∑
j=0

Ml−jMj

Ml

1/l

6 1, if 0 < d <∞;

lim sup
l→∞

 l∑
j=0

Ml−jMj

Ml

1/l

<∞, if d = 0;

(15)

lim sup
l→∞

(
Ml+1

Ml

)1/l

6 1, if 0 < d <∞;

lim sup
l→∞

(
Ml+1

Ml

)1/l

<∞, if d = 0.

(16)

Then the system ETp (3) is an EARS in E(Ml)[K]d.
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Denote by BE(Ml)(Rp)d the set of all functions from E(Ml)(Rp)d bounded in Rp

together with all their derivatives.

Theorem 8 Let K be an arbitrary fat compactum in R and let the conditions (14)�(16)

be ful�lled. Then FAAE:

1. K is a CBdS;

2. ∀y ∈ E(Ml)[K]d∃Y ∈ BE(Ml)(Rp)d : Y |K = y;

3. there exists an ARS in E(Ml)[K]d of the form (1);

4. there exists an EARS in E(Ml)[K]d of the form (1);

5. if T is an arbitrary restangular parallelepiped containing K, then the correspondent

system ETp (3) is an EARS in E(Ml)[K]d.

Theorem 9 LetM0 = 1, Ml > 0, 0 6 d <∞, and

lim
l→∞

l

(Ml)1/l
= 0. (17)

If G is an arbitrary nonempty open set in Rp, then there is no ARS of the form (1) in

the space E(Ml)(G)d.

Remark 9.1 The sequence Ml = (l!)β, β > 1 satis�es the conditions (14), (17) and the

�rst ones in the pairs of conditions (15), (16).

Therefore Theorems 7�9 are valid for Gevrey spaces of normal (0 < d < ∞) and

minimal (d = 0) type:

E((l!)β)[K]d =
{
y ∈ C∞[K] :

∀h > d sup
[ |y(α)(x)|
h|α|p((|α|p)!)β

: α ∈ Np
0 , x ∈

◦
K
]
<∞

}
;

E((l!)β)(G)d = proj
←−−−−K∈FG

E((l!)β)[K]d.
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7.

As the last example we consider Carleman�Roumieu�type space

E{Ml}[K]d = ind−−→
h<d

E(Ml)[K, h], where 0 < d 6∞,M0 = 1,Ml > 0

and the condition (13) is ful�lled. For an arbitrary open set G we put

E{Ml}(G)d = proj
←−−−−K∈FG

E{Ml}[K]d.

With the help of approximately the same arguments as in the case of Carleman�Beurling�

type spaces we can obtain exact analogues of properties 1)�6) of �6 with substitution

{Ml} instead of (Ml). Besides, each of the assertions a7)�e7) after the same substitution

is equivalent to the following one:

f7) ∃h < d :
∞∑
|lp|=0

|cl| sup

{
|Ml|α

h|α|pM|α|p
: α ∈ Np

0

}
<∞.

We shall say that the compactum K ∈ F is a Carleman�Roumieu d�compactum (CRdC)

if
∀y ∈ E{Ml}[K]d ∃Y ∈ E{Ml}(R

p)d : Y |K = y.

One can prove with the help of approximately the same arguments as in the case of

the spaces C∞[K], C∞(G), E(Ml)[K]d, E(Ml)(G)d the exact analogues of Theorems 7�

9. In order to formulate these results we only need to replace (Ml)∞l=1 everywhere in

formulations of Theorems 7�9 by {Ml}∞l=1. In particular, such results are valid for Gevrey

spaces of maximal type:

E{(l!)β}[K]∞ =
{
y ∈ C∞[K] :

∃h > 0 sup
[ |y(α)(x)|
h|α|p((|α|p)!)β

: α ∈ Np
0 , x ∈

◦
K
]
<∞

}
;

E{(l!)β}(G)∞ = proj
←−−−−K∈FG

E((l!)β)[K]∞.

The analogues of Theorems 7�9 for Carleman�Roumieu�type spaces enable one to con-

struct an example rejecting Theorem 2.2 from [2]. We give here a short discription of
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such an example. First, we put p = 1, �x some R ∈ (0,+∞) and select an arbitrary

sequence Ml, l > 0 such thatM0 = 1,Ml > 0 and conditions (17) is ful�lled. Moreover

we take (Ml) in such a manner that the following relations are valid with ml =
Ml+1

Ml
,

l > 0 :

m0 = 1, ml →∞, lim sup
l→∞

(ml)1/l <∞, (18)

lim sup
n→∞

mn

n

∞∑
j>n

1
mj

<∞. (19)

In order to satisfy all these requirements we can put in particularM0 = 1, Ml = (l!)γ,
l > 1 with an arbitrarily �xed γ > 1. Let (Rn)∞n=1 be an arbitrary sequence of numbers

such that 0 < Rn ↑ R. According to Remark 1 to Theorem 5.4 of the paper [5], if the

condition (18)�(19) are ful�lled then the system U = (uk)∞k=0 where u2k = exp
ikπx

R
,

u2k+1 = exp
(
− ikπx

R

)
, k = 0, 1, . . . is an ARS in

E{Ml}[−Rn, Rn]∞ = ind−→γ
Bnγ ,

where n > 1 and

Bnγ = {f ∈ C∞[−Rn, Rn] : ||f ||(γ!)s <∞}, γ = 1, 2, . . . ;

and s is a �xed su�ciently large natural number. One can check without special di�culties

that all suppositions of Theorem 2.2 from [2] are ful�lled in the regarded situation. By

this heorem U is an ARS in E(Ml)(−R,R). At the same time according to the analogue

of Theorem 9 for the space E{Ml}(G)d for the case d =∞, G = (−R,R) there is no ARS

of exponentials with imaginary exponents in the space E{Ml}(−R,R)∞.

8.

As was shown above, Whitney-compact sets, Carleman�Beurling d�compact sets and
Carleman�Roumieu d�compact sets can be characterized by existence in the correspond-

ing spaces C∞[K], E(Ml)[K]d and E{Ml}[K]d an ARS of exponentials with imaginary ex-

ponents. It will be very interesting to characterize such compacta in di�erent manner
namely, in terms of geometrical properties of K for W.-c. and in terms of properties of
numbersMl for CBdC and CRdC.
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