Absolutely Representing Systems of Exponentials in the Spaces of Infinitely-Differentiable Functions and Extendability in the Sense of Whitney

Yu. F. Korobeinik*

Abstract

Let Q be a compactum in \mathbb{R}^p , $p \ge 1$, such that $intQ \ne \emptyset$ and $Q = \overline{intQ}$. Denote by $C^{\infty}[Q]$ the space of functions from $C^{\infty}(intQ)$ uniformly continuous in intQ together with all their partial derivatives. The conditions of the existence of absolutely representing systems of exponentials with purely imaginary exponents in the space $C^{\infty}[Q]$ and some of its subspaces of Denjoy–Carleman type are investigated. It is also proved under rather general assumptions that there is no such absolutely representing systems in the space $E(G) = \underset{Q \in \mathcal{F}_G}{\operatorname{proj}} E[Q]$ where G is an arbitrary open set in \mathbb{R}^p , E[Q] is $C^{\infty}[Q]$ or its subspace mentioned above and \mathcal{F}_G is the totality of all non-empty compact sets \mathcal{K} in G with the property $\mathcal{K} = \overline{int\mathcal{K}}$.

1.

Let Q be a set in \mathbb{R}^p , $p \ge 1$, and let $\overset{\circ}{Q}$ be its interior. A compactum Q is said to be fat if $\overset{\circ}{Q} \ne \emptyset$ and $Q = \overset{\circ}{Q}$. Denote by \mathcal{F}_G the totality of all fat compact containing an open set G. If $G = \mathbb{R}^p$ we write \mathcal{F} instead of $\mathcal{F}_{\mathbb{R}^p}$. Let $C^{\infty}[F]$ and $F \in \mathcal{F}$, be the Frechet space of all complex-valued functions infinitely differentiable in $\overset{\circ}{F}$ and uniformly continuous in $\overset{\circ}{\mathcal{K}}$ together with all their partial derivatives. The topology in $C^{\infty}[F]$ is defined by norms $\|y\|_m := \sup\{|y^{\alpha}(x)| : x \in \overset{\circ}{\mathcal{K}} |\alpha|_p \le m\}, m = 0, 1, \dots$ Here $\alpha = (\alpha_1, \dots, \alpha_p) \in \mathcal{N}_0^p$, $|\alpha|_p = \sum_{k=1}^p |\alpha_k| = \sum_{k=1}^p \alpha_k$.

¹⁹⁹¹ Mathematics Subject Classification: Primary; Secondary

^{*}This paper has been supported by Russian Fund of fundamental investigations (project 99-01-01018).

If G is an arbitrary non-void open set in \mathbb{R}^p , then $C^{\infty}(G)$ is the Frechet space of all functions infinitely differentiable in G, with the topology defined by the system of norms $\|y\|_{m,F} := \sup\{|y^{(\alpha)}(x)| : |\alpha|_p \leq m, x \in F\}, m = 0, 1, \ldots; F \in \mathcal{F}_G$. It is evident that $C^{\infty}(G) \subset C^{\infty}[\mathcal{K}], \forall \mathcal{K} \in \mathcal{F}_G$, and $C^{\infty}(\mathbb{R}^p) \subset C^{\infty}(G), C^{\infty}(\mathbb{R}^p) \subset C^{\infty}[\mathcal{K}]$ for all open sets $G \subseteq \mathbb{R}^p$ and all \mathcal{K} from \mathcal{F} .

Let us introduce the system

$$\mathcal{E}_{\mu} := \left\{ \exp\left(i\sum_{j=1}^{p} \mu_{j,k} x_{j}\right) : k = (k_{1}, \dots, k_{p}), \, k_{j} = 0, \pm 1, \dots; \, j = 1, \dots, p \right\}, \quad (1)$$

 $\mu_{j,k} \in \mathbb{R}$. We are interested in finding conditions of the existence of at least one absolutely representing system of the form (1) in the spaces $C^{\infty}[F]$ and $C^{\infty}(G)$. It is worth reminding that the sequence $(x_k)_{k=1}^{\infty}$ of nonzero elements x_k from a complete locally convex space H is said to be an absolutely representing system (ARS) in H [4], if every element x from H can be represented in the form of a series $x = \sum_{k=1}^{\infty} c_k x_k$, absolutely converging in H.

An ARS X in H is said to be effective (\mathcal{E} ARS) [4] if for each element x the coefficients c_k of at least one series with the sum equal to x can be found constructively.

Let us say that a fat compactum \mathcal{K} is a Whitney-compactum(W.-c.) if $\forall f \in C^{\infty}[\mathcal{K}]$ $\exists g \in C^{\infty}(\mathbb{R}^p) : g|_{\mathcal{K}} = f.$

Lemma 1 For every series

$$\sum_{|l|_p=0}^{\infty} c_l \exp\left(i \sum_{j=1}^p \mu_{j,l} x_j\right),\tag{2}$$

the following assertions are equivalent:

- 1. the series (2) converges absolutely in $C^{\infty}[\mathcal{K}]$ for some $\mathcal{K} \in \mathcal{F}$;
- 2. the series (2) converges absolutely in $C^{\infty}[\mathcal{K}], \forall \mathcal{K} \in \mathcal{F};$
- 3. $\sum_{|l|_p=0}^{\infty} |c_l| |\mu_l|^{\alpha} < \infty, \ \forall \alpha \in \mathcal{N}_0^p, \ where \ |\mu_l|^{\alpha} = |\mu_{1,l}|^{\alpha_1} ... |\mu_{p,l}|^{\alpha_p}.$
- 4. the series (2) converges absolutely in $C^{\infty}(G)$ for some nonvoid open set G from \mathbb{R}^p ;

- 5. the series (2) converges absolutely in $C^{\infty}(G)$ for all open sets $G \subseteq \mathbb{R}^p$;
- 6. the series (2) converges absolutely in $C^{\infty}(\mathbb{R}^p)$.

The proof of Lemma 1 is very simple by virtue of the equality:

$$\left|\exp\left(i\sum_{j=1}^{p}\mu_{j}x_{j}\right)\right|=1,$$

with $\forall x \in \mathbb{R}^p, \forall \mu = (\mu_j)_{j=1}^p \in \mathbb{R}^p$. Indeed, we have the evident implications $6 \Rightarrow 5 \Rightarrow 4 \Rightarrow 1 \Rightarrow 3 \Rightarrow 6 \Rightarrow 2 \Rightarrow 1$.

2.

Theorem 1 Let \mathcal{K} be a W.-c. and let T be an arbitrary open rectangular parallelepiped containing \mathcal{K} , $T = \{x : a_j < x_j < b_j, j = 1, 2, ...p\}$. Then the system

$$\mathcal{E}_{p}^{T} := \left\{ \exp\left(2\pi i \sum_{j=1}^{p} \frac{k_{j} x_{j}}{b_{j} - a_{j}}\right) : k_{s} = 0, \pm 1, \dots; s = 1, 2, \dots, p \right\}$$
(3)

is an $\mathcal{E}ARS$ in $C^{\infty}[\mathcal{K}]$.

Proof. If G is an arbitrary open set in \mathbb{R}^p , let us denote by $C_0^{\infty}(G)$ the totality of all functions from $C_0^{\infty}(G)$ with support in G. In other words, $f \in C_0^{\infty}(G)$ iff $f \in C^{\infty}(G)$ and there exists compactum $\mathcal{K} \subset G$ such that $f \equiv 0$ in $G \setminus \mathcal{K}$. Let y(x) be an arbitrary function from $C^{\infty}[\mathcal{K}]$ and let Y be its extension to $C^{\infty}(\mathbb{R}^p)$: $Y \in C^{\infty}(\mathbb{R}^p)$, $Y|_{\mathcal{K}} = y$. We put $d = \rho(\mathcal{K}, \partial T) = \min\{|x - v|_p : x \in \mathcal{K}, v \in \partial T\}$. A simple analysis of the proof of Theorem 1.4.1 from [3] shows that in the case $X = \mathbb{R}^p$ it is possible to determine effectively the function W from $C_0^{\infty}(\mathbb{R}^p)$ such that $W|_{\mathcal{K}} \equiv 1$ and $\sup W \subset (\mathcal{K})_{\frac{d}{2}} = \{x \in \mathbb{R}^p : \rho(x, \mathcal{K}) \leq \frac{d}{2}\}$. Then $w_1 := w \cdot Y \in C_0^{\infty}(T)$ and $w_1|_{\mathcal{K}} \equiv y$.

Let us form the Fourier series of the function w_1 with respect to the system \mathcal{E}_p^T :

$$w_1 \sim \sum_{|k|_p=0}^{\infty} v_k \exp\left\langle i2\pi k, \frac{x}{b-a}\right\rangle,$$
(4)

where
$$\left\langle i2\pi k, \frac{x}{b-a} \right\rangle := 2\pi i \sum_{j=1}^{p} \frac{k_j x_j}{b_j - a_j}$$
 and

$$\prod_{j=1}^{p} (b_j - a_j) v_k = \int_{a_1}^{b_1} \cdots \int_{a_p}^{b_p} w_1(x) \exp\left\langle -2\pi k i, \frac{x}{b-a} \right\rangle dx, \quad \forall k \in \mathbb{Z}^p$$
(5)

(as usual, $Z = \{0, \pm 1, \pm 2, ...\}$).

Integrating by parts the equality (5) and taking into account that $W_1^{(\gamma)}(x) \equiv 0$ near the boundary T for all $\gamma \in N_0^p$, we obtain $\forall \beta \in N_0^p$:

$$\prod_{j=1}^{p} (b_j - a_j) |v_k| \le \frac{(b-a)^{\beta}}{(2\pi)^{|\beta|_p} |k|^{\beta}} \int_{a_1}^{b_1} \cdots \int_{a_p}^{b_p} |w_1^{(\beta)}(x)| \, dx,$$

where $(b-a)^{\beta} := \prod_{j=1}^{p} (b_j - a_j)^{\beta_j}, |k|^{\beta} = |k_1|^{\beta_1} \dots |k_p|^{\beta_p}; (0)^{\beta_j} = 1, 1 \leq j \leq p$. Hence

$$(2\pi)^{|\beta|_p}|v_k| \le \frac{(b-a)^{\beta}}{|k|^{\beta}} \sup\{|w_1^{(\beta)}(x)| : x \in T\}, \quad k \in \mathbb{Z}^p, \beta \in \mathcal{N}_0^p \tag{6}$$

Further, $\forall k \in \mathbb{Z}^p, \forall m \in \mathcal{N}_0^p$ and for $F = \overline{T}$

$$\left\| v_k \exp\left\langle 2\pi ki, \frac{x}{b-a} \right\rangle \right\|_{m,F} \le \le |v_k| (2\pi)^m \max\left\{ |k|^{\gamma} (b-a)^{-\gamma} : |\gamma|_p \le m \right\}.$$
(7)

We put $\beta_j = \gamma_j + 2p$, j = 1, 2, ..., p, for each $\gamma \in \mathcal{N}_0^p$ such that $|\gamma|_p \leq m$. Then $|\beta|_p \leq m + 2p^2$ and $\sup \{|w_1^{(\beta)}(x)| : x \in T\} \leq ||w_1||_{m+2p^2,F}$. The relations (6), (7) imply the following inequality

$$\left\| v_k \exp\left\langle 2\pi ki, \frac{x}{b-a} \right\rangle \right\|_{m,F} \leqslant A_m \|w_1\|_{m+2p^2,F} |k|^{-2p},$$

$$k \in \mathcal{Z}^p, m \ge 0, F = \overline{T}.$$

Therefore the series in the right-hand side of (4) converges absolutely in $C^{\infty}[\overline{T}]$ moreover

this series converges uniformly on \overline{T} . Hence

$$w_1(x) = \sum_{|k|_p=0}^{\infty} v_k \exp\left\langle 2\pi ki, \frac{x}{b-a}\right\rangle, \quad x \in \overline{T},$$
(8)

and the series (8) converges absolutely in $C^{\infty}[\overline{T}]$. Consequently, the series at the righthand side of (8) converges absolutely in $C^{\infty}[\mathcal{K}]$, and its sum is equal to y(x) for all xfrom \mathcal{K} . We are done.

Corollary Let $-\infty < a < 0 < b < +\infty$. The sequence

$$\mathcal{E}_{(\theta)} := \left\{ \exp \frac{i2kx\pi}{(b-a)}\theta \right\}_{|k|=0}^{\infty}, \qquad k \in \mathcal{Z}_0$$

is an \mathcal{E} ARS in $C^{\infty}[a, b]$ for each $\theta \in (0, 1)$.

Indeed,
$$\forall \theta \in (0,1), \left(\frac{a}{\theta}, \frac{b}{\theta}\right) \supset [a,b]$$
, and we can put in Theorem 1 $p = 1, T = \left(\frac{a}{\theta}, \frac{b}{\theta}\right)$.

The last result is exact. To show it we remark that for each $\theta \ge 1$ we have $\frac{a}{\theta} \in [a, b]$, $\frac{b}{\theta} \in [a, b]$, and for every function v(x) from the closure in $C^{\infty}[a, b]$ of linear span of \mathcal{E}_{θ} the equality $v(\frac{a}{\theta}) = v(\frac{b}{\theta})$ is valid. But the last equality is not true, for example, for the function y(x) = x from $C^{\infty}[a, b]$. Therefore the system $\mathcal{E}_{(\theta)}$ is not even complete in the space $C^{\infty}[a, b]$ for each $\theta \ge 1$. A fortiori \mathcal{E}_{θ} is not an ARS in $C^{\infty}[a, b]$, if $\theta \ge 1$.

3.

The following result is nearly evident.

Theorem 2 Let \mathcal{K} be an arbitrary fat compactum in \mathbb{R}^p . Suppose that there exists at least one ARS of the form (1) in $C^{\infty}[\mathcal{K}]$. Then \mathcal{K} is a W.-c.

Proof. If \mathcal{E}_{μ} (1) is an ARS in $C^{\infty}[\mathcal{K}]$ and if y(x) is an arbitrary function from $C^{\infty}[\mathcal{K}]$, then there exists the series

$$\sum_{|k|_p=0}^{\infty} y_k \exp\left(i \sum_{j=1}^p \mu_{j,k} x_j\right) \tag{9}$$

converging absolutely to y(x) in $C^{\infty}[\mathcal{K}]$. By Lemma 1 the series (9) converges absolutely in $C^{\infty}(\mathbb{R}^p)$. If Y(x) is its sum, then $Y \in C^{\infty}(\mathbb{R}^p)$ and $Y|_{\mathcal{K}} = y$.

Remark 2.1 If the series (9) converges absolutely in $C^{\infty}(\mathbb{R}^p)$, then by the same Lemma 1 condition (3) is fulfilled. Hence every series

$$\sum_{|k|_p=0}^{\infty} y_k \left(\exp\left(i \sum_{j=1}^p \mu_{j,k} x_j\right) \right)^{(\alpha)}, \qquad \alpha \in \mathcal{N}_0^p, \tag{10}$$

converges absolutely at each point x from \mathbb{R}^p . If Y(x) is the sum of the series (9) in \mathbb{R}^p , then $\forall x \in \mathbb{R}^p |Y(x)| \leq \sum_{|k|_p=0}^{\infty} |y_k| < \infty$, and for all $\alpha \in \mathcal{N}_0^p$.

$$|Y^{(\alpha)}(x)| \leq \sum_{|k|_p=0}^{\infty} |y_k| |\mu_k|^{\alpha} < \infty.$$

Denote by $BC^{\infty}(\mathbb{R}^p)$ the set of all functions from $C^{\infty}(\mathbb{R}^p)$ bounded in \mathbb{R}^p together with every their derivative.

Then we can formulate some strengthening of Theorem 2.

Theorem 3 Let all assumptions of Theorem 2 be fulfilled. Then for each $y \in C^{\infty}[\mathcal{K}] \quad \exists Y \in BC^{\infty}(\mathbb{R}^p) : Y|_{\mathcal{K}} = y.$

Now we can formulate the summarizing result.

Theorem 4 Let \mathcal{K} be an arbitrary fat compactum in \mathbb{R}^p . Then the following assertions are equivalent:

- 1. K is a W.-c.;
- 2. $\forall y \in C^{\infty}[\mathcal{K}] \quad \exists Y \in BC^{\infty}(\mathbb{R}^p) : Y|_{\mathcal{K}} = y;$
- 3. there exists an ARS in $C^{\infty}[\mathcal{K}]$ of the form (1);
- 4. there exists an $\mathcal{E}ARS$ in $C^{\infty}[\mathcal{K}]$ of the form(1);
- 5. if T is an arbitrary rectangular open parallelepiped containing \mathcal{K} , then the corresponding system $\mathcal{E}_p^T(3)$ is an $\mathcal{E}ARS$ in $C^{\infty}[\mathcal{K}]$.

Proof. Implications $5) \Rightarrow 4) \Rightarrow 3$, $2) \Rightarrow 1$) are evident. By Theorem 3 3) $\Rightarrow 2$). Finally Theorem 1 is equivalent to the implication 1) $\Rightarrow 5$).

Remark 4.1 If any of equivalent assertions 1)-5) takes place, then each function y from $C^{\infty}[\mathcal{K}]$ can be extended to \mathbb{R}^p as the sum Y of a certain series (8) absolutely converging in $C^{\infty}(\mathbb{R}^p)$. But the function Y(x) is p-periodic: $Y(X_1) = Y(X_2)$, if $(X_1)_m = (X_2)_m + (b_m - a_m)$, m = 1, 2, ..., p. This period of the extension Y(x) of the function y(x) can vary in rather broad limits. Namely we can construct the required extension Y(x) with period $(\alpha_1, \alpha_2, ..., \alpha_p)$, if there exists the point $(a_1, ..., a_p)$ such that $\mathcal{K} \subset \{x : a_j < x_j < a_j + \alpha_j\}, j = 1, 2, ..., p\}$.

Remark 4.2 According to [7] a connected fat compactum \mathcal{K} in \mathbb{R}^p is a W.-c., if \mathcal{K} has the property (\mathcal{P}): there exists constants $\mathcal{M} < \infty$ and $\gamma \in (0,1]$ such that every pair of points $X^{(1)}$, $X^{(2)}$ from \mathcal{K} can be connected by a rectifiable curve \mathcal{L} in \mathcal{K} of length not exceeding $\mathcal{M}(|X^{(1)}-X^{(2)}|_p)^{\gamma}$ and with ends in $X^{(1)}$ and $X^{(2)}$. In particular, each convex fat compactum in \mathbb{R}^p has the property (\mathcal{P}). According to theorem 4 the space $C^{\infty}[\mathcal{K}]$ has an $\mathcal{E}ARS$ of the form (3) for every connected fat compact set with the property (\mathcal{P}) and in particular for each convex fat compactum \mathcal{K} .

4.

Let us investigate now the problem of the existence of an ARS of exponentials of the form (1) in the space $C^{\infty}(G)$, where G is an arbitrary nonempty open set in \mathbb{R}^p . We shall see that in this case the results will differ essentially from those obtained above for $C^{\infty}[\mathcal{K}], \mathcal{K} \in \mathcal{F}$.

Lemma 2 Let G be an arbitrary open nonempty set in \mathbb{R}^p . Suppose that $C^{\infty}(G)$ has at least one ARS of the form (1). Then

$$\forall y \in C^{\infty}(G) \quad \exists Y \in BC^{\infty}(\mathbb{R}^p) : Y|_G = y.$$

Proof. Let us fix an arbitrary y(x) from $C^{\infty}(G)$. If $\mathcal{E}_{\mu}(1)$ is an ARS in $C^{\infty}(G)$ then there exists a series

$$\sum_{|k|_p=0}^{\infty} y_k \exp\left\langle i \sum_{j=1}^p \mu_{j,k} x_j \right\rangle \tag{11}$$

converging to y(x) absolutely in $C^{\infty}(G)$. By Lemma 1 the series (11) converges absolutely in $C^{\infty}(\mathbb{R}^p)$. By virtue of remark to Theorem 2 the sum Y(x) of the series (11) belongs to $BC^{\infty}(\mathbb{R}^p)$. It is clear that $Y|_G = y$.

Corollary If G is such as in Lemma 2 and if $C^{\infty}(G)$ contains at least one function unbounded in G, then $C^{\infty}(G)$ has no ARS of the form (1).

Theorem 5 If G is an arbitrary nonempty open set in \mathbb{R}^p , then there exists no ARS of the form (1) in the space $C^{\infty}(G)$.

Proof. If the set G is unbounded, then the function $f(x) := \sum_{j=1}^{p} (x_j)^2$ belongs to $C^{\infty}(G)$ but is not bounded in G. Suppose now that the set G is bounded. Then G has at least one finite boundary point $\gamma = (\gamma_1, \ldots, \gamma_p)$. It is easy to see that the function $\varphi(x) = \frac{1}{\sum_{j=1}^{p} (x_j - \gamma_j)^2}$ belongs to $C^{\infty}(G)$ but is not bounded in G. It remains only to

exploit the corollary of Lemma 2.

5.

Now we apply the results obtained above to the problem of stability of an ARS under the passage to projective limit. This problem was posed in [4] and can be formulated in the following manner. Let H_n be a complete locally convex space, $\forall n \ge 1 H_{n+1} \subset H_n$. Let

$$H := \operatorname{proj} H_n$$

be the space $\bigcap_{k=1}^{\infty} H_k$ with the topology of projective limit. Let $x_k \neq 0, x_k \in H_n$, $\forall k, n \geq 1$. Suppose that $X := (x_k)_{k=1}^{\infty}$ is an ARS in each H_n , $n = 1, 2, \ldots$ Will X be an ARS in H? This problem has been first investigated in one special situation, when H is the Frechet space H(G) of all functions analytic in the convex domain $G \subset \mathbb{C}^p, x_k = \exp \langle \lambda_k, z \rangle$ are exponentials with complex exponents $\lambda_k \in \mathbb{C}^p, p \geq 1$, and $H_n = H(G_n)$, where $(G_n)_{n=1}^{\infty}$ is an increasing sequence of convex domains $G_n \subset G$ approximating $G: \overline{G}_n \subset G_{n+1} \subset G = \bigcup_{m=1}^{\infty} G_m$. The first results (for p = 1) belong to Korobeinik [4]. Later, Abanin obtained rather general but not final results for $p \geq 1$ ([4], [1]) as well as for the regarded special situation.

The first results concerning the general situation appeared in the paper [2] (Theorems 2.1 and 2.2). We show here only Theorem 2.1 (the reader can find easily the

formulation of Theorem 2.2 in [2]).

Theorem A[[2], theorem 2.1] Let H_n be a nuclear Frechet space with the topology defined by seminorms $(p_j^n)_{j=1}^{\infty}, n \ge 1$. Let $H_{n+1} \subset H_n$ for all $n \ge 1$. Suppose that $U := (u_k)_{k=1}^{\infty}$ is the sequence of elements from H such that $\forall n \ge 1$, U is an ARS in H_n and

$$\lim_{k \to \infty} p_j^n(u_k) / p_{j+1}^n(u_k) = 0, \quad \forall j, n \ge 1.$$
(12)

Then U is an ARS in H.

In 1994 Abanin found an error in the proof of Theorem A on page 202 of [2]. In connection with this fact he remarked in [1], ch.1, §8, that the validity of Theorem A and of all its corollaries obtained in [2] remain to be open. A bit later, Korobeinik found a similar error in the proof of Theorem 2.2 ([2], p. 205).

Consequently the last theorem together with its Corollary 2.2 from [2] remained unproved as well. We shall show in this paragraph with the help of results obtained above that Theorem A is not true. As we shall see further, theorem 2.2 [2] is also false.

Theorem 6 Theorem A is not true.

Proof. Let us fix an arbitrary bounded convex domain G in \mathbb{R}^p , $p \ge 1$, and some bounded open rectangular parallelepiped T containing G. We can always construct a sequence of nonempty convex compact sets \mathcal{K}_n in G such that $\forall n \ge 1$ $K_n \subseteq \mathring{\mathcal{K}}_{n+1} \subset$ $G = \bigcup_{m=1}^{\infty} \mathcal{K}_m$. Taking into account Remark 4.2, to Theorem 4 at the end of §3 we state that \mathcal{E}_p^T (3) is an \mathcal{E} ARS in every space $C^{\infty}[\mathcal{K}_n]$, $n \ge 1$. Since by the same Remark 4.2 every convex compactum \mathcal{K}_n is a W.-c., the space $C^{\infty}[\mathcal{K}_n]$ coincides both algebraically and topologically with the space $C_{\infty}[\mathcal{K}_n]$ of traces on \mathcal{K}_n of all functions from the nuclear Frechet space $C^{\infty}(\mathbb{R}^p)$. Hence (see e.g.[6]) $C^{\infty}(\mathcal{K}_n)$ is a nuclear Frechet space. Let us put $u_k = \exp\left\langle 2\pi ik, \frac{x}{b-a} \right\rangle, k \in Z^p, p_j^n(y) = \max\left\{ |y^{(\alpha)}(x)| : |\alpha|_p \le j, x \in \mathcal{K}_n \right\}$. Then

$$p_j^n(u_k) = \max\left\{\frac{(2\pi)^{|\alpha|_p}|k|^{\alpha}}{(b-a)^{|\alpha|_p}} : |\alpha|_p \leqslant j\right\},\$$

and

$$\lim_{|k|_p \to \infty} p_j^n(u_k) / p_{j+1}^n(u_k) = 0.$$

If, in particular, p = 1, the last equality implies the Relation (12). By Theorem A \mathcal{E}_1^T is an ARS in

$$C^{\infty}(G) = \operatorname{proj} C^{\infty}[\mathcal{K}_n],$$

where $G = (-R, +R), 0 < R < \infty, T = [a, b], -\infty < a < -R < +R < b < +\infty, \mathcal{K}_n = [-R_n, R_n], 0 < R_n \uparrow R$. On the other hand, according to Theorem 5 there is no ARS \mathcal{E}_1^T of the form (3) in the space $C^{\infty}(-R, R)$.

6.

Assertions similar to Tsheorems 1–5 can be obtained for some subspaces of $C^{\infty}[\mathcal{K}]$ and $C^{\infty}(G)$. Let us consider as example of such a subspace the Carleman-Beurling-type space. Let $F \in \mathcal{F}$, $\mathcal{M}_0 = 1$, $\mathcal{M}_l > 0$, $\mathcal{M}_l \to \infty$, $h \in (0, +\infty)$. We put

$$\mathcal{E}_{(\mathcal{M}_l)}[F,h] := \left\{ y(x) \in C^{\infty}[F] : \|y\|_h \right\}$$

 $\|y\|_{h} := \sup \Big[\frac{|y^{(\alpha)}(x)|}{h^{|\alpha|_{p}}\mathcal{M}_{|\alpha|_{p}}} : x \in \overset{\circ}{F}, \alpha \in \mathcal{N}_{0}^{p}\Big] < \infty \Big\}.$ It is easy to check that $\mathcal{E}_{(\mathcal{M}_{l})}[F, h]$ is a Banach space with the norm $\|y\|_{h}$. We put for

each
$$d \in [0, +\infty)$$
:

$$\mathcal{E}_{(\mathcal{M}_l)}[F]_d := \operatorname{proj}_{h>d} \mathcal{E}_{(\mathcal{M}_l)}[F,h].$$

Let us fix $d \in [0, +\infty)$. The set of Carleman-Beurling spaces $\{\mathcal{E}_{(\mathcal{M}_l)}[F]_d\}_{F \in \mathcal{F}}$ has the following properties:

1) $\forall F \in \mathcal{F} \quad \mathcal{E}_{(M_l)}[F]_d \subset C^{\infty}[F];$

2) if $F_1 \subseteq F_2$, $F_j \in \mathcal{F}$, j = 1, 2, then $\mathcal{E}_{(\mathcal{M}_l)}[F_2]_d \subset \mathcal{E}_{(\mathcal{M}_l)}[F_1]_d$.

Suppose that the numbers (\mathcal{M}_l) tend to infinity sufficiently fast that

$$\lim_{l \to \infty} (\mathcal{M}_l)^{1/l} = \infty.$$
⁽¹³⁾

Then condition (13) implies the additional property of the set $\mathcal{E}_{(\mathcal{M}_l)}[F]_d$, $F \in \mathcal{F}$: 3) $\forall \mu \in \mathbb{R}^p \ \forall F \in \mathcal{F} \quad \exp\langle i\mu, x \rangle \in \mathcal{E}_{(\mathcal{M}_l)}[F]_d$. For an arbitrary open set $G \subseteq \mathbb{R}^p$ we introduce the space

$$\mathcal{E}_{(\mathcal{M}_l)}(G)_d := \operatorname{proj}_{\overleftarrow{F \in \mathcal{F}_G}} \mathcal{E}_{(\mathcal{M}_l)}[F]_d.$$

It is evident that 4) $\mathcal{E}_{(\mathcal{M}_l)}(\mathbb{R}^p)_d \subset \mathcal{E}_{(\mathcal{M}_l)}(G)_d$ for all open sets G from \mathbb{R}^p ; 5) $\mathcal{E}_{(\mathcal{M}_l)}(\mathbb{R}^p)_d \subset \mathcal{E}_{(\mathcal{M}_l)}[F]_d, \forall F \in \mathcal{F}_G.$

At last, for every series (1) the following assertions are equivalent:

 a_7) the series (1) converges absolutely in $\mathcal{E}_{(\mathcal{M}_l)}[F]_d$ for some $F \in \mathcal{F}$;

 b_7) the series (1) converges absolutely in $\mathcal{E}_{(\mathcal{M}_l)}(R^p)_d$;

 c_7) the series (1) converges absolutely in $\mathcal{E}_{(\mathcal{M}_l)}[F]_d, \forall F \in \mathcal{F};$

 d_7) the series (1) converges absolutely in $\mathcal{E}_{(\mathcal{M}_l)}(G)_d$ for some nonempty open set G;

 e_7) the series (1) converges absolutely in $\mathcal{E}_{(\mathcal{M}_l)}(G)_d$ for all nonempty open set G from \mathbb{R}^p .

It is easy to prove an analogue of Lemma 1 according to which each of the assertions a_7)- e_7) is equivalent to the following one:

$$f_7) \qquad \sum_{|l|_p=0}^{\infty} |c_l| \sup\left\{\frac{|\mu_l|^{\alpha}}{h^{|\alpha|_p} \mathcal{M}_{|\alpha|_p}} : \alpha \in \mathcal{N}\right\} < \infty, \quad \forall h > d.$$

We shall say that a fat compactum $\mathcal{K} \subset \mathbb{R}^p$ is a Carleman-Beurling *d*-compactum (CBdC) if $\forall y \in \mathcal{E}_{(M_l)}[\mathcal{K}]_d \exists Y \in \mathcal{E}_{(M_l)}(\mathbb{R}^p)_d : Y|_{\mathcal{K}} = y$. As in the case of $C^{\infty}[\mathcal{K}]$ we can obtain the following results.

Theorem 7 Let \mathcal{K} be a CBdC and let T be an arbitrary open rectangular parallelepiped containg \mathcal{K} , $T = \{x : a_j < b_j < d_j, j = 1, 2, ...p\}$. Suppose that the numbers \mathcal{M}_l have the following properties:

$$\sum_{l=1}^{\infty} \frac{\mathcal{M}_{l-1}}{\mathcal{M}_l} < \infty; \tag{14}$$

$$\limsup_{l \to \infty} \left[\sum_{j=0}^{l} \frac{\mathcal{M}_{l-j} \mathcal{M}_{j}}{\mathcal{M}_{l}} \right]^{1/l} \leq 1, \quad if \quad 0 < d < \infty;$$

$$\limsup_{l \to \infty} \left[\sum_{j=0}^{l} \frac{\mathcal{M}_{l-j} \mathcal{M}_{j}}{\mathcal{M}_{l}} \right]^{1/l} < \infty, \quad if \quad d = 0;$$

$$\limsup_{l \to \infty} \left(\frac{\mathcal{M}_{l+1}}{\mathcal{M}_{l}} \right)^{1/l} \leq 1, \quad if \quad 0 < d < \infty;$$

$$\limsup_{l \to \infty} \left(\frac{\mathcal{M}_{l+1}}{\mathcal{M}_{l}} \right)^{1/l} < \infty, \quad if \quad d = 0.$$

$$(15)$$

Then the system \mathcal{E}_p^T (3) is an $\mathcal{E}ARS$ in $\mathcal{E}_{(\mathcal{M}_l)}[\mathcal{K}]_d$.

Denote by $B\mathcal{E}_{(\mathcal{M}_l)}(\mathbb{R}^p)_d$ the set of all functions from $\mathcal{E}_{(\mathcal{M}_l)}(\mathbb{R}^p)_d$ bounded in \mathbb{R}^p together with all their derivatives.

Theorem 8 Let \mathcal{K} be an arbitrary fat compactum in \mathbb{R} and let the conditions (14)–(16) be fulfilled. Then FAAE:

- 1. \mathcal{K} is a CBdS;
- 2. $\forall y \in \mathcal{E}_{(\mathcal{M}_l)}[\mathcal{K}]_d \exists Y \in B\mathcal{E}_{(\mathcal{M}_l)}(\mathbb{R}^p)_d : Y|_{\mathcal{K}} = y;$
- 3. there exists an ARS in $\mathcal{E}_{(\mathcal{M}_l)}[\mathcal{K}]_d$ of the form (1);
- 4. there exists an $\mathcal{E}ARS$ in $\mathcal{E}_{(\mathcal{M}_l)}[\mathcal{K}]_d$ of the form (1);
- 5. if T is an arbitrary restangular parallelepiped containing \mathcal{K} , then the correspondent system \mathcal{E}_p^T (3) is an $\mathcal{E}ARS$ in $\mathcal{E}_{(\mathcal{M}_l)}[\mathcal{K}]_d$.

Theorem 9 Let $\mathcal{M}_0 = 1$, $\mathcal{M}_l > 0$, $0 \leq d < \infty$, and

$$\lim_{l \to \infty} \frac{l}{(\mathcal{M}_l)^{1/l}} = 0.$$
⁽¹⁷⁾

If G is an arbitrary nonempty open set in \mathbb{R}^p , then there is no ARS of the form (1) in the space $\mathcal{E}_{(\mathcal{M}_l)}(G)_d$.

Remark 9.1 The sequence $\mathcal{M}_l = (l!)^{\beta}$, $\beta > 1$ satisfies the conditions (14), (17) and the first ones in the pairs of conditions (15), (16).

Therefore Theorems 7-9 are valid for Gevrey spaces of normal $(0 < d < \infty)$ and minimal (d = 0) type:

$$\mathcal{E}_{((l!)^{\beta})}[\mathcal{K}]_{d} = \left\{ y \in C^{\infty}[\mathcal{K}] : \\ \forall h > d \sup \left[\frac{|y^{(\alpha)}(x)|}{h^{|\alpha|_{p}}((|\alpha|_{p})!)^{\beta}} : \alpha \in N_{0}^{p}, x \in \overset{\circ}{\mathcal{K}} \right] < \infty \right\};$$

$$\mathcal{E}_{((l!)^{\beta})}(G)_{d} = \operatorname{proj}_{\mathcal{K} \in \mathcal{F}_{G}} \mathcal{E}_{((l!)^{\beta})}[\mathcal{K}]_{d}.$$

7.

As the last example we consider Carleman-Roumieu-type space

$$\mathcal{E}_{\{\mathcal{M}_l\}}[\mathcal{K}]_d = \inf_{h < d} \mathcal{E}_{(\mathcal{M}_l)}[\mathcal{K}, h], \text{ where } 0 < d \leqslant \infty, \mathcal{M}_0 = 1, \mathcal{M}_l > 0$$

and the condition (13) is fulfilled. For an arbitrary open set G we put

$$\mathcal{E}_{\{\mathcal{M}_l\}}(G)_d = \operatorname{proj}_{\overleftarrow{\mathcal{K} \in \mathcal{F}_G}} \mathcal{E}_{\{\mathcal{M}_l\}}[\mathcal{K}]_d$$

With the help of approximately the same arguments as in the case of Carleman-Beurlingtype spaces we can obtain exact analogues of properties 1)-6) of §6 with substitution $\{\mathcal{M}_l\}$ instead of (\mathcal{M}_l) . Besides, each of the assertions a_7)- e_7) after the same substitution is equivalent to the following one:

$$f_7) \quad \exists h < d : \sum_{|l_p|=0}^{\infty} |c_l| \sup\left\{\frac{|\mathcal{M}_l|^{\alpha}}{h^{|\alpha|_p}\mathcal{M}_{|\alpha|_p}} : \alpha \in N_0^p\right\} < \infty.$$

We shall say that the compactum $\mathcal{K} \in \mathcal{F}$ is a Carleman–Roumieu *d*–compactum (CRdC) if

$$\forall y \in \mathcal{E}_{\{\mathcal{M}_l\}}[\mathcal{K}]_d \quad \exists Y \in \mathcal{E}_{\{\mathcal{M}_l\}}(\mathbb{R}^p)_d : Y|_{\mathcal{K}} = y.$$

One can prove with the help of approximately the same arguments as in the case of the spaces $C^{\infty}[\mathcal{K}]$, $C^{\infty}(G)$, $\mathcal{E}_{(\mathcal{M}_l)}[\mathcal{K}]_d$, $\mathcal{E}_{(\mathcal{M}_l)}(G)_d$ the exact analogues of Theorems 7– 9. In order to formulate these results we only need to replace $(\mathcal{M}_l)_{l=1}^{\infty}$ everywhere in formulations of Theorems 7–9 by $\{\mathcal{M}_l\}_{l=1}^{\infty}$. In particular, such results are valid for Gevrey spaces of maximal type:

$$\begin{split} \mathcal{E}_{\{(l!)^{\beta}\}}[\mathcal{K}]_{\infty} &= \bigg\{ y \in C^{\infty}[\mathcal{K}] :\\ \exists h > 0 \ \sup \Big[\frac{|y^{(\alpha)}(x)|}{h^{|\alpha|_{p}} ((|\alpha|_{p})!)^{\beta}} : \alpha \in N_{0}^{p}, x \in \overset{\circ}{\mathcal{K}} \Big] < \infty \bigg\};\\ \mathcal{E}_{\{(l!)^{\beta}\}}(G)_{\infty} &= \underset{\substack{\mathcal{K} \in \mathcal{F}_{G}}}{\operatorname{proj}} \mathcal{E}_{((l!)^{\beta})}[\mathcal{K}]_{\infty}. \end{split}$$

The analogues of Theorems 7–9 for Carleman–Roumieu–type spaces enable one to construct an example rejecting Theorem 2.2 from [2]. We give here a short discription of

such an example. First, we put p = 1, fix some $R \in (0, +\infty)$ and select an arbitrary sequence $\mathcal{M}_l, l \ge 0$ such that $\mathcal{M}_0 = 1, \mathcal{M}_l > 0$ and conditions (17) is fulfilled. Moreover we take (\mathcal{M}_l) in such a manner that the following relations are valid with $m_l = \frac{\mathcal{M}_{l+1}}{\mathcal{M}_l}, l \ge 0$:

$$m_0 = 1, \quad m_l \to \infty, \quad \limsup_{l \to \infty} (m_l)^{1/l} < \infty,$$
 (18)

$$\limsup_{n \to \infty} \frac{m_n}{n} \sum_{j>n}^{\infty} \frac{1}{m_j} < \infty.$$
⁽¹⁹⁾

In order to satisfy all these requirements we can put in particular $\mathcal{M}_0 = 1$, $\mathcal{M}_l = (l!)^{\gamma}$, $l \ge 1$ with an arbitrarily fixed $\gamma > 1$. Let $(R_n)_{n=1}^{\infty}$ be an arbitrary sequence of numbers such that $0 < R_n \uparrow R$. According to Remark 1 to Theorem 5.4 of the paper [5], if the condition (18)-(19) are fulfilled then the system $U = (u_k)_{k=0}^{\infty}$ where $u_{2k} = \exp \frac{ik\pi x}{R}$, $u_{2k+1} = \exp\left(-\frac{ik\pi x}{R}\right)$, $k = 0, 1, \ldots$ is an ARS in $\mathcal{E}_{\{\mathcal{M}_l\}}[-R_n, R_n]_{\infty} = \operatorname{ind} B_{\gamma}^n$,

where $n \ge 1$ and

$$B_{\gamma}^{n} = \{ f \in C^{\infty}[-R_{n}, R_{n}] : ||f||_{(\gamma!)^{s}} < \infty \}, \quad \gamma = 1, 2, \dots;$$

and s is a fixed sufficiently large natural number. One can check without special difficulties that all suppositions of Theorem 2.2 from [2] are fulfilled in the regarded situation. By this heorem U is an ARS in $\mathcal{E}_{(\mathcal{M}_l)}(-R, R)$. At the same time according to the analogue of Theorem 9 for the space $\mathcal{E}_{\{\mathcal{M}_l\}}(G)_d$ for the case $d = \infty$, G = (-R, R) there is no ARS of exponentials with imaginary exponents in the space $\mathcal{E}_{\{\mathcal{M}_l\}}(-R, R)_{\infty}$.

8.

As was shown above, Whitney-compact sets, Carleman-Beurling *d*-compact sets and Carleman-Roumieu *d*-compact sets can be characterized by existence in the corresponding spaces $C^{\infty}[\mathcal{K}], \mathcal{E}_{(\mathcal{M}_l)}[\mathcal{K}]_d$ and $\mathcal{E}_{\{\mathcal{M}_l\}}[\mathcal{K}]_d$ an ARS of exponentials with imaginary exponents. It will be very interesting to characterize such compacta in different manner namely, in terms of geometrical properties of \mathcal{K} for W.-c. and in terms of properties of numbers \mathcal{M}_l for CBdC and CRdC.

References

- A.V. Abanin, On continuation and stability of weakly sufficient sets, Izvestija Vuzov, Mathematica, 1987, N4, p. 3 - 10 (Russian); English transl. in USSR Izvestija Vuzov
- [2] Chan-Por, Les systemes de representation absolue dans les espaces des fonctions holomorphes, Studia Mathem., 1989, v. XCIV, p. 193 - 212
- [3] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution theory and Fourier analysis, Springer, 1983
- [4] Yu.F. Korobeinik, Representing Systems, Russian Mathematical Surveys, 1981, v.36, N1, p. 75 - 137
- [5] Yu.F. Korobeinik, Effectively representing θ-trigonometrical systems and their applications.
 I, Manuscript dep. by VINITI 29.06.1999 N2132 B99, Rostov on Don, 1999, 35 pp (Russian).
- [6] A. Pietsch, Nukleare Localkonvexe Räume, Academic Verlag, Berlin, 1965
- [7] H. Whitney, Functions differentiable on the boundaries of regions, Annals of Mathem., 1934, vol. 33, N3, p. 482 - 485

Yu. F. KOROBEINIKRostov State University,Faculty of Mechanics and Mathematics,5 Zorge St.Rostov on Don344090 RUSSIA

Received 06.04.2001