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L? Boundedness of a Class of Singular Integral

Operators with Rough Kernels
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Abstract

In this paper, we study the LPmapping properties of singular integral operators
with kernels belonging to certain block spaces. These operators have singularities
along sets of the form {z = ®(|y|)y’ }where ® satisfies certain growth conditions. Our

results improve as well as extend previously known results on singular integrals.
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1. Introduction and results

Let S»~!', n > 2 be the unit sphere in R™ equipped with the normalized Lebesgue

measure do = do(-). Suppose € L!(S"1) is a homogeneous function of degree zero on

R"™ and satisfies the cancellation condition
[ ewdew)=o, (1.1)
Sn—l

where ¢ = |Z—| € S" ! for any y # 0.
Define the singular integral operator 1" by

!

Th(@) =pv [ = 0) T h )y (1.2
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and the corresponding maximal truncated singular integral T by

z“f@>=§£l[b>fw—y>%%9mwmw (1.3)

where h : (0, 00) — R is a measurable function, y' = |Z—| for any y 20, and f € S(R").

The LP mapping properties of the operators T and T™ were studied extensively by a
number of authors (see [3], [5], [8], [13], among others). To improve previously obtained
LP boundedness results for the operators T and T*, Jiang and Lu introduced the following

special class of block spaces Bj"" (S"_l):

Definition. (1) For z, € S~ ! and 0 < 6y < 2, the set

B(xp,00) = {2’ € S" ' : |2’ — x| < 60}

is called a cap on S™ 1.

(2) For 1 < q < oo, a measurable function b is called a g—block on S™~* if b is a

1

function supported on some cap I = B(x(), 6p) with ||b]|;, < |I|” <" where |I| = o(I) and
st =1

(3) Bpv (8™ = {2 e L' (S""): Q = ,21 c,b, where each c, is a complex
number; each b, is a q—block supported on a cap I, on S 1. and My ({c‘}) =

)

(o]
Z C” (1 + (brc,'u ( Iu )) < OO}, where
p=1
fl L )
u " Flog (u™t)du, if 0 <t <1;
(bmv (t) = t

0 Cift> 1.

Notice that ¢, () ~ t™"log"(t™!) as t — 0 for k > 0, v € R, and ¢g (t) ~
log¥ ™! (t7') ast—0forv>—1.

Jiang and Lu proved the following L? boundedness theorem which can be found in
[11].
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Theorem 1. Let Q, T and T* be defined as in (1.1)-(1.3). Assume that h € L= (R*).
Then we have
(i) if ¥ e BYO(S"™1), then T is a bounded operator on L* (R")

and
(i) if @€ BP'(S™1), then T* is a bounded operator on L? (R™).

It is clear that Theorem 1 represents an improvement in the special case p = 2 over the
L? boundedness theorems obtained by Duoandikoetxea-Rubio de Francia [5], Chen [3] and
Namazi [13] regarding the operators T and T* under the stronger condition Q € LI(S"1)

for some ¢ > 1.
Under the same conditions on €2 and h as in Theorem 1, the question of the L?
boundedness of the operators T and T* (for p # 2) was left open. The natural question

that arises on this result is the following:
Question. Are the operators T and T bounded on L? for all p # 2 under the same

conditions on © and h as in Theorem 1? Also, does the L? (or the L?) boundedness of

T still hold if we replace the condition © € BY''(S"~!) by the weaker condition Q €
0,0(gn—1
BP(S" ).
In this paper, we shall obtain an answer to the above question as a special case of our
LP estimates for the operators given below by (1.6)-(1.7).
Let ® : (0, o) — R be a smooth function which satisfies the following growth

conditions:

()] < Cutd,  [@"(1)] < Cat? 2, (1.4)

Cstd=1 < |®/(t)] < Cyt? 1 (1.5)

for some d # 0 and ¢t € (0, c0), where Cy, Cs, C3, and C4 are positive constants
independent of ¢.
Define the singular integral operator Tg by

Tof(o) =pv. [ 1= (ul))) Toh i)y (1.6
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and the corresponding maximal truncated singular integral T by

b =su T — n SUY)
Tif @ =sp [ @) T h (1.7

where i’ = 7 and f € S(R").
Clearly, when ®(t) = t, we have To =T and Tj = T*.
The class of operators Te were first defined and studied by Fan and Pan in [7] and

they were able to prove the following result:

Theorem 2. Let Ty be given by (1.6). If Q satisfies (1.1), @ € H' (S*~1) (the Hardy

space on the unit sphere in the sense of Coifman and Weiss [4]) and h satisfies
R 5

1 R
sup —/|h(t)| dt < 00 (1.8)
r>0 | R )

for some v > 1, then
1Te ()l omny < Co Qg1 g1y 1l Lo )

for all p satisfying ‘1—1; — %‘ < min{%, %} and f € LP (R™).

One observes that when v > 2, the range of p in Theorem 2 is the entire interval (1, 0o).
Also, if we denote by A_(R™) the set of all measurable functions on R satisfying (1.8),
then it is easy to verify that

L*RY) cA (RT)CA,(RT)

for any 8 < v and the inclusions are proper.

Our principal results in this paper are the following:

Theorem 3. Let Ty be given by (1.6). Suppose that Q satisfies (1.1), @ € B (S*~1)
for some ¢ > 1 and h € AV(R"’) for some v > 1, then

1Te (N Lr@ny < CollfllLogny (1.9)
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for all p satisfying ‘1—1; — %‘ < min{%, %} and f € L (R™).

Theorem 4. Let T} be given by (1.7). Suppose that h € L¥(R™), Q satisfies (1.1),
and Q € BS’O (S"‘l) for some q > 1, then

176 ()l Lo mny < Cp f [l Lo rrmy (1.10)
for all p, 1 <p < oo and for all f € LP (R™).

It is worth noting that Theorem 1 is a special case of Theorems 3 and 4 if we let
®(t) =t and h € L=(RT).

We would like to thank the referee for some helpful comments.

2. Definitions and certain Fourier transforms estimates

We start by recalling some of the necessary properties of block functions Bj»“. The

space By"V enjoys the following properties which can be found in [11]:

Bg’w - Bg"“ (v >v; > —1 and k > 0),
B> Byt (v > =1, i=1,2, and 0 < K1 < K2),

Byt < Byt (1<aqi <) (2.1)
and
Li(S" 1 C BpU(S™ ) (forv > -1, and & > 0).

In their investigations of block spaces, Keitoku and Sato showed in [9] that these spaces

enjoy the following properties:

Theorem 5. (i) If 1 <p < q < oo, then for k> z% we have
By (S"_l) crr (S"_l) for any v > —1;
(i1)
1
B (S"‘l) =11 (S"_l) if and only if x > 7 and v > 0;
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and

(i) for any v > —1, we have

User s £ ).

qg>1 p>1

For a suitable mapping ® : (0, c0) — R, p € [2,00), and a suitable function 5() on

S™~! we define the measures {)\5 .k ”}k ” and the maximal operator )\g ., O8 R"™ by
Dokop f e @,

v
Jrahan,= [ @) 2 nduy 2.2)
R» PR <ly|<pk+1
and
A, (2) = 21611;“)\57‘I>,k‘7p * f(x)‘ (2.3)

Theorem 6. Let @ : (0, co) — R be a function, {)\5 ok p} . be given as in (2.2), and

ke
let 5() be a function on S satisfying the following conditions:

(i) [ b(u)do(u)=0; (i) Hb‘

Sn—1

1
< |I|” 9" for some q > 1 and for some cap I
Lognty = " f q f p

<1
Ll(Sn—l) -

If ® satisfies the conditions (1.4)-(1.5) for some d # 0 and h satisfies (1.8) for some
v, 1 < v <2, then there exist constants C, o > 0 such that for all k € Z

on S"L; (iii) H(;‘

)‘B‘p kp(g)‘ < Clog (|I|_1) |pkd §|i—7,1§gm if p= 210g(|1|*1) and |I| < 6_1, (24)

whereas

‘5\5,<I>,k,p(§)‘ < Clp™ §|i% if p=2and [I| > e (2.5)

where t¥* = inf{t" ,t " }. The constant C is independent of k, b, &, and ().

Proof: We shall prove our estimates only for the case d > 0, because the proof

for the case d < 0 is essentially the same. We shall first assume that |I| < e~! and
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p = 211" By Holder’s inequality we have

2=
>
Q\

pk+1
Q v dt ~ dt
SarO < | [ F| | [0l T
ok

where

Tye(t) = / eI DIENE ) By Vdo (o),

|

and £’ = Since

1€l

and |Tx ¢ (¢)] <1 we obtain

1.1 2 dt
05,0 < Clogltl | [Ime o
1

where [-] denotes the greatest integer function.

2
Writing [Ty ¢ (£)| as

The () = / / b(a') Dy e P D W) 4o (27) do (4

Sn—1gn-1
and using integration by parts and the conditions (1.4)-(1.5), we obtain
P
[0t < ool ey - an!
1
which when combined with the trivial estimate

P

/e—z‘@(pkwmm“(y’—w’)ﬂ < Clog (lII_l)
| <

1
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gives

P

. ’ ’ N dt _ @ — —
/e—z‘b(p’“tms =) < Crog (117 57 | e (f - a0
1

where 0 < o < 1. Thus,

s ()5 47

/ / ‘5(30’)5(1/) & () — 2| do (') do (i)

n—1gn—1

1
va’

6;;<sn*1> / / a1 — 3|7 do (2’ do (y)

n—1gn—1

< Clog (III_I) ||

We choose a so that 0 < ag’ < 1 and by the conditions (ii)-(iii), we get

N . -1 —1\ | kde|T57 | 7|— A7
A57®7k7p(§)‘SCmm{log(m ), 10g(|]| )p |p §| VI }

)‘B,q>,k,p(§)

mate in (2.4) with a plus sign in the exponent.

Thus

is majorized by Clog (|I|_1) |pkd | iosTT which yields the first esti-

Next, by the conditions (i) and (iii) we have

)\E,&b,k,p(g)‘

IN

/ / ‘e—i(‘b(ﬂkt)lilﬁ"y') _ 1‘ |h(p’ft)| B(y’)%da(y')

Sn—1 1

IN

dt
A / [h(o"t)| =
1

IN

Clog (III_I) p* ||
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which when combined with the trivial estimate ‘5\;} Sk p(§)‘ < Clog (|]|_1) , yields the

second desired estimate in (2.4).
Finally, the proof of (2.5) is the same as the proof of (2.4). We shall omit the details.

This ends the proof of our theorem.

3. General lemmas and proofs of our results

For a given sequence {u : k € Z} of non negative Borel measures on R"™ we define

the maximal function p* by
1" (f) = sup |p * f] .
keZ

By following a similar argument as in the proof of Lemma 3.1 in [2] we get the following

lemma which is an extension of a result of Duoandikoetxea and Rubio de Francia in [5]:

Lemma 7. Let {uy : k € Z} be a sequence of non negative Borel measures on. R™. Let
L: R™ — R™ be a linear transformation. Suppose that for all k € Z, £€ R™, for some

a>2, a,C>0 and for some constant B > 1 we have

(i) [lus | < B;
(i) | (€)| < CB(a*P |L(€)]) 7 F;
(idi) | (€)—1] < CB(a*? |L(€)])

wle

Then the inequality
™ (O, < B, (3.1)
holds for all 1 < p < oo and f in LP(R™). The constant C, is independent of B.

By a quick investigation of the proof of the lemma given in ([5], page 544) we have
the following:

Lemma 8. Let {\; : k € Z} be a sequence of Borel measures in R™ and let \* (f) =

sup || Ak| * f| . Assume that
kEZ

A" (O, < BIlfll, for some ¢ > 1 and B > 0. (3.2)
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Then, for arbitrary functions {gr} on R™ and ‘pio — %‘ = QLq, we have

< . /Bsup ||kl
keZ
0

We need the following result from [1] which is an extension of a result of Duoandikoetxea
and Rubio de Francia in [5] (see also [6]).

O e+ gil*)?

keZ

O lgnl)?

keZ

(3.3)

p Po

Lemma 9. Let {0} : k € Z} be a sequence of Borel measures on R™. Suppose that for

all k€ Z, e R, for some a > 2, a, C > 0 and for some B > 1 we have

(i) [6k(§)] < CB(a* |L(§)))* %

(#7) For some po € (2,00)

<CB (3.4)

O low*gil*)?

keZ

O lgnP)?

keZ

Po Po

for arbitrary functions {gr} on R™. Then for p{, < p < po there exists a positive
constant Cp which is independent of B such that

Zak*f

keZ

< GBIl Lo(rrny (3.5)
Lr(R")

holds for all f in LP(R™).

We are now ready to present the proofs of our main results.
Proofs of main results.

Without loss of generality, we may assume that 1 < v < 2 and p satisfies ‘1—1; — %‘ < %
By assumption, the function £ can be written as @ = >0 ¢,b, where ¢, € C, b, is a

p=1"p"pn

g-block supported on a cap I, on S~ ! and

o

Mg ({e,}) =

p=1

1

n

c, (1 + log _1) < 0. (3.6)
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To each block function b, (-), let 5‘() be a function defined by

buta) = (@)= [ (o). (3.7)

It is easy to verify that 5” enjoys the following properties:

/ by (u)do (u) = 0, (3.8)
Sn—l
Bt‘ 21 |7 3.9
H’ La(sn—1) — M (8.9)
and
Bt‘ <2 3.10
H Mllpysn-1y = (3.10)

Using the assumption that 2 has the mean zero property (1.1), and the definition of Eu,

we deduce that € can be written as

(oo}
0= c.h, (3.11)
p=1
which implies
17e 1, <D le] | Tos, (3.12)
p=1
where
Tus f0 =p [ 10 @)y n a

By Theorem 6, and Lemma 7 we immediately get

&

Z,“‘P,p” (f)‘

— oee(|7.]™) and |IH| <e!

< G(
Lr(R™)

HfHLP(R”) ifp,
(3.13)
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and

<C,p HfHLp(RW) if p, =2 and |I | >e . (3.14)

By following a similar argument as in the proof of Theorem 7.5 in [6], and (3.15)-(3.16),

X0, D)

Lr(R")

there exists a constant C), which is independent of l~)u such that

OB

keZ

(3.15)

1
Z‘ B ko, *g’f‘ )?

keZ

p

-1
if p, = oloe(I1.] ) and |IM| < e~ !, whereas
1 1 _
Mot F| <G (S| ifp, =2and |1z (316)
kEZ

p

for any p satisfying ‘% - %‘ < % and for any f € L? (R").

By Theorem 6, (3.15)-(3.16) and Lemma 9 we have

HT 7~1 PEESLEY N * f < C ( HfH (317)
P
if p, = 2log(|1.] ) and |IM| < e~ !, whereas
[Tas 1], = | S0 %5, o, = 1] <ol ip, =2a0d 1]z (39
P

p

for every f € LP(R™) and for p satisfies ‘% — %‘ < % Therefore, by (3.6), (3.12) and
(3.17)-(3.18) we get (1.9) which ends the proof of Theorem 3.

Finally, Theorem 4 follows by (3.6), (3.11), (3.13)-(3.14) and by the same argument
as in [1]. We omit the details.

530



AL-QASSEM, AL-SALMAN

4. Further results

Define the maximal operator

1
Mo (@) =sup = [ 17— () )12 Ih(l)| dy (4.1
T
ly|<r
where 0 and ® are given as in Section 1 and y = |Z—| € S"~1. Also, we define the

oscillatory singular integral operator S, by

s @ =p. [ eimly“y’ﬂil W) — v)dy

R”
where A € R.
Let A={peN:|I,|>e¢ '} and B={peN:|[ | <e '} ForpeN, weset
2 yifpe A
P = glog(|1,, ) ,if p € B.

Then by noticing that

M‘bf <4Z|clt|)‘b @kg(lfl (

p=1

<4Z |clt|)‘b ‘Pk,p |f| +SZ |clt|)‘b ‘bk,p‘ (lfl)(x) (42)

HEA HEB
and using (3.15)-(3.16) we get the following:

Theorem 10. Let Q be a homogeneous function on R™ which satisfies (1.1), Q €
BYY (S"1) and h € A (R") for some v, ¢ > 1. Assume that ® satisfies the conditions
(1.4)-(1.5). Then for all v < p < oo, there exists a constant C), such that

Ma (NlLowny < Cp lfllo@ny (4.3)

for all f € LP (R™).
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As a consequence of Theorem 3 we also obtain the following uniform LP boundedness

result of the oscillatory singular integral operator S, . In fact, we have the following:

Theorem 11. Let Q be a homogeneous function on R™ which satisfies (1.1), Q €
BYO(S"71) and h € A (RY) for some 7, q¢ > 1. Suppose that ® satisfies the conditions
(1.4)-(1.5). Then the operator S, is bounded from LP (R™) to itself for all p satisfying

1_
P

(1

3]

(4]

(8]
(9]

(10]

532

%‘ < min{%, %} . The bound for the operator norm is independent of .
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