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Abstract

In this paper, we study the Lpmapping properties of singular integral operators

with kernels belonging to certain block spaces. These operators have singularities

along sets of the form {x = Φ(|y|)y′}where Φ satisfies certain growth conditions. Our

results improve as well as extend previously known results on singular integrals.
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1. Introduction and results

Let Sn−1, n ≥ 2 be the unit sphere in Rn equipped with the normalized Lebesgue

measure dσ = dσ(·). Suppose Ω ∈ L1(Sn−1) is a homogeneous function of degree zero on

Rn and satisfies the cancellation condition∫
Sn−1

Ω (y′) dσ (y′) = 0, (1.1)

where y′ = y
|y| ∈ Sn−1 for any y 6= 0.

Define the singular integral operator T by

Tf(x) = p.v.
∫

Rn

f (x− y) Ω(y′)
|y|n h(|y|)dy (1.2)
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and the corresponding maximal truncated singular integral T ∗ by

T ∗f (x) = sup
ε>0

∣∣∣∣∣
∫
|y|>ε

f (x− y) Ω(y′)
|y|n h(|y|)dy

∣∣∣∣∣ (1.3)

where h : (0, ∞)→ R is a measurable function, y′ = y
|y| for any y 6= 0, and f ∈ S (Rn).

The Lp mapping properties of the operators T and T ∗ were studied extensively by a

number of authors (see [3], [5], [8], [13], among others). To improve previously obtained

Lp boundedness results for the operators T and T ∗, Jiang and Lu introduced the following

special class of block spaces Bκ,υq
(
Sn−1

)
:

Definition. (1) For x′0 ∈ Sn−1 and 0 < θ0 ≤ 2, the set

B(x′0, θ0) = {x′ ∈ Sn−1 : |x′ − x′0| < θ0}

is called a cap on Sn−1.

(2) For 1 < q ≤ ∞, a measurable function b is called a q−block on Sn−1 if b is a

function supported on some cap I = B(x′0, θ0) with ‖b‖Lq ≤ |I|
− 1
q′ where |I| = σ(I) and

1
q + 1

q′ = 1.

(3) Bκ,υq
(
Sn−1

)
= {Ω ∈ L1

(
Sn−1

)
: Ω =

∞∑
µ=1

c
µ
b
µ

where each c
µ

is a complex

number; each b
µ

is a q−block supported on a cap I
µ

on Sn−1; and Mκ,υ
q

({
c
µ

})
=

∞∑
µ=1

∣∣cµ ∣∣ (1 + φκ,υ
(∣∣Iµ ∣∣)) <∞}, where

φκ,υ (t) =


1∫
t

u−1−κ log
υ (
u−1

)
du, if 0 < t < 1;

0 , if t ≥ 1.

Notice that φκ,υ (t) ∼ t−κ logυ(t−1) as t → 0 for κ > 0, υ ∈ R, and φ0,υ (t) ∼
logυ+1

(
t−1
)

as t→ 0 for υ > −1.

Jiang and Lu proved the following L2 boundedness theorem which can be found in

[11].
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Theorem 1. Let Ω, T and T ∗ be defined as in (1.1)-(1.3). Assume that h ∈ L∞ (R+) .

Then we have

(i) if Ω ∈ B0,0
q (Sn−1), then T is a bounded operator on L2 (Rn)

and

(ii) if Ω ∈ B0,1
q (Sn−1), then T ∗ is a bounded operator on L2 (Rn).

It is clear that Theorem 1 represents an improvement in the special case p = 2 over the

Lp boundedness theorems obtained by Duoandikoetxea-Rubio de Francia [5], Chen [3] and

Namazi [13] regarding the operators T and T ∗ under the stronger condition Ω ∈ Lq(Sn−1)

for some q > 1.

Under the same conditions on Ω and h as in Theorem 1, the question of the Lp

boundedness of the operators T and T ∗ (for p 6= 2) was left open. The natural question

that arises on this result is the following:

Question. Are the operators T and T ∗ bounded on Lp for all p 6= 2 under the same

conditions on Ω and h as in Theorem 1? Also, does the L2 (or the Lp) boundedness of

T ∗ still hold if we replace the condition Ω ∈ B0,1
q (Sn−1) by the weaker condition Ω ∈

B0,0
q (Sn−1).

In this paper, we shall obtain an answer to the above question as a special case of our

Lp estimates for the operators given below by (1.6)-(1.7).

Let Φ : (0, ∞) → R be a smooth function which satisfies the following growth

conditions:

|Φ(t)| ≤ C1t
d, |Φ′′(t)| ≤ C2t

d−2, (1.4)

C3t
d−1 ≤ |Φ′(t)| ≤ C4t

d−1 (1.5)

for some d 6= 0 and t ∈ (0, ∞), where C1, C2, C3, and C4 are positive constants

independent of t.

Define the singular integral operator TΦ by

TΦf(x) = p.v.
∫

Rn

f (x− Φ (|y|) y′) Ω(y′)
|y|n h(|y|)dy (1.6)
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and the corresponding maximal truncated singular integral T ∗Φ by

T ∗Φf (x) = sup
ε>0

∣∣∣∣∣
∫
|y|>ε

f (x− Φ (|y|) y′) Ω(y′)
|y|n h(|y|)dy

∣∣∣∣∣ (1.7)

where y′ = y
|y| and f ∈ S (Rn) .

Clearly, when Φ(t) = t, we have TΦ = T and T ∗Φ = T ∗.

The class of operators TΦ were first defined and studied by Fan and Pan in [7] and

they were able to prove the following result:

Theorem 2. Let TΦ be given by (1.6). If Ω satisfies (1.1), Ω ∈ H1
(
Sn−1

)
(the Hardy

space on the unit sphere in the sense of Coifman and Weiss [4]) and h satisfies

sup
R>0

 1
R

R∫
0

|h (t)|
γ

dt


1
γ

<∞ (1.8)

for some γ > 1, then

‖TΦ (f)‖Lp(Rn) ≤ Cp ‖Ω‖H1(Sn−1) ‖f‖Lp(Rn)

for all p satisfying
∣∣∣ 1
p −

1
2

∣∣∣ < min
{

1
2 ,

1
γ′

}
and f ∈ Lp (Rn).

One observes that when γ ≥ 2, the range of p in Theorem 2 is the entire interval (1,∞).

Also, if we denote by ∆γ (R+) the set of all measurable functions on R+ satisfying (1.8),

then it is easy to verify that

L∞(R+) ⊂ ∆
γ
(R+) ⊂ ∆

β
(R+)

for any β < γ and the inclusions are proper.

Our principal results in this paper are the following:

Theorem 3. Let TΦ be given by (1.6). Suppose that Ω satisfies (1.1), Ω ∈ B0,0
q

(
Sn−1

)
for some q > 1 and h ∈ ∆

γ
(R+) for some γ > 1, then

‖TΦ (f)‖Lp(Rn) ≤ Cp ‖f‖Lp(Rn) (1.9)
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for all p satisfying
∣∣∣ 1
p
− 1

2

∣∣∣ < min
{

1
2
, 1
γ′

}
and f ∈ Lp (Rn).

Theorem 4. Let T ∗Φ be given by (1.7). Suppose that h ∈ L∞(R+), Ω satisfies (1.1),

and Ω ∈ B0,0
q

(
Sn−1

)
for some q > 1, then

‖T ∗Φ (f)‖Lp(Rn) ≤ Cp ‖f‖Lp(Rn) (1.10)

for all p, 1 < p <∞ and for all f ∈ Lp (Rn) .

It is worth noting that Theorem 1 is a special case of Theorems 3 and 4 if we let

Φ(t) = t and h ∈ L∞(R+).

We would like to thank the referee for some helpful comments.

2. Definitions and certain Fourier transforms estimates

We start by recalling some of the necessary properties of block functions Bκ,υq . The

space Bκ,υq enjoys the following properties which can be found in [11]:

Bκ,υ2
q ⊂ Bκ,υ1

q (υ2 > υ1 > −1 and κ ≥ 0),

Bκ2,υ2
q ⊂ Bκ1 ,υ1

q (υi > −1, i = 1, 2, and 0 ≤ κ1 < κ2),

Bκ,υq2 ⊂ Bκ,υq1 (1 < q1 < q2), (2.1)

and

Lq(Sn−1) ⊆ Bκ,υq (Sn−1) (for υ > −1, and κ ≥ 0).

In their investigations of block spaces, Keitoku and Sato showed in [9] that these spaces

enjoy the following properties:

Theorem 5. (i) If 1 < p ≤ q ≤ ∞, then for κ > 1
p′ we have

Bκ,υq
(
Sn−1

)
⊆ Lp

(
Sn−1

)
for any υ > −1;

(ii)

Bκ,υq
(
Sn−1

)
= Lq

(
Sn−1

)
if and only if κ ≥ 1

q′
and υ ≥ 0;
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and

(ii) for any υ > −1, we have⋃
q>1

B0,υ
q

(
Sn−1

)
6 ⊆
⋃
p>1

Lp
(
Sn−1

)
.

For a suitable mapping Φ : (0, ∞) → R, ρ ∈ [2,∞), and a suitable function b̃(·) on

Sn−1 we define the measures
{
λb̃,Φ,k,ρ

}
k∈Z

and the maximal operator λ∗
b̃,Φ,ρ

on Rn by

∫
Rn

f dλb̃,Φ,k,ρ =
∫

ρk≤|y|<ρk+1

f (Φ(|y|)y′) b̃ (y
′)

|y|n h (|y|) dy (2.2)

and

λ∗
b̃,Φ,ρ

f (x) = sup
k∈Z

∣∣∣∣∣∣λb̃,Φ,k,ρ∣∣∣ ∗ f(x)∣∣∣ . (2.3)

Theorem 6. Let Φ : (0, ∞)→ R be a function,
{
λb̃,Φ,k,ρ

}
k∈Z

be given as in (2.2), and

let b̃(·) be a function on Sn−1 satisfying the following conditions:

(i)
∫

Sn−1

b̃ (u) dσ (u) = 0; (ii)
∥∥∥b̃∥∥∥

Lq(Sn−1)
≤ |I|−

1
q′ for some q > 1 and for some cap I

on Sn−1; (iii)
∥∥∥b̃∥∥∥

L1(Sn−1)
≤ 1.

If Φ satisfies the conditions (1.4)-(1.5) for some d 6= 0 and h satisfies (1.8) for some

γ, 1 < γ ≤ 2, then there exist constants C, α > 0 such that for all k ∈ Z∣∣∣λ̂b̃,Φ,k,ρ(ξ)∣∣∣ ≤ C log
(
|I|−1

) ∣∣ρkd ξ∣∣± α
γ′ log|I| if ρ = 2log(|I|−1) and |I| < e−1, (2.4)

whereas ∣∣∣λ̂b̃,Φ,k,ρ(ξ)∣∣∣ ≤ C ∣∣ρkd ξ∣∣± α
γ′ if ρ = 2 and |I| ≥ e−1 (2.5)

where t±α = inf{tα , t−α}. The constant C is independent of k, b̃, ξ, and Φ (·).

Proof: We shall prove our estimates only for the case d > 0, because the proof

for the case d < 0 is essentially the same. We shall first assume that |I| < e−1 and
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ρ = 2log(|I|−1). By Hölder’s inequality we have

∣∣∣λ̂b̃,Φ,k,ρ(ξ)∣∣∣ ≤
 ρk+1∫

ρk

|h(t)|
γ dt

t


1
γ  ρ∫

1

|Γk,ξ (t)|
γ′ dt

t


1
γ′

where

Γk,ξ (t) =
∫

Sn−1

e−iΦ(ρkt)|ξ|(ξ′·y′) b̃(y′)dσ (y′) ,

and ξ′ = ξ
|ξ| . Since

ρk+1∫
ρk

|h(t)|
γ dt

t
≤

[log|I|−1]+1∑
s=1

ρk2s∫
ρk2s−1

|h(t)|
γ dt

t
,

and |Γk,ξ (t)| ≤ 1 we obtain

∣∣∣λ̂b̃,Φ,k,ρ(ξ)∣∣∣ ≤ C(log |I|−1)
1
γ

 ρ∫
1

|Γk,ξ (t)|
2 dt

t


1
γ′

where [·] denotes the greatest integer function.

Writing |Γk,ξ (t)|
2

as

|Γk,ξ (t)|
2

=
∫

Sn−1

∫
Sn−1

b̃(x′) b̃(y′)e−iΦ(ρkt)|ξ|ξ′·(y′−x′)dσ (x′) dσ (y′)

and using integration by parts and the conditions (1.4)-(1.5), we obtain∣∣∣∣∣∣
ρ∫

1

e−iΦ(ρkt)|ξ|ξ′·(y′−x′) dt

t

∣∣∣∣∣∣ ≤ Cρ ∣∣ρkdξ∣∣−1 |ξ′ · (y′ − x′)|−1

which when combined with the trivial estimate∣∣∣∣∣∣
ρ∫

1

e−iΦ(ρkt)|ξ|ξ′·(y′−x′) dt

t

∣∣∣∣∣∣ ≤ C log
(
|I|−1

)
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gives

∣∣∣∣∣∣
ρ∫

1

e−iΦ(ρkt)|ξ|ξ′·(y′−x′) dt

t

∣∣∣∣∣∣ ≤ C log
(
|I|−1

)
ρ
α ∣∣ρkdξ∣∣−α |ξ′ · (y′ − x′)|−α

where 0 < α < 1. Thus,∣∣∣λ̂b̃,Φ,k,ρ(ξ)∣∣∣ ≤ C log
(
|I|−1

)
ρ
α ∣∣ρkdξ∣∣− α

γ′ ×

 ∫
Sn−1

∫
Sn−1

∣∣∣b̃(x′)b̃(y′)∣∣∣ |ξ′ · (y′ − x′)|−α dσ (x′) dσ (y′)


1
γ′

≤ C log
(
|I|−1

)
ρ
α ∣∣ρkdξ∣∣− α

γ′
∥∥∥b̃∥∥∥ 2

γ′

Lq(Sn−1)

 ∫
Sn−1

∫
Sn−1

|x1 − y1|−αq
′
dσ (x′) dσ (y′)

 1
γq′

.

We choose α so that 0 < αq′ < 1 and by the conditions (ii)-(iii), we get∣∣∣λ̂b̃,Φ,k,ρ(ξ)∣∣∣ ≤ Cmin
{

log
(
|I|−1

)
, log

(
|I|−1

)
ρ
α ∣∣ρkdξ∣∣− α

γ′ |I|−
2
q′γ′
}
.

Thus
∣∣∣λ̂b̃,Φ,k,ρ(ξ)∣∣∣ is majorized by C log

(
|I|−1

) ∣∣ρkd ξ∣∣ α
γ′ log|I| which yields the first esti-

mate in (2.4) with a plus sign in the exponent.

Next, by the conditions (i) and (iii) we have

∣∣∣λ̂b̃,Φ,k,ρ(ξ)∣∣∣ ≤ ∫
Sn−1

ρ∫
1

∣∣∣e−i(Φ(ρkt)|ξ|ξ′·y′) − 1
∣∣∣ ∣∣h(ρkt)∣∣ b̃(y′)dt

t
dσ(y′)

≤ ρd
∣∣ρdkξ∣∣ ρ∫

1

∣∣h(ρkt)∣∣ dt
t

≤ C log
(
|I|−1

)
ρd
∣∣ρkdξ∣∣
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which when combined with the trivial estimate
∣∣∣λ̂b̃,Φ,k,ρ(ξ)∣∣∣ ≤ C log

(
|I|−1

)
, yields the

second desired estimate in (2.4).

Finally, the proof of (2.5) is the same as the proof of (2.4). We shall omit the details.

This ends the proof of our theorem.

3. General lemmas and proofs of our results

For a given sequence {µk : k ∈ Z} of non negative Borel measures on Rn we define

the maximal function µ∗ by

µ∗ (f) = sup
k∈Z
|µk ∗ f | .

By following a similar argument as in the proof of Lemma 3.1 in [2] we get the following

lemma which is an extension of a result of Duoandikoetxea and Rubio de Francia in [5]:

Lemma 7. Let {µk : k ∈ Z} be a sequence of non negative Borel measures on Rn. Let

L: Rn → Rm be a linear transformation. Suppose that for all k ∈ Z, ξ∈ Rn, for some

a ≥ 2, α, C > 0 and for some constant B > 1 we have

(i) ‖µk‖≤ B ;

(ii) |µ̂k(ξ)|≤ CB(akB |L(ξ)| )−
α
B ;

(iii) |µ̂k(ξ)−1| ≤ CB(akB |L(ξ)|) αB .

Then the inequality

‖µ∗ (f)‖p ≤ B ‖f‖p (3.1)

holds for all 1 < p ≤ ∞ and f in Lp(Rn). The constant Cp is independent of B.

By a quick investigation of the proof of the lemma given in ([5], page 544) we have

the following:

Lemma 8. Let {λk : k ∈ Z} be a sequence of Borel measures in Rn and let λ∗ (f) =

sup
k∈Z
||λk| ∗ f | . Assume that

‖λ∗ (f)‖q ≤ B ‖f‖q for some q > 1 and B > 0. (3.2)
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Then, for arbitrary functions {gk} on Rn and
∣∣∣ 1
p0
− 1

2

∣∣∣ = 1
2q
, we have∥∥∥∥∥(∑

k∈Z

|λk ∗ gk|2)
1
2

∥∥∥∥∥
p0

≤
√
B sup
k∈Z
‖λk‖

∥∥∥∥∥(∑
k∈Z

|gk|2)
1
2

∥∥∥∥∥
p0

. (3.3)

We need the following result from [1] which is an extension of a result of Duoandikoetxea

and Rubio de Francia in [5] (see also [6]).

Lemma 9. Let {σk : k ∈ Z} be a sequence of Borel measures on Rn. Suppose that for

all k ∈ Z, ξ∈ Rn, for some a ≥ 2, α, C > 0 and for some B > 1 we have

(i) |σ̂k(ξ)| ≤ CB(akB |L(ξ)|)± α
B ;

(ii) For some p0 ∈ (2,∞)∥∥∥∥∥(∑
k∈Z

|σk ∗ gk|2)
1
2

∥∥∥∥∥
p0

≤ CB
∥∥∥∥∥(∑
k∈Z

|gk|2)
1
2

∥∥∥∥∥
p0

(3.4)

for arbitrary functions {gk} on Rn. Then for p′0 < p < p0 there exists a positive

constant Cp which is independent of B such that∥∥∥∥∥∑
k∈Z

σk ∗ f
∥∥∥∥∥
Lp(Rn)

≤ CpB ‖f‖Lp(Rn) (3.5)

holds for all f in Lp(Rn).

We are now ready to present the proofs of our main results.

Proofs of main results.

Without loss of generality, we may assume that 1 < γ ≤ 2 and p satisfies
∣∣∣ 1p − 1

2

∣∣∣ < 1
γ′ .

By assumption, the function Ω can be written as Ω =
∑∞
µ=1 cµbµ where cµ ∈ C, bµ is a

q-block supported on a cap Iµ on Sn−1 and

M0,0
q

({
cµ
})

=
∞∑
µ=1

∣∣cµ ∣∣ (1 + log
∣∣Iµ ∣∣−1

)
<∞. (3.6)
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To each block function bµ(·), let b̃µ(·) be a function defined by

b̃µ(x) = bµ(x)−
∫

Sn−1
bµ(u)dσ(u). (3.7)

It is easy to verify that b̃µ enjoys the following properties:

∫
Sn−1

b̃µ (u)dσ (u) = 0, (3.8)

∥∥∥b̃µ∥∥∥
Lq(Sn−1)

≤ 2
∣∣Iµ ∣∣− 1

q′ (3.9)

and ∥∥∥b̃µ∥∥∥
L1(Sn−1)

≤ 2. (3.10)

Using the assumption that Ω has the mean zero property (1.1), and the definition of b̃µ,

we deduce that Ω can be written as

Ω =
∞∑
µ=1

cµ b̃µ (3.11)

which implies

‖TΦf‖p ≤
∞∑
µ=1

∣∣cµ∣∣ ∥∥∥TΦ,b̃µ
f
∥∥∥
p

(3.12)

where

TΦ,b̃µ
f(x) = p.v.

∫
Rn

f (x−Φ (|y|) y′)) b̃µ (y′)
|y|n h (|y|) dy.

By Theorem 6, and Lemma 7 we immediately get∥∥∥λ∗
b̃µ,Φ,ρµ

(f)
∥∥∥
Lp(Rn)

≤ Cp(log
∣∣I
µ

∣∣−1) ‖f‖Lp(Rn) if ρ
µ

= 2log(|Iµ|−1
) and

∣∣I
µ

∣∣ < e−1

(3.13)
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and ∥∥∥λ∗b̃µ,Φ,ρµ (f)
∥∥∥
Lp(Rn)

≤ Cp ‖f‖Lp(Rn) if ρ
µ

= 2 and
∣∣Iµ ∣∣ ≥ e−1. (3.14)

By following a similar argument as in the proof of Theorem 7.5 in [6], and (3.15)-(3.16),

there exists a constant Cp which is independent of b̃
µ

such that

∥∥∥∥∥(∑
k∈Z

∣∣∣λb̃µ,Φ,k,ρµ ∗ gk∣∣∣2) 1
2

∥∥∥∥∥
p

≤ Cp(log
∣∣I
µ

∣∣−1)

∥∥∥∥∥(∑
k∈Z

|gk|2)
1
2

∥∥∥∥∥
p

(3.15)

if ρ
µ

= 2log(|Iµ |−1
) and

∣∣Iµ ∣∣ < e−1, whereas

∥∥∥∥∥(∑
k∈Z

∣∣∣λb̃µ,Φ,k,ρ ∗ gk∣∣∣2) 1
2

∥∥∥∥∥
p

≤ Cp

∥∥∥∥∥(∑
k∈Z

|gk|2)
1
2

∥∥∥∥∥
p

if ρ
µ

= 2 and
∣∣Iµ ∣∣ ≥ e−1 (3.16)

for any p satisfying
∣∣∣ 1p − 1

2

∣∣∣ < 1
γ′

and for any f ∈ Lp (Rn) .

By Theorem 6, (3.15)-(3.16) and Lemma 9 we have

∥∥∥TΦ,b̃µ
f
∥∥∥
p

=

∥∥∥∥∥∑
k∈Z

λb̃µ ,Φ,k,ρµ
∗ f
∥∥∥∥∥
p

≤ Cp(log
∣∣Iµ ∣∣−1) ‖f‖p (3.17)

if ρ
µ

= 2log(|Iµ |−1
) and

∣∣Iµ ∣∣ < e−1, whereas

∥∥∥TΦ,b̃µ
f
∥∥∥
p

=

∥∥∥∥∥∑
k∈Z

λb̃µ ,Φ,k,ρµ
∗ f
∥∥∥∥∥
p

≤ Cp ‖f‖p if ρ
µ

= 2 and
∣∣I
µ

∣∣ ≥ e−1 (3.18)

for every f ∈ Lp(Rn) and for p satisfies
∣∣∣ 1p − 1

2

∣∣∣ < 1
γ′

. Therefore, by (3.6), (3.12) and

(3.17)-(3.18) we get (1.9) which ends the proof of Theorem 3.

Finally, Theorem 4 follows by (3.6), (3.11), (3.13)-(3.14) and by the same argument

as in [1]. We omit the details.
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4. Further results

Define the maximal operator

MΦf(x) = sup
r>0

1
rn

∫
|y|≤r

|f (x−Φ (|y|) y′)| |Ω (y′)| |h(|y|)| dy (4.1)

where Ω and Φ are given as in Section 1 and y′ = y
|y| ∈ Sn−1. Also, we define the

oscillatory singular integral operator S
λ

by

S
λ
f (x) = p.v.

∫
Rn

eiλΦ(|y|)y′ Ω(y′)
|y|n h(|y|)f(x − y)dy

where λ ∈ R.

Let A =
{
µ ∈ N :

∣∣Iµ ∣∣ ≥ e−1
}

and B =
{
µ ∈ N :

∣∣Iµ ∣∣ < e−1
}
. For µ ∈ N, we set

ρ
µ

=

{
2 , if µ ∈ A

2log(|Iµ|−1
) , if µ ∈ B.

Then by noticing that

MΦf(x) ≤ 4
∞∑
µ=1

|cµ| λ∗b̃µ ,Φ,k,2 (|f |) (x)

≤ 4
∞∑
µ∈A
|cµ|λ∗b̃µ ,Φ,k,ρµ (|f |) (x) + 8

∞∑
µ∈B
|cµ|λ∗b̃µ ,Φ,k,ρµ (|f |) (x) (4.2)

and using (3.15)-(3.16) we get the following:

Theorem 10. Let Ω be a homogeneous function on Rn which satisfies (1.1), Ω ∈
B0,0
q

(
Sn−1

)
and h ∈ ∆

γ
(R+) for some γ, q > 1. Assume that Φ satisfies the conditions

(1.4)-(1.5). Then for all γ′ < p ≤ ∞, there exists a constant Cp such that

‖MΦ (f)‖Lp(Rn) ≤ Cp ‖f‖Lp(Rn) (4.3)

for all f ∈ Lp (Rn) .
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As a consequence of Theorem 3 we also obtain the following uniform Lp boundedness

result of the oscillatory singular integral operator S
λ
. In fact, we have the following:

Theorem 11. Let Ω be a homogeneous function on Rn which satisfies (1.1), Ω ∈
B0,0
q

(
Sn−1

)
and h ∈ ∆γ(R+) for some γ, q > 1. Suppose that Φ satisfies the conditions

(1.4)-(1.5). Then the operator Sλ is bounded from Lp (Rn) to itself for all p satisfying∣∣∣ 1
p −

1
2

∣∣∣ < min
{

1
2 ,

1
γ′

}
. The bound for the operator norm is independent of λ.
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