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On the Lebesgue Measure of Self-Affine Sets

İbrahim Kırat

Abstract

Flaherty and Wang studied Haar-type multiwavelets and multi-tiles. The in-
formation on what digit sets give multi-attractors with positive Lebesgue measure
is very limited. In this note, we give a few classes of digit sets leading to multi-
attractors with positive measure. The attractors we obtain include the Haar-type
multi-tiles of Flaherty and Wang.
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1. Introduction

Unless otherwise stated, we assume that B (or Bi) is an expanding integral matrix in
Mn(Z), i.e., all its eigenvalues λi have modulus > 1. Let |det B| = q and let D ⊆ Zn be
a set of q distinct vectors, called a q-digit set. The affine maps wj defined by

wj(x) = B−1(x+ dj), dj ∈ D, 1 ≤ j ≤ q,

are all contractions under a suitable norm in Rn (see [8, pp. 29-30]). The family {wj}qj=1

is called an iterated function system (IFS) and there is a unique non-empty compact set

satisfying T =
⋃q
j=1wj(T ) ([4], [7]). T is called the attractor of the system and is given

explicitly by

T := T (B,D) = {
∞∑
i=1

B−idji : dji ∈ D}.

We use µ(T ) to denote the Lebesgue measure of the set T . We call T an integral self-
affine tile if it has a positive measure. In general, the classification of all digit sets D
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with µ(T ) > 0 is a complicated problem. The case that µ(T ) = 1 is of particular interest
and we call such T a Haar tile. Gröchenig and Madych [6] showed that χT generates a

compactly supported orthonormal wavelet basis of L2(Rn) if and only if µ(T ) = 1.
We now consider generalized iterated function systems [2], [3], [5]. Following the

notation and terminology of Flaherty and Wang [5], let Cn denote the the space of all
non-empty compact subsets of Rn. Let || · || be a norm on Rn. We define the Hausdorff
metric on Cn with respect to || · || by

dH(D,D′) := max{sup
x∈D

inf
x′∈D′

‖x− x′‖ , sup
y′∈D′

inf
y∈D
‖y − y′‖}

It is well known that (Cn, dH) is a complete metric space. Now, let drH be the metric
defined on Crn, the space of all r-tuples of non-empty compact subsets of Rn, given by

drH(D,D′) := max
1≤i≤r

{dH(Di, D′i)}

Then one can show that (Crn, drH) is also a complete space. Let S denote a finite

group of matrices (in Mn(Z)) under matrix multiplication such that SBi = BiS and let
s, si ∈ S. Let Ai = siBi, 1 ≤ i ≤ r, and let Dij , 1 ≤ i, j ≤ r, be finite subsets of
Rn, with ∪rj=1Dij non-empty. Then there exist unique sets Q = (Q1, ..., Qr) ∈ Crn and

Q′ = (Q′1, ..., Q
′
r) ∈ Crn such that

Ai(Qi) = ∪rj=1(Qj + Dij), 1 ≤ i ≤ r, (1.1)

Q′i = ∪rj=1A
−1
j (Q′j + Dij), 1 ≤ i ≤ r. (1.2)

We call Q or Q′ self-affine multi-attractors ( or multi-attractors ). Let Q = ∪ri=1Qi

and the Qi are defined by (1.1). In this note we prove the following theorem for the
multi-attractor case in which we assume that |det si| = 1, i.e. S is symmetry group of
{Bi}.

Theorem 1.1 Let Dij, 1 ≤ i, j ≤ r, be finite subsets of Zn with ∪rj=1Dij non-empty.

Then µ(Q) > 0 in either of the following cases.
(i) Suppose that Ai = siBi, 1 ≤ i ≤ r, Bi are expanding matrices in Mn(Z) and for

every i ∈ {1, ..., r}, there exists j ∈ {1, ..., r} such that Dij + AiZn = Zn.

536



KIRAT

(ii) Suppose that Ai = A = sB, 1 ≤ i ≤ r, where B ∈Mn(Z) is an expanding matrix
and ∪ri=1Dij + AZn = Zn for every j ∈ {1, ..., r}.

We note that Theorem 1.1 is a generalization of a result of Bandt [1]. One can see
that the digit sets of the support of Haar-type scaling functions meet the conditions of
Theorem 1.1 (ii) (See Example in Section 2).

2. The Proof of the Main Theorem

We first state the following theorem without proof and refer to [2], [3], [5] for the
proof.

Theorem 2.1 Suppose that Ai = siBi, si ∈ S, 1 ≤ i ≤ r, where the Bi are as above
and let Dij, 1 ≤ i, j ≤ r, be finite subsets of Rn, with ∪rj=1Dij non-empty. Then there

exist unique Q = (Q1, ..., Qr) ∈ Crn and Q′ = (Q′1, ..., Q
′
r) ∈ Crn such that

(i)

Ai(Qi) = ∪rj=1(Qj + Dij), 1 ≤ i ≤ r. (2.1)

(ii)

Q′i = ∪rj=1A
−1
j (Q′j +Dij), 1 ≤ i ≤ r. (2.2)

We now introduce some terminology. We call the attractors satisfying (2.1) and (2.2)

an attractor of the first type and an attractor of the second type respectively. Let Q0 ∈ Crn
be arbitrary. If we define QN = ∪ri=1Q

N
i , where QN+1

i = A−1
i ∪rj=1 (QNj +Dij) for N ≥ 0,

one can see that QNi converges to Qi in the Hausdorff metric dH .

Note that in (i) of Theorem 2.3, if we take Ai = A, 1 ≤ i ≤ r, we get the attractors
considered in [5]. Let Dij = Di′j, 1 ≤ i′, i, j ≤ r. Additionally, if we let Dij = 1,

1 ≤ i, j ≤ r, we get attractors considered in [6]. Then we can make the following
definitions. Consider the maps Φ,Ψ : Crn → Crn whose i− th components are defined by

Φi(D) = A−1
i ∪rj=1 (Dj + Dij), (2.3)

Ψi(D) = ∪rj=1A
−1
j (Dj +Dij). (2.4)
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Then we can call {Φi} := {Φi : 1 ≤ i ≤ r} or {Ψi} := {Ψi : 1 ≤ i ≤ r} a generalized
iterated function system (GIFS). Now we can define the generalized open set condition
for a GIFS {Φi}. Let Rrn denote the space of all r-tuples of subsets of Rn. We say
that {Φi} ({Ψi}) satisfies the generalized open set condition (GOSC) if there exists a set
V = (V1, ..., Vr) ∈ Rrn, where Vi ∈ Rn, 1 ≤ i ≤ r, are non-empty open sets, such that
Φi(V ) ⊆ Vi (Ψi(V ) ⊆ Vi) ∀i ∈ {1, ..., r} with the union in (2.3) ( (2.4)) is disjoint.

Let Q be the attractor of a GIFS {Φi}. If µ(Q) > 0 and µ((Qj+Dij)∩(Q′j+Dij′)) = 0

for j 6= j′, i, j ∈ {1, ..., r}, then {Φi} satisfies the GOSC since we can take V =

(
◦
Q1, ...,

◦
Qr), where ◦ stands for interior. Self-affine tiles always satisfy the open set

condition (OSC), see [6]. The support of a Haar-type scaling function is a multi-tile and
satisfies GOSC, see [5].

Lemma 2.2 Suppose that Q ∈ Rn is a compact set such that Q + Zn = Rn. Then
µ(Q) ≥ 1.

Proof. Let f(x) :=
∑
k∈Zn

χQ(x+ k), and let Q0 := [0, 1]n. Then

µ(Q) =
∫
Rn

χQ(x)dx =
∫

∪
k∈Zn

Q0+k

χQ(x)dx =
∑
k∈Zn

∫
Q0+k

χQ(x)dx =
∑
k∈Zn

∫
Rn

χQ∩(Q0+k)(x)dx.

But we have

∫
Rn

χQ∩(Q0+k)(x)dx =
∫
Rn

χQ∩(Q0+k)(x+ k)dx

=
∫
Rn

χQ(x+ k)χQ0+k(x+ k)dx

=
∫
Rn

χQ(x+ k)χQ0 (x)dx.
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Then

µ(Q) =
∫
Rn

χQ(x)dx =
∑
k∈Zn

∫
Rn

χQ∩(Q0+k)(x)dx

=
∫
Rn

χQ0 (x)
∑
k∈Zn

χQ(x+ k)dx

=
∫
Q0

∑
k∈Zn

χQ(x+ k)dx

=
∫
Q0

f(x)dx.

Note that f(x) ≥ 1 since Q+ Zn = Rn. Then, µ(Q) =
∫
Q0

f(x)dx ≥
∫
Q0

1dx = 1. 2

Using a technique in [6], we give the following proof.

Proof of Theorem 1.1. (i) Let Q0
i = [0, 1]n, 1 ≤ i ≤ r, and Q0 = ∪ri=1Qi = [0, 1]n.

Note that [0, 1]n + Zn = Rn. Let us define QN+1 = ∪ri=1Q
N+1
i , where QN+1

i =

A−1
i ∪rj=1 (QNj + Dij). Now suppose that Qki + Zn = Rn for k ≤ N and 1 ≤ i ≤ r.

We will show that QN+1
i + Zn = Rn for 1 ≤ i ≤ r. QN+1 + Zn = ∪ri=1(QN+1

i + Zn).

QN+1
i + Zn = A−1

i ∪rj=1 (QNj +Dij) + Zn

= A−1
i ∪rj=1 (QNj +Dij +AiZn).

Now by hypothesis, Dij + AiZn = Zn for some j. By induction hypothesis, we

get QNj + Dij + AiZn = Rn for some j. Then, we get QN+1
i + Zn = Rn and hence

QN+1 + Zn = Rn.

Note that QN , N ≥ 0, converges to Q in the Hausdorff metric. We want to show that

Q + Zn = Rn. Let x ∈ Rn = QN + Zn. Then there exists a sequence of lattice points

mN such that x −mN ∈ QN . We can find a ball BR(0) containing all the QN . Thus
||x−mN || < R implies that ||mN || < ||x||+ R. Thus mN is a bounded sequence. Hence

it has a constant subsequence mNj = m. Therefore, d(x−m,Q) ≤ d(x−m,QNj) +

dH(QNj , Q) = dH(QNj , Q) implies that d(x−m,Q) ≤ lim
j→∞

dH(QNj , Q) = 0. Thus

x−m ∈ Q and it follows that Q+Zn = Rn. Then Lemma 2.2 concludes the proof of (i).
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(ii) The proof is similar to that of (i). As in the proof of (i), let Q0 = [0, 1]n so that

Q0 + Zn = Rn. Suppose that Qk + Zn = Rn for k ≤ N . By induction, we will show that

QN + Zn = Rn ∀N ∈ N and for this we only need to observe that

QN+1 + Zn =
r⋃
i=1

(QN+1
i + Zn) =

r⋃
i=1

A−1(∪rj=1(QNj + Dij)) + Zn

=
r⋃
j=1

A−1(∪ri=1(QNj + Dij)) + Zn

=
r⋃
j=1

A−1(QNj + (∪ri=1Dij + AZn))

= A−1(∪rj=1Q
N
j + Zn)

= A−1(QN + Zn)

= A−1Rn

= Rn.

The rest of the proof is the same as that of (i). 2

Example. Let A ∈ Mn(Z) be an expanding matrix and let ck ∈ Mr(Z). Suppose

that χQ := [χQ1 , χQ2 , ..., χQr]T , where Q = (Q1, ..., Qr) ∈ Crn, is a scaling function vector
satisfying the vector refinement equation

χQ =
∑
k∈Zn

ckχQ(Ax− k).

Let Dij = {k : (ck)ij = 1}. We note that for each k ∈ Zn,

(i) the matrix ck is a zero-one matrix
(ii) the matrix

bk =
∑
l∈Zn

ck+Al

is a zero-one matrix and contains exactly one entry of 1 in each column, see [Theorem
1.1, 5]. Thus one can see that for every j ∈ {1, .., r}, ∪ri=1Dij +AZn = Zn. 2

We also note that similar results to Theorem 1.1 can be obtained for attractors of the
second type, see Proposition 3.1. Now we wish to state the properties of the attractors
obtained in Theorem 1.1.
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Corollary 2.3 The attractor Q of Theorem 1.1 has the following properties:
(i) Q+ Zn = Rn and µ(Q) ≥ 1,

(ii) Qi, 1 ≤ i ≤ r, has a nonempty interior.

Proof. (i) is clear from Lemma 2.2 and the proof of Theorem 1.1. It is known that
(ii) is a consequence of (i). However, we prove it here for completeness. Let U be the
closed unit ball in Rn. Then Q+ Zn = Rn implies that U =

⋃
l∈Zn

((Q + l) ∩ U). Since U

is bounded, (Q + l) ∩ U 6= ∅ for a finite number of l ∈ Zn. Hence, U = ∪mi=1Ui, where
Ui = (Q+ li)∩U . By Baire’s Category Theorem at least one of the Ui’s has a nonempty
interior. This concludes the proof. 2

We shall be concerned with the attractors in (i) of Theorem 2.1. In [9], GOSC played
an important role in the computation of the Hausdorff dimension of the boundary of the
tiles obtained using expanding similarities. In general, GOSC is hard to check. In regard
to GOSC, we have the following corollary where # denotes the cardinality.

Corollary 2.4 Suppose that the Dij in Theorem 1.1 satisfy #∪rj=1Dij = |det Ai| := ri.

Then, µ(Q1) = µ(Q2) = ... = µ(Qr) and µ((Qj +Dij) ∩ (Qj′ +Dij′)) = 0 for j 6= j′ and

each fixed i. Thus {Φi} in (2.3) satisfies the GOSC.

Proof. Let i0 be such that µ(Qi0) = maxµ(Qi). To prove the first claim of the corollary,
we note that Ai0Qi0 = ∪rj=1(Qj + Di0j)) implies

ri0µ(Qi0) = µ(∪rj=1(Qj +Di0j)) ≤
∑r

j=1
µ(Qj + Di0j).

Thus if there were j 6= j′ such that µ(Qj) 6= µ(Qj′), we would have ri0µ(Qi0) < ri0µ(Qi0)
by the above inequality.

To prove the second claim of the corollary, we just need to observe that if µ((Qj +

Dij) ∩ (Qj′ + Dij′)) > 0 for some j 6= j′, then riµ(Qi) = µ(∪rj=1(Qj + Dij)) < riµ(Qi),

which is a contradiction. This concludes the proof. 2

3. Remarks

We note that attractors of the second type are quite difficult to handle. As far as we
know, there are a few results on them (see e.g. [10]). However, by using the technique in
Section 2, we can prove the following proposition for the attractors of the second type.
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Proposition 3.1 Suppose that Aj = sjBj , 1 ≤ j ≤ r, Bj are expanding matrices in

Mn(Z) and let Dij , 1 ≤ i, j ≤ r, be finite subsets of Zn, with ∪rj=1Dij non-empty. Suppose

that, for every i ∈ {1, ..., r}, there exists a ji ∈ {1, ..., r} such that Diji + AjiZn = Zn.
Then µ(Q) > 0, where Q = ∪ri=1Qi and the Qi are defined by (1.2)

The following proposition shows that there is a connection between the attractors of
the first type and the attractors of the second type for some special matrices.

Proposition 3.2 Let A ∈ Mn(Z) be as in Theorem 1.1(ii) and let Aj = ANj ∈ Mn(Z),

1 ≤ j ≤ r, Nj ∈ N, in (2.2). Then studying the measure properties of the attractor of the
second type

Q′i = ∪rj=1A
−1
j (Q′j +D′ij), 1 ≤ i ≤ r,

is equivalent to studying the attractor of the first type

Bi(Qi) = ∪rj=1(Qj + Dij), 1 ≤ i ≤ r.

for suitable Bi and Dij.

Proof. Let N = max{N1, ..., Nr}. Then let Bi = ANi and Dij = AN−NjD′ij . Thus, by

the uniqueness of attractors, Qi = AN−NiQ′i. This concludes the proof. 2

As a direct application of Theorem 1.1 and Proposition 3.2, we get the following result.

Corollary 3.3 Let Aj be as in Proposition 3.2. Suppose that for every i ∈ {1, ..., r},
there exists a j ∈ {1, ..., r} such that AN−NjDij + ANiZn = Zn. Then µ(Q′) > 0, where

Q′ = ∪ri=1Q
′
i and the Q′i are defined by (1.2). Furthermore, Q′ has a non-empty interior.
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