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Tangent Lines of Generalized Regular Curves

Parametrized by Time Scales

Gusein Sh. Guseinov and Emin Özyılmaz

Abstract

In this paper a generalization of the notion of regular curve is introduced. For

such curves the concept of tangent line is investigated.
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1. Introduction

In order to unify continuous and discrete analysis, by Aulbach and Hilger [5,10] was
introduced the concept of time scale (or measure chain) and the theory of calculus on
time scales. This theory has recently received a lot of attention and has proved to be
useful in the mathematical modeling of several important dynamic processes. As a result
the theory of dynamic systems on time scales is developed [7,12].

The general idea in this paper is to study curves where in the parametric equations
the parameter varies in a so –called time scale, which may be an arbitrary closed subset
of the set of all real numbers. So our intention is to use as the “differential” part of
classical Differential Geometry the time scales calculus.
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2. Preliminaries from the Time Scales Calculus

For an introduction to the theory of calculus on time scales we refer to the original
works by Aulbach and Hilger [5,10] and to the recently appeared works [1-4,6,7,9,11,12].
To meet the requirements in the next sections here we introduce the basic notions and
notations connected to time scales analysis.

A time scale ( or measure chain ) T is an arbitrary nonempty closed subset of the
real numbers R. The time scale T is a complete metric space with the metric

d (t1, t2) = |t1 − t2|.

For t ∈ T we define the forward jump operator σ : T−→T by

σ (t) = inf {s ∈ T : s > t}

while the backward jump operator ρ : T−→T is defined by

ρ (t) = sup {s ∈ T : s < t}.

In this definition we put in addition σ (maxT) = maxT if there exists a finite maxT,
and ρ (min T) = minT if there exists a finite minT. Of course both σ (t) and ρ (t)are in
T when t ∈ T. This is because of our assumption that T is a closed subset of R.

If σ (t) > t , we say that t is right-scattered, while if ρ (t) < t we say that t is left-
scattered. Also, if σ (t)= t, then t is called right-dense, and if ρ (t)= t, then t is called
left-dense.

We introduce the set Tk which is derived from the time scale T as follows. If T has
a left-scattered maximum M , then Tk = T –{M},otherwise Tk= T .

For a, b ∈ T with a ≤ b we define the interval [a, b] in T by

[a, b]={t ∈ T: a ≤ t ≤ b} .

Open intervals and half-open intervals etc. are defined accordingly. We will let [a, b]k

denote [a,ρ(b)] if b is left-scattered and denote [a, b] if b is left-dense.
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If f : T →R is a function and t ∈ Tk , then the delta derivative of f at the point t
is defined to be the number f∆(t) ( provided it exists) with the property that for each
ε > 0 there is a neighborhood U of t such that

∣∣ f(σ(t)) − f(s) − f∆(t) [σ(t) − s]
∣∣ ≤ ε | σ(t) − s | for all s ∈ U.

The following theorems either are in the references [1-7,9-12] or are not difficult to
verify.

Theorem 2.1 For f : T→R and t∈ Tk the following hold:

(i) If f is ∆- differentiable at t , then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is ∆- differentiable at t and

f∆(t) =
f(σ(t)) − f(t)

σ(t)− t .

(iii) If t is right-dense , then f is ∆-differentiable at t if and only if the limit

lim
s→t

f(t) − f(s)
t− s

exists as a finite number. In this case f∆(t) is equal to this limit.

(iv) If f is ∆ - differentiable at t , then

f(σ(t)) = f(t) + [σ(t) − t] f∆(t).

Theorem 2.2 If f,g : T → R are ∆-differentiable at t ∈ Tk, then

(i) f+g is ∆-differentiable at t and

(f + g)∆(t) = f∆(t) + g∆(t).
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(ii) For any constant c , cf is ∆-differentiable at t and

(cf)∆(t) = c f∆(t).

(iii) f.g is ∆-differentiable at t and

(f.g)∆(t) = f∆(t) g(t) + f(σ(t)) g∆(t) = f(t) g∆(t) + f∆(t)g(σ(t)).

(iv) If g(t).g(σ(t)) 6= 0, then f
g is ∆-differentiable at t and

(
f

g

)∆

(t) =
f∆(t) g(t) − g∆(t) f(t)

g(t) g(σ(t))
.

A function F : T→R is called a ∆-antiderivative of f : T→R provided F∆(t) = f(t)
holds for all t ∈Tk . Then, the Cauchy ∆- integral from a to b of f is defined by

b∫
a

f(t) ∆t = F (b) − F (a) for all a, b ∈ T.

In order to find a class of functions which possess an antiderivative, we introduce now
the set of rd-continuous functions.

Let f : T→ R be a function. We say that f is rd-continuous if it is continuous at
each right-dense point in T and lim

s→t−
f(s)exists as a finite number for all left-dense points

t∈T.The set of rd-continuous functions on a time scale T will be denoted by Crd. The set
of functions that are ∆-differentiable and whose ∆-derivative is rd-continuous is denoted
by C∆

rd.

Theorem 2.3 Rd-continuous functions possess a ∆- antiderivative.

Let T be a time scale and υ : T → R be a strictly increasing function such that
T = υ(T ) is also a time scale. By σ and ρ we denote the jump functions on T , and by ∆
we denote the derivative on T . Then

υ o σ = σ o υ and υ o ρ = ρ o υ.
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Theorem 2.4 (Chain Rule). Assume υ :T→R is strictly increasing and T = υ(T) is a
time scale. Let w : T→ R. If υ∆(t) and w∆̄(υ(t)) exist for t∈ Tk , then (woυ)∆ exists
at t and satisfies the chain rule

(w ◦ υ)∆ = (w∆̄ ◦ υ)υ∆ at t.

Theorem 2.5 (Substitution). Assume υ :T→R is strictly increasing and T = υ(T) is
a time scale. If f : T → R is an rd-continuous function and υ is ∆- differentiable with
rd-continuous ∆-derivative , then if a,b ∈T

b∫
a

f(t)υ∆(t) ∆t =

υ(b)∫
υ(a)

(f ◦ υ−1)(s)∆̄s.

3. Generalized Regular Curves. Tangent Lines of a Curve

The Euclidean scalar product of two real vectors ξ = ( ξ1, ξ2, ..., ξn) and ζ = ( ζ1, ζ2, ..., ζn)
is the number

< ξ, ζ >=
n∑
i=1

ξiζi.

The length (or norm) of a vector ξ, which we denote by ‖ξ‖ , is given by

‖ξ‖ =
√
< ξ, ξ > =

√√√√ n∑
i=1

ξ2
i .

Let T be a time scale.

Definition 3.1 A ∆-regular curve ( or an arc of a ∆-regular curve) γ is defined as a
mapping

x = f1(t), y = f2(t), z = f3(t), t ∈ [a, b] (3.1)
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of the segment [a, b] ⊂ T , a < b , to the space R3 , where f1, f2, f3 are real-valued func-
tions defined on [a, b] that are ∆-differentiable on [a, b]k with rd-continuous ∆-derivatives
and

∣∣f∆
1 (t)

∣∣2 +
∣∣f∆

2 (t)
∣∣2 +

∣∣f∆
3 (t)

∣∣2 6= 0, t ∈ [a, b]k. (3.2)

Setting

r = (x, y, z), f(t) = (f1(t), f2(t), f3(t))

we can rewrite the equations (3.1) in the vector form

r = f(t), t ∈ [a, b], (3.3)

and the condition (3.2) in the form

∥∥f∆(t)
∥∥ 6= 0, t ∈ [a, b]k. (3.4)

Definition 3.2 Let γ be a curve given in the parametric form (3.1),

P0 =(f1(t0), f2(t0), f3(t0)), t0 ∈[a, b]k , be a point on γ, and L be a line through P σ0 ,
where

P σ0 = (f1(σ(t0)), f2(σ(t0)), f3(σ(t0))).

Take on γ any point P . Denote by d the distance of the point P from the point P σ0 ,
and by δ the distance of P from the line L. If δ

d
→0 as P→ P0, P 6= P σ0 , then we say that

L is the forward tangent line to the curve γ at the point P0.

It is no difficult to see that if the curve γ has the forward tangent line L at the point
P0 , then the line PP σ0 will converge to L as P → P0 , P 6= P σ0 . Conversely, if the line
PP σ0 converges to some line as P → P0 , P 6= P σ0 , then this limiting line will be the
forward tangent line at P0. For the proof it is sufficient to note that if α is the angle
between lines L and PP σ0 , then δ

d= sinα.
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Theorem 3.1 Every ∆−regular curve γ given by (3.3) has at any point

P0 =(f1(t0), f2(t0), f3(t0)), t0 ∈[a, b]k , the forward tangent line that has the vector
f∆(t0)as its direction vector.

Proof. Suppose the curve γ has the forward tangent line L at the point P0(t0). Let
τ be a unit vector on the line L. The distance d of the point P (t) from the point P σ0 is
equal to ‖f(t) − f(σ(t0))‖. Further, the distance δ of the point P (t) from the line L is
equal to ‖[f(t) − f(σ(t0)] ∧ τ‖ , where ∧ denotes the vector product. By the definition
of the forward tangent line, we have

δ

d
=
‖ [f(t) − f(σ(t0)] ∧ τ‖
‖f(t) − f(σ(t0)‖ → 0 (t→ t0, t 6= σ(t0)).

On the other hand

‖ [f(t) − f(σ(t0))] ∧ τ‖
‖f(t) − f(σ(t0))‖ =

∥∥∥ f(t)−f(σ(t0))
t−σ(t0)

∧ τ
∥∥∥∥∥∥ f(t)−f(σ(t0))

t−σ(t0)

∥∥∥ →
∥∥f∆(t0) ∧ τ

∥∥
‖f∆(t0)‖ (t→ t0, t 6= σ(t0)).

Therefore f∆(t0) ∧τ = 0. Since f∆(t0)6=0 , it follows that the vectors f∆(t0) and
τare collinear. Thus, if the forward tangent line exists, then it has f∆(t0) as a direction
vector and therefore it is unique. 2

Conversely, let L be a line through the point P σ0 and have the vector f∆(t0) as its
direction vector. Then the line L will be the forward tangent line at the point P0. Indeed,
as above, we have

δ

d
=

∥∥∥ [f(t) − f(σ(t0)] ∧ f∆(t0)
‖f∆(t0)‖

∥∥∥
‖f(t) − f(σ(t0)‖ →

∥∥f∆(t0) ∧ f∆(t0)
∥∥

‖f∆(t0)‖2
= 0

The theorem is proved.

Remark 1 It is easy to see that in the case P0 6= P σ0 the forward tangent line at the
point P0 to the curve γ will coincide with the line through the points P0 and P σ0 .
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From Theorem 3.1 it follows that the equation of the forward tangent line at the point
P0(t0) , t0 ∈[a, b]k, to the ∆−regular curve γ given by the equation (3.1), will be

X − f1(t0)
f∆

1 (t0)
=
Y − f2(t0)
f∆

2 (t0)
=
Z − f3(t0)
f∆

3 (t0)
.

In the case of plane curve the equation of the forward tangent line is

X − f1(t0)
f∆

1 (t0)
=
Y − f2(t0)
f∆

2 (t0)
.

If a ∆-regular plane curve is given by the equation

y = f(x), x ∈ [a, b] ⊂ T,

then the equation of the forward tangent line at the point P0(x0) , x0 ∈[a, b]k , is

Y − f(x0) = f∆(x0) (X − x0).

4. Natural Parametrizations of a Curve

Let γ be a ∆−regular curve given by the equation

r = f(t), t ∈ [a, b] ⊂ T. (4.5)

Introduce the function p(t) by the formula

p(t) =
∫ t

a

∥∥r∆(s)
∥∥∆s, t ∈ [a, b]. (4.6)

Note that rd-continuity of r∆(t) implies rd- continuity of
∥∥r∆(t)

∥∥ and therefore the
integral (4.2) is well defined by Theorem 2.3.

The function p(t) is strictly increasing and continuous (in the topology of T). There-
fore p( [a, b] ) , the image of [a, b] under the map p , will be a time scale. The forward
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jump function and the delta derivative on this time scale we will denote by σ̃ and ∆̃ ,
respectively.

The variable p can be used as a parameter for the curve γ. Such a parametrization of
a curve we call natural (or intrinsic) ∆- parametrization.

By (4.2) the variable t becomes a function of p : t = t(p) . Therefore we have
r(t)= r(t(p)).

For causing no ambiguity sometimes in writing the derivative of a function, we will
indicate in subscript explicitly the parameter with respect to which the derivative is
calculated.

Theorem 4.1 In the case of natural ∆- parametrization of the curve γ the forward

tangent vector r∆̃
p is a unit vector, i.e.,

∥∥∥r∆̃
p

∥∥∥ = 1.

Proof. From (4.2) we have

p∆(t) =
∥∥r∆(t)

∥∥ > 0, t ∈ [a, b).

Therefore by chain rule (Theorem 2.4) we get

r∆
t = r∆

p p
∆
t = r∆

p

∥∥r∆
t

∥∥
and hence

r∆
p =

r∆
t∥∥r∆
t

∥∥ .
Consequently

∥∥∥r∆̃
p

∥∥∥ = 1 . The theorem is proved. 2

The authors are very grateful to the referee for critical comments on the paper.
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Received 22.06.2001

562


