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Abstract

The Viro method of construction of real algebraic varieties with prescribed
topology uses convex subdivisions of Newton polyhedra. We show that in the
case of arbitrary (not necessarily convex) subdivisions of polygons correspond-
ing to CP 2 and rational ruled surfaces Σa, a ≥ 0 the Viro method produces
pseudo-holomorphic curves. The version of the Viro method discussed in the
paper also gives a possibility to construct singular pseudo-holomorphic curves
by gluing singular algebraic curves whose collections of singularities do not per-
mit to glue these curves in the framework of the standard Viro method. As an
application, we construct a series of singular real pseudo-holomorphic curves
in CP 2 whose collections of singular points do not occur on known algebraic
curves of the same degree.

1. Introduction

The Viro method of gluing of polynomials appeared to be the most powerful construc-
tion of real algebraic varieties with prescribed topology [23, 24, 27, 28] (see also [7], 11.5,
[12, 17]). It provides a nice interaction of real algebraic geometry, toric geometry and
combinatorics, and gives rise to various generalizations and applications.

Consider an example of the Viro construction. Let Td ⊂ R2, d ∈ N, be the triangle
with vertices (0, 0), (0, d), (d, 0),

τ : Td = ∆1 ∪ ... ∪∆N

a triangulation with the set of vertices V ⊂ Z2, and σ : V → {±1} any function. Out of
this combinatorial data we construct piecewise-linear plane curves. Denote by T (1)

d , T (2)
d

and T
(3)
d the copies of Td under the reflections with respect to the coordinate axes and

the origin. Take in T (1)
d , T (2)

d and T (3)
d the triangulations symmetric to τ , and define σ at

the vertices of new triangulations by

σ(ε1i, ε2j) = εi1ε
j
2σ(i, j), (i, j) ∈ V, ε1, ε2 = ±1.
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Now in each triangle of the triangulation of Td ∪ T (1)
d ∪ T (2)

d ∪ T (3)
d , having vertices with

different values of σ, we draw the midline which separates the vertices with different signs.
The union C(τ, σ) of all these midlines is a broken line homeomorphic to a disjoint union
of circles and segments. Introduce natural maps:

Φ : Td ∪ T (1)
d ∪ T (2)

d ∪ T (3)
d → RP 2, Ψ : Int(Td ∪ T (1)

d ∪ T (2)
d ∪ T (3)

d )→ R2,

where Φ is continuous onto, identifying antipodal points on ∂(Td∪T (1)
d ∪T

(2)
d ∪T

(3)
d ), and

Ψ is a homeomorphism. The curve Φ(C(τ, σ)) ⊂ RP 2 (resp., Ψ(C(τ, σ)) ⊂ R2) is called
projective (resp., affine) T-curve of degree d.

The Viro theorem states that a projective (resp., affine) T-curve of degree d is isotopic
in RP 2 (resp., in R2) to a nonsingular algebraic projective (resp., affine) curve of degree d,
providing that the triangulation τ is convex. A subdivision ∆ = ∆1 ∪ . . . ∪ ∆N of a
convex polygon ∆ into convex polygons ∆1, . . . , ∆N is called convex, if there exists
a convex piecewise-linear function ν : ∆ → R, whose linearity domains are ∆1, . . . ,∆N

(sometimes such subdivisions are called regular or coherent; see [31, 7]). The Viro theorem,
in fact, endows the combinatorial broken line C(τ, σ) with a rich structure, which implies
a number of restrictions to the topology of C(τ, σ) (see an account of known results in
[18, 25, 26, 30]).

In a more general situation, the initial data of the Viro construction is a convex sub-
division ∆ = ∆1 ∪ . . . ∪ ∆N of a convex polygon ∆ into convex polygons ∆1, . . . , ∆N ,
and a collection Ai,j of real or complex numbers indexed by the integer points (i, j) of ∆.
The polynomials

Fi(x, y) =
∑

(i,j)∈∆i

Ai,jx
iyj , i = 1, . . . , N

are often supposed to be non-degenerate (see Section 2 for the definition). The result
of the construction is an algebraic curve with Newton polygon ∆ in the toric surface
TorC(∆) associated with ∆.

The convexity of the subdivision in the Viro method is very important. However, one
can try to perform the Viro construction using non-convex subdivisions. The result of
such a construction is not necessarily algebraic. In the present paper we restrict ourselves
to the case of curves in CP 2 and curves in rational ruled surfaces Σa, a ≥ 0, and show
that the Viro construction applied to arbitrary (i.e., not necessarily convex) subdivisions
of corresponding polygons produces pseudo-holomorphic curves. A Riemann surface M
embedded in X (where X stands for CP 2 or a rational ruled surface Σa, a ≥ 0) is
a (nonsingular) real pseudo-holomorphic curve, if it is a J-holomorphic curve in some
tame almost complex structure J on X (see [6]) such that Conj∗ ◦ J = J−1 ◦ Conj∗ and
Conj(M) = M , where Conj : X → X is the standard real structure on X (this is the
real structure of X as a real toric surface associated with a polygon). More generally,
by a (singular) real pseudo-holomorphic curve (cf. [22]) we mean the image ϕ(M) ⊂ X
of M , where ϕ : M → X is a Conj-invariant map, which embeds the complement of a
finite set K ⊂ M , the (non-compact) smooth surface ϕ(M\K) is tangent to some tame
almost complex structure J on X such that Conj∗ ◦ J = J−1 ◦ Conj∗, and for any point
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z ∈ ϕ(K) the germ of ϕ(M) at z is a bouquet of finitely many discs whose tangent cones
at z are J-invariant 2-planes. The latter holds, for instance, if the germ of ϕ(M) at z is
the image of a singular algebraic curve germ by a diffeomorphism of a small ball in C2

onto a neighborhood of z in X. Denote by RX the fixed point set of Conj. The fixed
point set RM ⊂ RX of Conj restricted to a real pseudo-holomorphic curve M is called
the real point set of M .

Fix an integer homology class h ∈ H2(X), and denote by RMh the set of nonsingular
real pseudo-holomorphic curves in X realizing the class h. On can ask for a classification
of the real point sets of curves M ∈ RMh up to isotopy in RX. This question is similar to
the first part of the Hilbert 16-th problem. It is interesting to compare two classifications.
In the case X = CP 2 the classifications coincide for the curves of degree ≤ 7 (we say that
a pseudo-holomorphic curve in CP 2 is of degree d if the curve realizes the class d[CP 1] ∈
H2(CP 2)). Recently. S. Orevkov [15] obtained a classification of the real point sets of
maximal real pseudo-holomorphic curves of degree 8 up to isotopy in RP 2 (a nonsingular
real pseudo-holomorphic curve is called maximal if its real point set has g + 1 connected
components, where g is the genus of the curve). The corresponding classification of
algebraic curves is still not completed. A real pseudo-holomorphic curve M in X is called
algebraically unrealizable if the class of RM up to isotopy (up to fiberwise isotopy if X is
a rational ruled surface) in RX cannot be represented by the real point set of an algebraic
curve realizing the same homology class [M ] ∈ H2(X). S. Orevkov and E. Shustin [14],
showed that there exist algebraically unrealizable nonsingular real pseudo-holomorphic
curves in the rational ruled surface Σ2. Nonsingular real pseudo-holomorphic curves form
a subclass of flexible curves. Flexible curves in CP 2 were introduced by O. Viro [26]. Viro
analyzed the properties of real algebraic curves used in topological proofs of restrictions,
and defined flexible curves as topological surfaces in CP 2 satisfying these properties (see
Section 3 for the definition). J.-Y. Welschinger [29] constructed a series of algebraically
unrealizable (in the same sense as above) flexible curves in rational ruled surfaces.

There exist algebraically unrealizable reducible real pseudo-holomorphic curves in CP 2

with two irreducible components, one of degree 1 and the other of degree 6 (see [4,
14]). For the moment, no example of algebraically unrealizable nonsingular real pseudo-
holomorphic curve in CP 2 is known.

The version of the Viro method discussed in the present paper produces the curves
which we call C-curves. These curves are pseudo-holomorphic but not necessarily alge-
braic. Thus, this version can be a source of examples of algebraically unrealizable real
pseudo-holomorphic curves. The first possibility to produce in this way a real pseudo-
holomorphic curve which has a chance to be algebraically unrealizable was already men-
tioned above: one can use non-convex subdivisions in the construction. Another possibil-
ity is to modify slightly the construction and glue singular polynomials whose collections
of singularities do not permit to glue these polynomials in the framework of the standard
Viro method. This possibility is illustrated in Section 5, where we construct a series of
singular real pseudo-holomorphic curves in CP 2 whose collections of singular points do
not occur on known algebraic curves of the same degree.
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The material is organized as follows. In Section 2 we present the construction of
complex and real C-curves. This construction is a particular case of the construction of
C-hypersurfaces described in [11]. We also prove that any (nonsingular) complex C-curve
in a toric surface is isotopic to a complex algebraic curve with the same Newton polygon.
The material of Section 2 is basically contained in [23]. However, our setting is a little
bit different. Section 3 is devoted to topology of real C-curves. We indicate a proof of
the fact that (nonsingular) real C-curves in CP 2 are flexible curves in the sense of [26],
and thus verify all known topological restrictions on nonsingular real algebraic curves
in CP 2 (see also [11]). In Section 4 we consider C-curves in CP 2 and in the rational
ruled surfaces Σa, a ≥ 0, introduce an appropriate pencil of pseudo-lines, and show that
any real C-curve in CP 2 or in a rational ruled surface is pseudo-holomorphic. Section 5
contains a construction of a series of singular real pseudo-holomorphic curves in CP 2.

Acknowledgements. We are very grateful to S. Orevkov for useful discussions.

2. C-curves in toric surfaces

In this section we describe the construction of C-curves. All the details and the proofs
can be found in [11], where the construction of C-hypersurfaces of any dimension is given.

2.1. Notations and definitions

Put R+ = {x ∈ R, x ≥ 0}, R∗+ = {x ∈ R, x > 0} and C∗ = {z ∈ C, z 6= 0}. Further
on the term polygon means a convex (possibly degenerate) polygon in the nonnegative
quadrant R2

+ of R2. If all the vertices of a polygon have integer coordinates, then the
polygon is called integer.

Given a complex polynomial F (z, w) =
∑

i,j Ai,jz
iwj in two variables, by ∆(F ) we

denote its Newton polygon, i.e., the convex hull of the set {(i, j) ∈ R2 : Ai,j 6= 0}. The
truncation of F on a face δ of ∆(F ) is the polynomial F δ(i, j) =

∑
(i,j)∈δAi,jz

iwj . A
polynomial F ∈ C[z, w] is called non-degenerate, if F and any truncation F δ on a proper
face δ of ∆(F ) has a nonsingular zero set in (C∗)2 (cf. [23]).

2.2. Extension of the moment map

Let ∆ be a polygon, V∆ the set of vertices of ∆, and µ∆ : (R∗+)2 → I(∆) the moment
map (see [1, 2, 5], [7], 6.1), where I(∆) is the complement in ∆ of the union of all its
proper faces :

µ∆(x, y) =

∑
(i,j)∈V∆

xiyj · (i, j)∑
(i,j)∈V∆

xiyj
. (1)

Split the complex torus (C∗)2 in the product (R∗+)2 × (S1)2:

(z, w) ∈ (C∗)2 7→ (|z|, |w|) ∈ (R∗+)2,

(
z

|z| ,
w

|w|

)
∈ (S1)2 .
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Note that the inverse map (R∗+)2 × (S1)2 → (C∗)2 naturally extends to a surjection
θ : R2

+ × (S1)2 → C2. Put

CI(∆) = θ(I(∆) × (S1)2) ⊂ C2, C∆ = θ(∆ × (S1)2) ⊂ C2 ,

and call C∆ the complexification of ∆.

Proposition 2.1. The complexification C∆ of ∆ is a (possibly singular) PL-manifold
with boundary. If the dimension of ∆ is less than 2, then C∆ is not singular. If the
dimension of ∆ is 2, then the singular set of C∆ is the union of Cv over all vertices v
of ∆ which are intersections of ∆ with coordinates axes. The real part R∆ of C∆ is the
union of ∆ with all its symmetric copies with respect to the coordinate axes.

Proof. Straightforward.

Define the extended moment map Cµ∆ : (C∗)2 → CI(∆) by

Cµ∆(xu, yv) = θ(µ∆(x, y) , (u, v)),where (x, y) ∈ (R∗+)2, (u, v) ∈ (S1)2 ,

and θ(µ∆(x, y), (u, v)) ∈ θ(I(∆) × (S1)2) = CI(∆) .

As an easy consequence of classical results we obtain the following statement.

Proposition 2.2. The map Cµ∆ is surjective and commutes with the complex conjuga-
tion Conj. It is a diffeomorphism when the dimension of ∆ is equal to 2. The real part
of CI(∆) is the image of (R∗)2.

2.3. Real and complex chart of a polynomial

Let F ∈ C[z, w] be a polynomial and ∆ a polygon. The closure CCh∆(F ) ⊂ C∆ of
the set Cµ∆({F = 0}∩ (C∗)2) is called the complex chart of the polynomial F in ∆. If F
is real then RCh∆(F ) = CCh∆(F )∩R∆ is called the real chart of F in ∆. If ∆ coincides
with the Newton polygon of F , we denote the complex and the real charts of F in ∆ by
CCh(F ) and RCh(F ), respectively.

This definition is a key ingredient of the Viro construction (see [23, 17], cf. [20, 11]).

Proposition 2.3. Let F ∈ C[z, w] be a non-degenerate polynomial. Suppose that the
Newton polygon ∆ of F has dimension 2 and ∆ ⊂ (R∗+)2. Then the set CCh(F ) is a
smooth surface with boundary ∂CCh(F ) = CCh(F ) ∩ ∂C∆. For any edge δ of ∆,

CCh(F )∩ Cδ = CCh(F δ) . (2)

If F is real, then CCh(F ) is invariant with respect to the involution of complex conjugation
Conj in C2, and RCh(F ) is a smooth curve in R∆ with boundary ∂RCh(F ) = RCh(F )∩
∂R∆.

Remark 2.1. If ∆ intersects with coordinate axes, then the statement of Proposition
2.3 holds true when substituting C∆\Sing(C∆) and R∆\Sing(C∆) for C∆ and R∆,
respectively, but we will not use this below.
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2.4. Gluing of charts

Let S be a subdivision of a 2-dimensional integer polygon ∆ ⊂ R2
+ into 2-dimensional

integer polygons : ∆ = ∆1 ∪ . . . ∪∆N (i.e., ∆i ∩∆j is empty or a common vertex or a
common edge), and let A = {Ai,j, (i, j) ∈ ∆ ∩ Z2} be a collection of complex numbers
such that Ai,j 6= 0 if (i, j) is a vertex of some ∆k, 1 ≤ k ≤ N . Further on, speaking on
subdivisions of polygons and corresponding collections of numbers, we always assume the
above properties.

Assume that the polynomials

Fk(z, w) =
∑

(i,j)∈∆k

Ai,jz
iwj , k = 1, ..., N,

are non-degenerate. The union CCh(S,A) =
⋃N
k=1 CCh(Fk) of the complex charts of the

polynomials F1, ..., FN is called a (nonsingular) C-curve in C∆. If all the numbers Ai,j
are real, the union RCh(S,A) =

⋃N
k=1 RCh(Fk) of the real charts of F1, ..., FN is called

a (nonsingular) C-curve in R∆.

Proposition 2.4. A (nonsingular) C-curve CCh(S,A) is a piecewise-smooth surface in
C∆ with boundary ∂CCh(S,A) = ∂C∆∩CCh(S,A). If all the numbers Ai,j are real, then
CCh(S,A) is invariant with respect to Conj, and the set RCh(S,A) is a piecewise-smooth
curve in R∆ with boundary ∂RCh(S,A) = ∂R∆ ∩ RCh(S,A).

Definition 2.1. A homeomorphism of (resp., an isotopy in) C∆ is called tame if for any
face δ of ∆ the restriction of this homeomorphism (resp., isotopy) to Cδ is a homeomor-
phism of (resp., an isotopy in) Cδ. In addition, we call such objects equivariant if they
commute with Conj.

Remark 2.2. For given ∆ and S, and different A,A′ : ∆∩Z2 → C, the corresponding C-
curves CCh(S,A) and CCh(S,A′) are tame isotopic in C∆ (not equivariantly, in general).
Indeed, one can connect A and A′ by a family At, t ∈ [0, 1] such that the polynomials
Fk,t are non-degenerate for all k = 1, ..., N , t ∈ [0, 1].

2.5. C-curves in toric surfaces and Viro theorem

Let ∆ ⊂ R2
+ be an integer polygon, and F be a non-degenerate polynomial with Newton

polygon ∆. Denote by TorC(∆) the toric surface corresponding to ∆, and by Z(F ) the
algebraic curve in TorC(∆) defined by F .

Represent TorC(∆) as the closure of the surface

{(ziwj)(i,j)∈∆∩Z2 : (z, w) ∈ (C∗)2} ⊂ CP n−1 ,

where n = #(∆ ∩ Z2) (see, for example [5]). Define a map ν∆ : C∆ → TorC(∆) in the
following way. First, put ν∆

∣∣
CI(∆)

= (Cµ∆)−1. Note that ν∆

∣∣
CI(∆)

is a diffeomorphism
of CI(∆) and (C∗)2 ⊂ TorC(∆). Then extend ν∆

∣∣
CI(∆)

to ∂C∆. Namely, given an
edge or a vertex δ of ∆ and a point Cµδ(z, w) ∈ CI(δ), where (z, w) ∈ (C∗)2, we put
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ν∆(Cµδ(z, w)) = (ai,j)(i,j)∈∆∩Z2 , where

ai,j = ziwj, (i, j) ∈ δ, ai,j = 0, (i, j) ∈ ∆\δ .

Proposition 2.5. The map ν∆ is equivariant, continuous and surjective, and one has
ν∆(CCh(F )) = Z(F ).

Definition 2.2. In the notation of Section 2.4, given a subdivision ∆ = ∆1 ∪ . . . ∪∆N

and a collection of complex numbers A = {Ai,j : (i, j) ∈ ∆ ∩ Z2}, define a (nonsingular)
C-curve with Newton polygon ∆ in TorC(∆) as

TCCh(S,A) = ν∆(CCh(S,A)) ⊂ TorC(∆) .

If all the numbers Ai,j are real, the corresponding C-curve is called real and its real part
ν∆(RCh(S,A)) is denoted by TRCh(S,A).

Proposition 2.6. A (nonsingular) C-curve TCCh(S,A) with Newton polygon ∆ is a
closed piecewise-smooth surface in TorC(∆). This surface is invariant with respect to the
involution of complex conjugation Conj in TorC(∆) if all the numbers in A are real.

In [11] the statement corresponding to Proposition 2.6 is formulated and proved only
in the case of projective spaces (and not for arbitrary projective toric varieties). However,
the proof given in [11] automatically extends to the case of projective toric surfaces.

Definition 2.3. A homeomorphism of (resp., an isotopy in) TorC(∆) is called tame if its
restriction to TorC(δ) is a homeomorphism of (resp., an isotopy in) of TorC(δ) for any edge
or vertex δ of ∆. In addition, we call homeomorphisms of (resp., isotopies in) TorC(∆)
equivariant if they commute with the involution of complex conjugation Conj of TorC(∆).

Remark 2.3. Similarly to Remark 2.2, two C-curves in TorC(∆) with the same Newton
polygon ∆ and with the same subdivision S of ∆ are tame isotopic in TorC(∆) (not
equivariantly, in general).

Definition 2.4. A subdivision ∆ = ∆1 ∪ . . . ∪ ∆N of a polygon ∆ is called convex if
there exists a piecewise-linear convex function µ : ∆→ R whose domains of linearity are
the polygons ∆1, . . . ,∆N .

Theorem 2.7 (Complex Viro theorem, see [23]). In the notation of Section 2.4, let S be
a convex subdivision of an integer polygon ∆ into 2-dimensional integer polygons, and
µ : ∆ → R a convex piecewise-linear function certifying the convexity of S. Then, for
sufficiently small positive t, the curve in TorC(∆) given by the polynomial

Ft(z, w) =
∑

(i,j)∈∆

Ai,jt
µ(i,j)ziwj,

is nonsingular, and TCCh(S,A) is tame isotopic in TorC(∆) (equivariantly, if all the
numbers in A are real) to TCCh(Ft).

33



ITENBERG, SHUSTIN

2.6. Topology of C-curves

Proposition 2.8 (see [11]). Any C-curve M in TorC(∆) is isotopic to a close smooth
surface Msm in TorC(∆). If M is real, the surface Msm can be chosen Conj-invariant, and
the isotopy can be made equivariant. The tangent bundle of a Conj-invariant smoothing
Msm of a real C-curve M is equivariantly isotopic to a Conj-invariant bundle of complex
lines by an isotopy preserving the tangent bundle to the real part of Msm.

Proposition 2.9 (see [11]). Let two subdivisions S = {∆k, k = 1, ..., N} and S′ =
{∆kl, l = 1, ..., rk, k = 1, ..., N} of an integer polygon ∆ into 2-dimensional integer
polygons satisfy

∆k =
rk⋃
l=1

∆kl, k = 1, ..., N,

so that the subdivision S′ is given by piecewise-linear function µ : ∆ → R, whose re-
strictions µk = µ

∣∣
∆k

, k = 1, ..., N , are convex. Then the C-curves CCh(S,A) and
CCh(S′,A′) are tame isotopic, provided A,A′ : ∆ → C define non-degenerate polyno-
mials Fk, Fkl, l = 1, ..., rk, k = 1, ..., N . Similarly, TCCh(S,A) and TCCh(S′,A′) are
tame isotopic in TorC(∆).

A subdivision ∆ = ∆1 ∪ ... ∪ ∆N of an integer polygon ∆ into integer polygons is
called maximal if it cannot be refined to another subdivision of ∆ into integer polygons.
In this case all the integral points in ∆ are vertices of ∆1, ...,∆N, and these polygons are
triangles of area 1/2.

Corollary 2.10. Given an integer polygon ∆, any C-curve in C∆ is tame isotopic to a
C-curve constructed out of a maximal subdivision of ∆. The same is true for C-curves
in TorC(∆).

Proof. Let ∆ = ∆1∪ . . .∪∆N be a subdivision of ∆ into integer polygons, and f : ∆→ R
be a smooth convex function. Define a piecewise-linear function µ : ∆ → R as follows:
put µ(i, j) = f(i, j), where (i, j) ∈ ∆∩Z2, then define the graph of µ

∣∣
∆k

to be the “lower”
part of the convex hull of {(i, j, µ(i, j) : (i, j) ∈ ∆k}. The function µ defines a maximal
subdivision of ∆ inscribed into the initial subdivision and satisfying the conditions of
Proposition 2.9, which completes the proof.

Corollary 2.11 (cf. [11]). Given an integer polygon ∆, any C-curve in C∆ is tame iso-
topic (not equivariantly, in general) to an algebraic curve in C∆ with Newton polygon ∆.

Proof. By Corollary 2.10 we can assume that a C-curve in C∆ is constructed out of a
maximal triangulation of ∆. We will transform any given triangulation into a convex
triangulation, so that in each transformation step the conditions of Proposition 2.9 hold
true.

Let S be a triangulation of ∆, and O a vertex of ∆. Denote by O(S) the star of O in S.
We construct a triangulation S′ of ∆ such that O(S′) ⊃ O(S) and O(S′) 6= O(S). Then,
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in finitely many steps we come to O(S) = ∆, which corresponds to a convex triangulation,
and the required statement will follow from Theorem 2.7 and Proposition 2.9.

Let O, P1, ..., Pr be all the vertices of O(S) numbered successively clockwise along
∂O(S). Any segment [Pi, Pi+1] either lies on ∂∆, or is an edge of a unique triangle
Ti ∈ S, Ti 6⊂ O(S).

(i) Assume that, for some i = 1, ..., r, the vertex Q 6= Pi, Pi+1 of Ti lies in the sector
between the rays [OPi) and [OPi+1), and Q 6∈ [OPi) ∪ [OPi+1) (see Figure 1a). Then
we change the triangulation of ∆ as shown in Figure 1b,c. These changes satisfy the
conditions of Proposition 2.9 and lead to a triangulation with a strongly greater star of
O.

(ii) Assume that, for some i = 1, ..., r− 1, Ti = Ti+1, i.e., the vertices of the latest
triangle are Pi, Pi+1, Pi+2 (see Figure 1d). Then we perform the transformation shown in
Figure 1e, once again increasing the star of O.

(iii) Assume that there are no triangles Ti as in (i), (ii). Then any triangle Ti is either
“left”, i.e., the vertex Q lies in the sector between [OP1) and [OPi), or “right”, i.e., Q
lies in the sector between [OPi+1) and [OPr). If there exist “left” triangles, consider the
“left” triangle Ti with the minimal i. If i = 1, we have the situation shown in Figure
1f. Then we change the triangulation as shown in Figure 1g, increasing the star of O.
If i > 1, then the triangle Ti−1 must be “right”, which means that we have a situation
shown in Figure 1h. Then we change the triangulation as shown in Figure 1i, increasing
the star of O.

2.7. Singular C-curves

The construction of C-curves described in Sections 2.1 - 2.5 can be performed even
if the polynomials involved in the construction are not non-degenerate. Introduce the
following definition. A polynomial F ∈ C[z, w] is called non-degenerate on the boundary,
if any truncation F δ on a proper face δ of the Newton polygon ∆(F ) of F has a nonsingular
zero set in (C∗)2 (cf. with the definition of a non-degenerate polynomial in Section 2.1).
One can define a complex chart in ∆F of a polynomial which is non-degenerate on the
boundary (and its real chart in ∆F if the polynomial is real) exactly in the same way as in
Section 2.3. The charts of polynomials which are non-degenerated on the boundary can be
glued in the same way as in Section 2.4. Namely, let S be a subdivision of a 2-dimensional
integer polygon ∆ ⊂ R2

+ into 2-dimensional integer polygons : ∆ = ∆1 ∪ . . . ∪∆N , and
let A = {Ai,j, (i, j) ∈ ∆ ∩ Z2} be a collection of complex numbers such that Ai,j 6= 0 if
(i, j) is a vertex of some ∆k, 1 ≤ k ≤ N . Assume that the polynomials

Fk(z, w) =
∑

(i,j)∈∆k

Ai,jz
iwj , k = 1, ..., N,

are non-degenerate on the boundary, and that at least one of these polynomials is not
non-degenerate. The union CCh(S,A) =

⋃N
k=1CCh(Fk) of the complex charts of the

polynomials F1, ..., FN is called a singular C-curve in C∆. If all the numbers Ai,j are
real, the union RCh(S,A) =

⋃N
k=1RCh(Fk) of the real charts of F1, ..., FN is called a
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singular C-curve in R∆. We define a singular C-curve with Newton polygon ∆ in TorC(∆)
as TCCh(S,A) = ν∆(CCh(S,A)) ⊂ TorC(∆).

We have two propositions which are completely similar to Propositions 2.4 and 2.6.

Proposition 2.12. A singular C-curve CCh(S,A) is a singular surface in C∆ with
boundary ∂CCh(S,A) = ∂C∆ ∩ CCh(S,A). The only singular points of CCh(S,A)
are those of CCh(Fk), k = 1, . . . , N . If all the numbers in A are real, then CCh(S,A)
is invariant with respect to Conj, and the set RCh(S,A) is a (possibly singular) curve in
R∆ with boundary ∂RCh(S,A) = ∂R∆ ∩ RCh(S,A).

Proposition 2.13. A singular C-curve TCCh(S,A) is a singular surface in TorC(∆).
The only singular points of TCCh(S,A) are the images under ν∆ of the singular points
of CCh(Fk), k = 1, . . . , N . This surface is invariant with respect to the involution of
complex conjugation Conj in TorC(∆) if all the numbers in A are real.

Further on, we will continue to use the term C-curve for nonsingular C-curves, and
will use the term singular C-curve for singular ones.

3. Topology of real C-curves

It follows from Corollary 2.11 that the genus of a C-curve with Newton polygon ∆
in TorC(∆) coincides with the genus g(∆) of a nonsingular algebraic curve with Newton
polygon ∆ in TorC(∆) (the number g(∆) is equal to the number of integer points lying
strongly inside of ∆). Thus, we have the following statement.

Proposition 3.1 (Harnack inequality for C-curves). For a real C-curve M with Newton
polygon ∆ in TorC(∆), one has the inequality b0(RM) ≤ g(∆) + 1, where b0(RM) is the
number of connected components of RM .

We formulate other topological properties of real C-curves only in the case when
TorC(∆) is the projective plane. If ∆ is the triangle with vertices (0, 0), (d, 0) and (0, d),
then a C-curve with Newton polygon ∆ in TorC(∆) is called a C-curve of degree d in
CP 2.

Let M be an oriented smooth connected closed surface in CP 2. Then M is called a
flexible curve of degree d (see [26]) if
• it realizes d[CP 1] ∈ H2(CP 2),
• the genus of M is equal to (d− 1)(d− 2)/2,
• M is invariant under the complex conjugation,
• the field of tangent planes to M on M ∩RP 2 can be equivariantly deformed to the

field of lines in CP 2 tangent to M ∩ RP 2.
According to Proposition 2.8 and Corollary 2.11 a Conj-invariant smoothing of a real

C-curve of degree d in CP 2 is a flexible curve of degree d. Thus, all the restrictions
on the topology of flexible curves are applicable to real C-curves. We formulate here in
the framework of real C-curves the principal known restrictions on flexible curves. An
extensive list of restrictions to the topology of flexible curves can be found in [26].
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Let us start with definitions. The standard definitions applicable to real algebraic
curves can be naturally extended to real C-curves. A real C-curve A of degree d in CP 2 is
called an M -curve or maximal if RA has (d−1)(d−2)/2+1 connected components. A real
C-curve A of degree d in CP 2 is called an (M − i)-curve if RA has (d−1)(d−2)/2 +1− i
connected components. A connected component of the real part of a real C-curve of
degree d in CP 2 is called an oval if it divides RP 2 into two parts. The part homeomorphic
to a disk is called the interior of the oval. All the connected components of the real part
of a real C-curve of an even degree in CP 2 are ovals. Exactly one connected component
of the real part of a real C-curve of an odd degree in CP 2 is not an oval. This component
is called nontrivial. An oval is even (resp., odd) if it lies inside of an even (resp., odd)
number of other ovals of the curve. The numbers of even and odd ovals of a curve are
denoted by p and n, respectively. The Euler characteristic of a connected component of
the complement in RP 2 of the real part of a real C-curve is called the characteristic of
an oval bounding the component from outside. A component of the complement in RP 2

of the real part of a real C-curve is said to be even if each of its inner bounding ovals
contains inside an odd number of ovals.

Theorem 3.2. • Harnack inequality. The number of connected components of the
real part of a real C-curve of degree d in CP 2 is at most (d− 1)(d− 2)/2 + 1.

• Gudkov-Rokhlin congruence. For a maximal real C-curve of degree 2k in CP 2, one
has

p− n ≡ k2 mod 8.

• Gudkov-Krakhnov-Kharlamov congruence. Let A be a real C-curve of degree 2k
in CP 2. If A is an (M − 1)-curve, then

p− n ≡ k2 ± 1 mod 8.

• Strengthened Petrovsky inequalities. For a real C-curve A of degree 2k in CP 2,
one has

p− n− ≤ 3k(k − 1)
2

+ 1, n− p− ≤ 3k(k − 1),

where p− (resp., n−) is the number of even (resp., odd) ovals of RA with negative
characteristic.

• Strengthened Arnold inequalities. For a real C-curve A of degree 2k in CP 2, one
has

p− + p0 ≤ k2 − 3k + 3 + (−1)k

2
, n− + n0 ≤ k2 − 3k + 2

2
,

where p0 (resp., n0) is the number of even (resp., odd) ovals of RA with character-
istic 0.

• Extremal properties of strengthened Arnold inequalities. For a real C-curve of
degree 2k in CP 2, one has
p− = p+ = 0, if k is even and p− + p0 = (k2 − 3k + 4)/2,
n− = n+ = 0, if k is odd and n− + n0 = (k2 − 3k+ 2)/2.
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A real C-curve A in CP 2 is said to be of type I if its real part RA divides A into
two parts; otherwise, the curve is of type II. For a curve A of type I, the orientations of
two halves of A \ RA induce on RA two opposite orientations which are called complex
orientations. Note that a real C-curve A is of type I if and only if all the algebraic curves
used in the construction of A are of type I and complex orientations on the real parts of
these curves can be chosen in such a way that they induce an orientation of RA.

A pair of ovals of the real part of a real C-curve in CP 2 is injective if one of these ovals
is inside of the other one. A collection of ovals is called a nest if any two of them form
an injective pair. An injective pair of ovals of a real C-curve is positive (resp., negative)
if the complex orientations of the ovals can be induced (resp., cannot be induced) from
some orientation of the annulus bounded by the ovals. Take an oval of a real C-curve
of type I and of an odd degree in CP 2, and consider the Möbius band which is the
complement in RP 2 of the interior of the oval. The oval is called positive (resp., negative)
if the integer homology class realized in the Möbius band by the oval equipped with a
complex orientation differs in sign (resp., coincides) with the class of the doubled nontrivial
component equipped with the complex orientation.

Theorem 3.3. • Klein congruence. Let A be a real C-curve of type I in CP 2. If A
is an (M − i)-curve, then i ≡ 0 mod 2.

• Arnold congruence. For a real C-curve of type I and of degree 2k, one has

p− n ≡ k2 mod 4 .

• Rokhlin-Mishachev formulae. For a real C-curve A of type I and of degree 2k
in CP 2, one has

2(Π+ −Π−) = l− k2,

where l is the number of ovals of RA, and Π+ and Π− are the numbers of positive
and negative injective pairs, respectively. For a real C-curve A of type I and of
degree 2k + 1 in RP 2, one has

2(Π+ − Π−) + Λ+ − Λ− = l − k(k + 1),

where Λ+ and Λ− are the numbers of positive and negative ovals, respectively.
• Kharlamov- Marin congruence. Let A be a real C-curve of degree 2k in CP 2. If A

is an (M − 2)-curve and p− n ≡ k2 + 4 mod 8, then A is of type I.
• Rokhlin inequalities. Let A be a real C-curve of type I and of degree 2k in CP 2.

If k is even, then 4ν+p−n ≤ 2k2−6k+8, where ν is the number of odd nonempty
exterior bounding ovals of even components of RP 2 \ RA.

If k is odd, then 4π + n − p ≤ 2k2 − 6k + 7, where π is the number of even
nonempty exterior bounding ovals of even components of RP 2 \ RA.

• Extremal properties of strengthened Arnold inequalities. Let A be a real C-curve
of degree 2k in CP 2.

If k is even and p− + p0 = (k2 − 3k + 4)/2, then A is of type I.
If k is odd and n− + n0 = (k2 − 3k + 2)/2, then A is of type I.
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The Harnack inequality in the case of real C-curves constructed using a maximal tri-
angulation was, first, proved in [10] and then in a different way in [8]. Rokhlin-Mishachev
formulae in the case of real C-curves constructed using a maximal triangulation was
proved in [16].

It is interesting that one restriction on real C-curves is not proved in the case of flexible
curves:

if A is a real C-curve of degree d in CP 2, then the sum of the depths of any two nests
of RA is at most d/2.

In the case of real algebraic curves this statement is known as Hilbert’s theorem and
is an immediate corollary of the Bézout theorem. For real C-curves constructed out of
trinomials, the restriction was proved in [3]. In general, for real pseudo-holomorphic
curves, the statement follows from the results of [6].

There are examples of C-curves beyond the range of known algebraic curves: using
non-convex triangulations F. Santos [19] constructed T-curves in RP 2 whose number of
even ovals is greater than in the best known algebraic examples of the same degree.
Corollary 4.5 in the next section shows that, as any real C-curve in the projective plane,
the curves constructed in [19] are pseudo-holomorphic.

4. Pencils of lines and pseudo-holomorphic structure on C-curves

4.1. Refinement

Let ∆ be an integer polygon, and [a, b] its projection on the horizontal coordinate axis.
A vertex of ∆ is called h-extremal if it is the only preimage of a or the only preimage of
b in the above projection.

Let T : ∆ = ∆1∪...∪∆N be a subdivision of ∆ into integer polygons. We define a new
subdivision T ref of ∆ which we call the horizontal refinement of T . Denote by V the set
of vertices of the polygons ∆1, ...,∆N, by E0 the set of vertical edges of ∆1, ...,∆N and by
E the set of the other edges of polygons ∆1, ...,∆N. Consider continuous piecewise-linear
functions defined on [a, b] whose graphs are unions of edges belonging to E, and denote
by P the set of graphs of these functions. For any v ∈ V and e ∈ E, put

P(v) = #{Γ ∈ P : v ∈ Γ}, P(e) = #{Γ ∈ P : e ⊂ Γ} .
Fix a sufficiently small positive number ε and replace each edge e ∈ E by the union ẽ of
2P(e) parallel translates of e in the following way:
• if e ⊂ ∂∆ then

ẽ = {e, trε(e), . . . , trP(e)−1
ε (e)} ,

or
ẽ = {e, tr−ε(e), . . . , trP(e)−1

−ε (e)} ,
where trδ is the translation by the vector (0, δ), and the sign is chosen so that all
new edges intersect ∆;

• if e does not belong to the boundary ∂∆ of ∆ then

ẽ = {tr2P(e)−1
−ε/2 (e), tr2P(e)−3

−ε/2 (e), . . . , tr−ε/2(e), trε/2(e), . . . , tr2P(e)−1
ε/2

(e)} .
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All the endpoints of the edges belonging to Ẽ =
⋃
e∈E ẽ and their intersection points lie

in small neighborhoods of the vertices of T . For any vertex v in V , we choose such a closed
neighborhood in the form of a rectangle R1

v with vertical and horizontal sides. Choosing
ε smaller if necessary, we can suppose that no edge which belongs to Ẽ intersects the
horizontal sides of R1

v (see Figure 2(a)). Put R2
v = R1

v ∩∆.
The intersection points of the edges belonging to Ẽ with the vertical sides of R2

v is
called marked points. If v = (i, j), a < i < b, then on the vertical sides of R2

v we take the
minimal segments s1, s2 containing all the marked points, and put R3

v to be the convex
hull of the union of s1, s2 and the intersection points of R2

v with vertical edges of T
adjacent to v (see Figure 2(b)). Note that the number of marked points on s1 and s2 is
the same and equal to 2P(v). Then we subdivide R3

v by non-intersecting lines joining the
respective marked points on s1 and s2 (see Figure 2(c)). If the obtained subdivision of
R3
v contains triangles, then we remove the sides of these triangles lying inside of R3

v (see
Figure 2(d)).

If R2
v has a vertical edge s1 ⊂ ∂∆ (see Figure 3(a)), we take the minimal segment s2

on the other vertical side of R2
v, which contains all the intersection points with the edges

belonging to Ẽ. Then put R3
v to be the convex hull of s1 and s2 (see Figure 3(b)), and

subdivide R3
v by horizontal lines through marked points on s2 (see Figure 3(c)). If the

obtained subdivision of R3
v contains triangles, then we remove the sides of these triangles

lying inside of R3
v (see Figure 3(d)).

If R2
v is a triangle, then v is its vertex and is an h-extremal vertex of ∆. In this case put

R3
v = R2

v and subdivide it into triangles by joining marked points with v (see Figure 4).
Now define the horizontal refinement T ref of ∆ into the following convex polygons:

• the polygons of the subdivisions of R3
v, v ∈ V , introduced above;

• the (closures of the) complements in ∆\
⋃
v∈V R

3
v to the edges from E0 ∪ Ẽ.

An example of horizontal refinement is shown in Figure 5.
The following statement accumulates the key properties of the horizontal refinement.

Lemma 4.1. (i) For any k = 1, ..., N there is exactly one element ∆ref
k of T ref such

that ∆ref
k ⊂ ∆k and ∆k\∆ref

k lies in a small neighborhood of ∂∆k. Furthermore, for any
vertex v of ∆k, the polygon ∆ref

k has exactly two vertices in a small neighborhood of v.
(ii) For any edge e ∈ E there are exactly 2P(e)−1 elements of T ref which are congruent

parallelograms each one with a pair of sides parallel and close to e.
(iii) The elements of T ref which are not mentioned in (i) and (ii) lie in

⋃
v∈V R

3
v.

(iv) Each polygon in T ref , which does not contain an h-extremal vertex of ∆, has
exactly two vertical edges; each polygon in T ref , which contains an h-extremal vertex of
∆, is a triangle with one vertical edge.

The proof is straightforward from the construction (see Figures 2, 3 and 4).

The subdivisions of ∆ into convex (not necessary integer) polygons which satisfy the
property (iv) in Lemma 4.1 will be called h-subdivisions.
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Figure 2. Refinement of a subdivision in a neighborhood of a vertex
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Figure 3. Case when v belongs to a vertical edge of ∆
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Figure 4. Case when v is h-extremal

Figure 5. Example of horizontal refinement

4.2. S2-bundles over CP 1 associated with h-subdivisions

Now we impose an extra condition on ∆. We assume that ∆ ⊂ (R∗+)2 and that ∆ is
• either an integer quadrangle which has two vertical sides, one horizontal side and

one side with a nonnegative integer slope m,
• or an integer triangle with one horizontal side of length d and one vertical side of

length d.
Let S be an h-subdivision of ∆, and Λ the (toric part of the) pencil of straight lines

{y = const} in (C∗)2.

Lemma 4.2. (1) Let δ be a polygon of the subdivision S which has vertical edges σ1 and
σ2. Then the charts CChδ(L) of lines L ∈ Λ are disjoint and lie in CI(δ)∪CI(σ1)∪CI(σ2).
Any chart CChδ(L) is homeomorphic to a cylinder whose boundary consists of one circle
in CI(σ1) and one circle in CI(σ2).
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(2) Let σ be a non-vertical edge of S with vertices v1 and v2. Then the charts CChσ(L),
L ∈ Λ, are homeomorphic to cylinders whose boundary consists of one circle in Cv1 and
one circle in Cv2. The charts of lines {y = c1}, {y = c2} coincide if c1/c2 ∈ R, and are
disjoint otherwise.

(3) Let δ′ and δ′′ be two polygons of S with a common vertical side s. Then, for any
line L ∈ Λ, the charts CChδ′(L) and CChδ′′(L) intersect along their common boundary
component in CI(s). Similarly, for a pair of non-vertical edges δ′ and δ′′ of S with a
common vertex v and any line L ∈ Λ, the charts CChδ′(L) and CChδ′′(L) intersect along
their common boundary component in CI(v).

(4) Let ∆ be a triangle with h-extremal vertex v, and δ ∈ S be a triangle with vertex v
and vertical edge σ. Then the charts CChδ(L), L ∈ Λ, are homeomorphic to cylinders
whose boundary consists of one circle in Cσ and one circle in Cv. The charts of lines
{y = c1}, {y = c2} intersect along the common boundary circle in Cv if c1/c2 ∈ R, and
are disjoint otherwise.

The proof Lemma 4.2 is straightforward from the definitions and statements of Sec-
tion 2.

If ∆ is a quadrangle, denote by σ1 and σ2 its vertical sides in such a way that σ1 is
not shorter than σ2. If ∆ is a triangle, denote by σ1 its vertical side. Let σ′1 be the
projection of σ1 to the vertical coordinate axis. This projection extends to the projection
π1 : Cσ1 → Cσ′1, defining, in fact, a splitting Cσ1 = Cσ′1 × S1.

Lemma 4.3. If ∆ is a quadrangle, there exists a surjective piecewise-smooth map π :
C∆→ Cσ′1 such that

(i) π
∣∣
σ1

= π1,
(ii) all fibers of π are unions of charts of lines L ∈ Λ in the complexifications of

polygons of S, and are homeomorphic to cylinders with boundary circles in Cσ1,Cσ2.
If ∆ is a triangle with an h-extremal vertex v, there exists a surjective piecewise-smooth

map π : (C∆\Cv)→ Cσ′1 such that
(i) π

∣∣
σ1

= π1,
(ii) any fiber of π is a union of the complements to Cv of the charts of some line L ∈ Λ

in the complexifications of polygons of S, and is homeomorphic to cylinder S1 × [0,∞)
with boundary circle in Cσ1; the closure of a fiber of π has one more boundary circle in
Cv.

Proof. Assume that ∆ is a quadrangle. Let s ⊂ σ1 be an edge of the subdivision S. Then,
there exists a unique sequence of polygons δ1, ..., δr ∈ S such that
• s is a side of δ1,
• for any i = 1, ..., r− 1, the polygons δi and δi+1 have a common vertical side,
• one of the vertical sides of δr belongs to σ2.

Pick a point p in CI(s), and consider the point p′ = π1(p) in CI(σ′1). According to
Lemma 4.2, there exists a uniquely defined line L ∈ Λ such that p ∈ CChδ1(L). Note
that p′ does not depend on the choice of p in CChδ1(L) ∩ Cσ1. Again according to
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Lemma 4.2, the union
⋃r
i=1CChδi(L) is a piecewise-smooth cylinder. We denote it by

Πp. Put π(Πp) = p.
Let v ∈ σ1 be a vertex of S. Then, there exists a unique sequence of non-vertical edges

δ1, ..., δr ∈ T such that

• v is a vertex of δ1,
• for any i = 1, ..., r− 1, the edges δi and δi+1 have a common vertex,
• one of the vertices of δr belongs to σ2.

Similarly, pick a point p in Cv, and consider the point p′ = π1(p) and the line L ∈ Λ such
that p ∈ CChδ1(L). Once again p′ does not depend on the choice of p in CChδ1(L)∩Cσ1 .
According to Lemma 4.2, the union

⋃r
i=1CChδi(L) is a piecewise-smooth cylinder. Again

we denote it by Πp and put π(Πp) = p.
The case of triangular ∆ can be treated similarly.

For the case of quadrangular ∆, we have constructed a trivial fibration C∆ → Cσ′1
whose fibers are cylinders. The map ν∆ : C∆ → TorC(∆) factors ∂C∆ by an S1-action.
The toric surface TorC(∆) is isomorphic to the rational ruled surface Σm, i.e., to the space
of a CP 1-bundle over CP 1 with self-intersection −m of the base section. Now we note
that ν∆ takes Cσ1 to TorC(σ1) = TorC(σ′1) = CP 1, and takes each fiber Πp into a sphere
S2, contracting the boundary components into points. At last, we observe that the fibers
Πp, p ∈ ∂Cσ′1 are identified by ν∆ so that the induced fibration πS : TorC(∆) = Σm →
TorC(σ′1) = CP 1 defines an S2-bundle with self-intersection −m of the base section E

def=
TorC(σ1) ⊂ TorC(∆). In addition, this fibration commutes with the complex conjugation.
Hence there exists an equivariant piecewise-smooth homeomorphism TorC(∆) → Σm
which takes the fibration πS to the standard one.

For the case of triangular ∆, we have a trivial fibration C∆\Cv → Cσ′1 with fibers
whose closures in C∆ are cylinders. The map ν∆ : C∆ → TorC(∆) = CP 2 factors ∂C∆
by an S1-action. Then ν∆ takes Cσ1 to TorC(σ1) = TorC(σ′1) = CP 1, and takes the
closures of all fibers Πp into spheres S2 , which pass through the point z0 = TorC(v) and
are disjoint in CP 2\{z0}. One can easily see that these spheres represent a generator of
H2(CP 2), and thus, intersect with multiplicity 1 at z. Hence there exists an equivariant
piecewise-smooth homeomorphism TorC(∆) → CP 2 which takes the pencil of the above
spheres to the pencil of straight lines through z0.

4.3. Horizontal refinement of a C-curve and pseudo-holomorphic structure

Let ∆ be a polygon as in section 4.2, X = TorC(∆), and T : ∆ = ∆1 ∪ . . . ∪∆N a
subdivision of ∆ into integer polygons. Choose a collection {Ai,j : (i, j) ∈ ∆ ∩ Z2} of
real numbers such that Ai,j 6= 0 if (i, j) is a vertex of one of the polygons ∆1, . . . ,∆N ,
and the polynomials

Fk(x, y) =
∑

(i,j)∈∆k∩Z2

Ai,jx
iyj , k = 1, ..., N,
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are non-degenerate on the boundary. This data defines a (may be, singular) C-curve M
in the surface X.

Consider the horizontal refinement T ref of T . We define a new surface M ref ⊂ X as
follows. For any k = 1, ..., N , we take the chart CCh∆ref

k
(Fk), and for any non-vertical

edge σ of ∆k, k = 1, ..., N , and any parallelogram δ ∈ T ref with sides parallel and close
to σ, we take the chart CChδ(F σk ). At last, we define

Mref = ν∆

(
N⋃
k=1

CCh
∆ref
k

(Fk) ∪
⋃
δ

CChδ(F δk )

)
⊂ X .

Denote by Π(X) the family of (the closures of) the fibers of the fibration on X, defined
by the subdivision Tref as in Section 4.2.

Lemma 4.4. (1) The set Mref is a surface with finitely many singular points in X and
is equivariantly isotopic to M .

(2) There is a finite set K ⊂ Π(X) such that, any fiber Πp ∈ Π(X)\K intersects with
Mref exactly at d points, where d is the length of the projection of ∆ on the horizontal
coordinate axis. Moreover, all these intersection points are transverse and positive with
respect to the naturally induced orientations of Πp and Mref .

(3) If ∆ is triangular, then Mref does not pass through z0. If ∆ is quadrangular, then
Mref intersects with E exactly at l points, where l is the length of σ2. Moreover, all these
intersections are transverse and positive with respect to the natural orientations of E and
Mref .

Proof. (1) By construction, Mref is the union of surfaces with boundary. The surfaces
which correspond to adjacent polygons of the subdivision T ref are glued along their
boundary components. Singular points of Mref correspond to singular points of Fk,
k = 1, . . . , N .

The construction of the refinement T ref depends on the small parameter ε > 0 in the
following way. If ε tends to 0, then
• each polygon ∆ref

k tends to ∆k, k = 1, ..., N , so that, for any vertex v ∈ ∆k the
pair of the vertices of ∆ref

k in a small neighborhood of v tends to v;
• each parallelogram σ with a pair of edges parallel and close to a non-vertical edge e

of the subdivision T tends to e so that the vertices of σ tend pairwise to the vertices
of e.

Hence, for any k = 1, ..., N , the moment map Cµ∆ref
k

: (C∗)2 → C∆ref
k ↪→ C2 uniformly

converges to Cµ∆k : (C∗)2 → C∆k ↪→ C2. Furthermore, for any non-vertical edge e of
∆k, 1 ≤ k ≤ N , and a parallelogram σ with a pair of edges s1, s2 parallel and close
to e, the moment maps Cµsi : (C∗)2 → Csi ↪→ C2, i = 1, 2, uniformly converge to
Cµe : (C∗)2 → Ce ↪→ C2, and the chart CChsi(F ek ) is the product of CChe(F ek ) with a
segment, which contracts to a point as ε → 0. This altogether gives an isotopy of Mref

and M in Σm.
(2) Denote by K the finite subset of Π(X) corresponding to
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• the projections of the vertices of the subdivision T ref in the side σ1,
• the projections of the boundary components in Cσ1 of the charts (with respect to

the subdivision T ref) of all non-generic lines.

The following observations immediately imply the second statement of Lemma. Any
generic line L ∈ Λ intersects with the curve {Fk = 0} ⊂ (C∗)2 at lh(∆k) points, where
lh denotes the length of the projection of ∆k on the horizontal coordinate axis, and all
the intersections are transversal. Similarly, for any non-vertical edge e ⊂ ∆k, any line
L ∈ Λ intersects with the curve {F ek = 0} at lh(e) points, and all the intersections are
transversal.

(3) The last statement of Lemma immediately follows from the construction.

Corollary 4.5. There exists a complex structure on X and an equivariant isotopy of X,
preserving the lines of Π(X), which deforms M into a real pseudo-holomorphic curve.

Proof. First, we deform M into Mref , then choose on X a complex structure such that
the fibers of Π(X) are complex straight lines. Then we transform the complex structure
on X and Mref as follows.

If X = CP 2, let U, V , V ⊂ U be small open tubular neighborhoods of some straight
line L ∈ Π(X). If X = Σm, let U, V , V ⊂ U be small open tubular neighborhoods of the
union of E and one of the lines L ∈ Π(X). Since the intersections of Mref with L and E
are transverse and positive, one can equivariantly deform the complex structure of X in
U , preserving the complex lines L ∈ Π(X), so that Mref ∩ V will become holomorphic.

In neighborhoods of singular points of Mref we deform the complex structure of X
into that defined by the corresponding (extended) moment maps.

Notice that in the (finitely many) non-singular points of Mref , where the intersec-
tion with lines of Π(X) is not transverse, the surface Mref has corners. Furthermore,
these intersections are of multiplicity 2. We smooth up Mref in neighborhoods of these
points and deform locally the complex structure of X to make Mref holomorphic in these
neighborhoods.

In X\(L ∪ E) ' C2, the surface Mref is represented as a graph of a multivalued
function f = f(z, z) : C → C with finitely many poles, ramification and singular points
(cf. [13], section 5.3, [4], section 4.1). Then the argument of [4], section 4.1, shows
how to construct a tame almost complex structure in X in which Mref becomes pseudo-
holomorphic. Indeed, the key observation in this argument is the uniform boundedness of
|∂f/∂z|, which immediately follows from the fact that, by construction, Mref is holomor-
phic in a neighborhood of infinity and in neighborhoods of the singular and ramification
points.

Remark 4.1. Corollary 4.5 remains true if we remove the condition ∆ ∈ (R∗+)2 in the
description of ∆ given in Section 4.2 (i.e., if ∆ ∈ (R+)2).
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5. Example

We construct an infinite series of singular pseudo-holomorphic curves in the projective
plane with collections of singular points which do not occur on known algebraic curves of
the same degree.

Proposition 5.1. For any integer d ≥ 3 and any positive integer k such that k ≤ N(d) =
[ d

2−2d−3
5 ], there exists an irreducible singular real pseudo-holomorphic curve of degree d

in CP 2 with k real singular points of type A3 as only singularities.

Remark 5.1. (1) It is not known if there exist irreducible algebraic curves of degree d in
the plane with N(d) singularities A3, but we would like to point out that N(d) singular
points of type A3 on an algebraic curve of degree d would be dependent since each singular
point of type A3 imposes 3 conditions and the dimension of the space of curves of degree
d is d(d+ 3)/2.

(2) The Hirano construction [9] produces a series of real algebraic curves of degrees d =
22r+1 with 4(24r−1)/5 = (d2−4)/5 singular points of typeA3. This is even greater than in
our examples. However, these curves are reducible (at least four components), and almost
all their singular points are imaginary. One can smooth out some of these singularities
and obtain irreducible symplectic curves of these special degrees with d2/5+O(d) singular
points of type A3.

Proof. Given d ≥ 3, we take a subdivision of the triangle Td with vertices (0, 0), (d, 0),
(0, d) into convex lattice polygons ∆1, . . . ,∆N and take polynomials F1, . . . , FN ∈ R[x, y]
with Newton polygons ∆, ...,∆N, respectively, such that
• each polynomial Fk, k = 1, . . . , N is non-degenerate on the boundary,
• F σi = F σj for any edge σ = ∆i ∩∆j, i 6= j,
• each curve {Fk = 0}, k = 1, . . . , N is either non-singular in (C∗)2, or has one

singular point of type A3 in (R∗)2.
This data defines a singular real C-curve with singular points of type A3, which is pseudo-
holomorphic according to Corollary 4.5.

First, we naturally cover the plane by parallel translates of the polygons δ1, δ2 shown
in Figure 6(a,b), then take the part of this tilling consisting of polygons lying entirely
inside Td, and, finally, complete the subdivision of Td by complementary convex polygons
(see Figure 6(c)).

Observe that the polynomial

F (x, y) = (4x− y2)(x+ 1− y) = 4x2 + 4x− 4xy − xy2 − y2 + y3

has Newton polygon δ1, is non-degenerate on the boundary, and defines a curve {F = 0}
with one singular point of type A3 in (R∗)2 and without other singular points in (C∗)2.
Respectively, the polynomial G(x, y) = x2y3F (x−1, y−1) has Newton polygon δ2, is non-
degenerate on the boundary, and defines a curve {G = 0} with one singular point of type
A3 in (R∗)2 and without other singular points in (C∗)2.
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(a) (b)

(c)

δ1 δ2

3

3

3

3

d

d

Figure 6. Construction of singular C-curve with many tacnodes

If ∆k is a parallel translate of δ1, then put Fk(x, y) = (−1)qxpy5qF (x, y) choosing
p and q in such a way that ∆k would be the Newton polygon of Fk. Similarly, if ∆k

is a parallel translate of δ2, then put Fk(x, y) = (−1)q+1xpy2+5qG(x, y) choosing p and
q in such a way that ∆k would be the Newton polygon of Fk. Finally, consider the
triangles and quadrangles of the subdivision one by one, and for each of them choose a
non-degenerate polynomial which has given triangle or quadrangle as Newton polygon
and which is coherent with all already chosen polynomials (including the polynomials
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whose Newton polygons are parallel translates of δ1 and δ2). One can easily check that
F σi = F σj for any edge σ = ∆i ∩∆j, i 6= j.

Notice that the singular C-curve obtained has two (complex) components. Indeed,
the curve {F = 0} (and similarly, {G = 0}) consists of two components, a line and a
conic. The chart of the line intersects with the complexification of the edges [(0, 2), (0, 3)],
[(0, 3), (1, 2)], and [(1, 0), (2, 0)], and the chart of the conic intersects with the complex-
ification of the edges [(0, 2), (1, 0)], [(1, 2), (2, 0)]. Since the curves corresponding to the
polygons of the subdivision, which are not translates of δ1, δ2, are nonsingular in (C∗)2, we
conclude that one component of our singular C-curve contains the charts of all the lines
and all the conics, except for the conics corresponding to the translates of δ1 along the
horizontal axis. To make the singular C-curve constructed irreducible we replace the poly-
nomial, corresponding to δ1 as an element of the subdivision, by F ′(x, y) = F (x, y) +λxy
with generic λ which defines an irreducible curve.

Finally, note that the number of singular points of type A3 on our singular C-curve is
N(d). In a similar way one can construct for any positive integer k ≤ N(d) an irreducible
singular pseudo-holomorphic curve of degree d in CP n with k real points of type A3 as
only singularities.

Remark 5.2. The subdivision of Td used in the proof of Proposition 5.1 is convex. How-
ever, we do not automatically get an algebraic curve which is isotopic to the curve con-
structed, since the version of the Viro theorem adapted to construction of singular al-
gebraic curves (see [21]) requires the independence of conditions imposed by all singular
points.
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763, vol. 1992-93, Novembre 1992.
[18] V. A. Rokhlin, Complex topological characteristics of real algebraic curves. Russ. Math.

Surveys 33 (1978), no. 5, 85-98.
[19] F. Santos, Improved counterexamples to the Ragsdale conjecture. Preprint, Universidad de

Cantabria, 1994.
[20] E. Shustin, Topology of real plane algebraic curves. In: Proc. Intern. Conf. Real Algebraic

Geometry, Rennes, June 24-29 1991, Lect. Notes Math. 1524, Springer, 1992, pp. 97-109.
[21] E. Shustin, Gluing of singular and critical points. Topology 37 (1998), no. 1, 195-217.
[22] J.-C. Sikorav, Singularities of J-holomorphic curves. Math. Z. 226 (1997), 359-373.
[23] O. Viro, Gluing of algebraic hypersurfaces, smoothing of singularities and construction of

curves. In: Proc. Leningrad Int. Topological Conf., Leningrad, Aug. 1982, Nauka, Leningrad,
1983, pp. 149-197 (Russian).

[24] O. Viro, Gluing of plane real algebraic curves and construction of curves of degrees 6 and 7.
In: Lect. Notes Math. 1060, Springer, 1984, pp. 187-200.

[25] O. Viro, Real plane curves of degrees 7 and 8: new prohibitions. Math. USSR Izvestia 23
(1984), 409-422.

[26] O. Viro, Progress in the topology of real algebraic varieties over the last six years. Rus. Math.
Surv. 41 (1986), no. 3, 55-82.

[27] O. Viro, Real algebraic plane curves: constructions with controlled topology. Leningrad Math.
J. 1 (1990), 1059-1134.

[28] O. Viro, Patchworking real algebraic varieties. Preprint, Uppsala University, 1994.
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