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Abstract

We compute certain 1-point genus-0 Gromov-Witten invariants of the Hilbert
scheme of points on a simply-connected smooth projective surface.

1. Introduction

The Hilbert scheme X[n] of points in a smooth projective surface X is the set of length-
n 0-dimensional closed subschemes of X. On one hand, X[n] is the moduli space of rank-1
torsion free sheaves V on X such that the first and second Chern classes of V are equal
to 0 and n respectively. It is the simplest one among the moduli spaces of rank-r stable
vector bundles (or sheaves in general) on a projective surface, which are isomorphic to
the moduli spaces of anti-self-dual Yang-Mills connections on some principle bundles over
X. Mathematicians as well as physicists showed great interest in these moduli spaces.
One area of interest is the Gromov-Witten invariants of the Hilbert scheme X[n]. On the
other hand, the Hilbert scheme X[n] is smooth [Fo1]. Hence it is the desingularization of
the n-th symmetric product X(n) of X. In fact, the Hilbert-Chow map

ρ : X[n] → X(n). (1)

sending an element in X[n] to its support in X(n) is a crepant resolution of the orbifold
X(n). Recently, Ruan [Ru2] formulated some conjecture on the relation between the
cohomology rings of crepant resolutions of orbifolds and the orbifold cohomology rings of
the orbifolds themselves. It turns out that the Gromov-Witten invariants of the crepant
resolutions appear in a very interesting way in Ruan’s conjecture. In this paper, we
shall compute the 1-point Gromov-Witten invariants of X[n] with respect to some special
degree-2 homology cycles on X[n]. Our result partially verifies Ruan’s conjecture for the
crepant resolution ρ : X[n] → X(n).

Throughout the paper, we assume that X is a simply-connected smooth projective
surface. An element in X[n] is represented by a length-n 0-dimensional closed sub-
scheme ξ of X. Let x1, . . . , xn−1 ∈ X be distinct but fixed points. Let M2(x1) =
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{ξ ∈ X[2] | Supp(ξ) = {x1}} be the punctual Hilbert scheme parametrizing length-2 0-
dimensional subschemes supported at x1. It is known that M2(x1) ∼= P1. Let βn be the
smooth rational curve in X[n] defined by{

ξ + x2 + . . .+ xn−1 ∈ X[n] | ξ ∈M2(x1)
}
. (2)

Clearly, the curve βn is mapped to a point by the Hilbert-Chow map ρ.
Let d be a positive integer, and let M0,1(X[n], dβn) be the moduli space of 1-point

stable maps µ : (D; p)→ X[n] from a genus-0 nodal curve D with one marked point p to
X[n] such that µ∗(D) is homologous to dβn. A point in M0,1(X[n], dβn) is denoted by
[µ : (D; p)→ X[n]]. The expected complex dimension of the moduli space M0,1(X[n], dβn)
is given by

d = −KX[n] · dβn + dimX[n] − 3 + 1 = 2n− 2. (3)

Here we used the fact that KX[n] · βn = 0 since the canonical class KX[n] of X[n] is the
pullback of a divisor on X(n) via the Hilbert-Chow map.

Take a cohomology class α ∈ H4n−4(X[n],C). Consider the evaluation map

ev1 : M0,1(X[n] , dβn)→ X[n], ev1([µ : (D; p)→ X[n]]) = µ(p) (4)

Let [M0,1(X[n], dβn)]vir be the virtual fundamental class. The main result of the paper
is the computation of the 1-point Gromov-Witten invariant

〈α〉0,dβn
def=
∫

[M0,1(X[n],dβn)]vir
ev∗1(α). (5)

We refer to Theorem 3.5 for the detailed statement of the main result.
Our motivation for computing the 1-point Gromov-Witten invariant (5) comes from the

above-mentioned Ruan’s conjecture for a crepant resolution ρ : Y → Z of an orbifold Z.
An essential ingredient in Ruan’s conjecture is the quantum corrections which are related
to the 3-point Gromov-Witten invariants 〈α1, α2, α3〉0,β in which β 6= 0 and ρ∗(β) =
0. In our case, the symmetric product X(n) is an orbifold, and the Hilbert-Chow map
ρ : X[n] → X(n) is a crepant resolution of X(n). Moreover, if β 6= 0 and ρ∗(β) = 0
for some β ∈ H2(X[n] ;Z), then necessarily β = dβn for some positive integer d. Even
though it remains to be a challenge to compute all the 3-point Gromov-Witten invariants
〈α1, α2, α3〉0,dβn for X[n] at the present time, we are able to perform computations in some
special cases. In particular, we are successful in computing all the 1-point Gromov-Witten
invariants 〈α〉0,dβn . Our Theorem 3.5 partially verifies Ruan’s conjecture for the crepant
resolution ρ : X[n] → X(n). We remark that when n = 2, all the 3-point Gromov-Witten
invariants of X[2] can be reduced to 1-point Gromov-Witten invariants of X[2]. Indeed,
our result for n = 2 has been used by Ruan [Ru2] to verify his conjecture for the crepant
resolution ρ : X[2] → X(2) of the symmetric product X(2).

The key step in computing the 1-point Gromov-Witten invariants 〈α〉0,dβn is to de-
termine the obstruction bundle over the moduli space M0,1(X[n], dβn). Even though the
curves homologous to dβn in X[n] are complicated, when we compute 〈α〉0,dβn , we only
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need to deal with those stable maps [µ : (D; p)→ X[n]] such that µ(D) is of the form (2).
Using the earlier work [LQZ] concerning rational curves of degree-1 in X[n], we are able
to determine the obstruction bundle over a Zariski open subset of M0,1(X[n], dβn), which
is sufficient for us to compute 〈α〉0,dβn .

Finally, this paper is organized as follows. In section two, we review Gromov-Witten
invariants and virtual fundamental classes. In addition, we discuss some basics of the
Hilbert scheme X[n], and determine a basis ofH4(X[n],C) by using the results of Göttsche,
Grojnowski, and Nakajima [Got, Gro, Nak]. In section three, we study the obstruction
bundle, and prove Theorem 3.5.

2. Preliminaries

In this section, we shall review the notions of stable maps and Gromov-Witten invari-
ants. In addition, we shall recall some basic facts and notations for the Hilbert scheme of
points on a smooth projective surface.

2.1. Stable maps and Gromov-Witten invariants

Let Y be a smooth projective variety. An k-point stable map to Y consists of a
complete nodal curve D with k distinct ordered smooth points p1, . . . , pk and a morphism
µ : D → Y such that the data (µ,D, p1, . . . , pk) has only finitely many automorphisms.
In this case, the stable map is denoted by [µ : (D; p1, . . . , pk)→ Y ]. For a fixed homology
class β ∈ H2(Y,Z), let Mg,k(Y, β) be the coarse moduli space parameterizing all the stable
maps [µ : (D; p1, . . . , pk) → Y ] such that µ∗[D] = β and the arithmetic genus of D is g.
Then, we have the evaluation map:

evk : Mg,k(Y, β)→ Y k (6)

defined by evk([µ : (D; p1, . . . , pk) → Y ]) = (µ(p1), . . . , µ(pk)). It is known [F-P, LT1,
LT2, B-F] that the coarse moduli space Mg,k(Y, β) is projective and has a virtual funda-
mental class [Mg,k(Y, β)]vir ∈ Ad(Mg,k(Y, β)) where

d = −(KY · β) + (dim(Y )− 3)(1− g) + k (7)

is the expected complex dimension of Mg,k(Y, β), and Ad(Mg,k(Y, β)) is the Chow group
of d-dimensional cycles in the moduli space Mg,k(Y, β).

The Gromov-Witten invariants are defined by using the virtual fundamental class
[Mg,k(Y, β)]vir . Recall that an element α ∈ H∗(Y,C)def=

⊕2 dimC(Y )
j=0 Hj(Y,C) is homoge-

neous if α ∈ Hj(Y,C) for some j; in this case, we take |α| = j. Let α1, . . . , αk ∈ H∗(Y,C)
such that every αi is homogeneous and

k∑
i=1

|αi| = 2d. (8)

55



LI, QIN

Then, we have the k-point Gromov-Witten invariant defined by:

〈α1, . . . , αk〉g,β =
∫

[Mg,k(Y,β)]vir
ev∗k(α1 ⊗ . . .⊗ αk). (9)

Next, we summarize certain properties concerning the virtual fundamental class. To
begin with, we recall that the excess dimension is the difference between the dimension
of Mg,k(Y, β) and the expected dimension d in (7). Let TY stand for the tangent sheaf of
Y . For 0 ≤ i < k, we shall use

fk,i : Mg,k(Y, β)→Mg,i(Y, β) (10)

to stand for the forgetful map obtained by forgetting the last (k − i) marked points and
contracting all the unstable components. It is known that fk,i is flat when β 6= 0 and
0 ≤ i < k. The following can be found in [LT1, Beh, Get, C-K, LiJ].

Proposition 2.1. Let β ∈ H2(Y,Z) and β 6= 0. Let e be the excess dimension of
Mg,k(Y, β), and M ⊂Mg,k(Y, β) be a closed subscheme. Then,

(i) [Mg,k(Y, β)]vir = (fk,0)∗[Mg,0(Y, β)]vir;
(ii) [Mg,k(Y, β)]vir = ce(R1(fk+1,k)∗(evk+1)∗TY ) if R1(fk+1,k)∗(evk+1)∗TY is a rank-e

locally free sheaf over the moduli space Mg,k(Y, β);
(iii) [Mg,k(Y, β)]vir|M = ce((R1(fk+1,k)∗(evk+1)∗TY )|M) if there exists an open subset

U of Mg,k(Y, β) such that M ⊂ U (i.e, U is an open neighborhood of M) and the restriction
(R1(fk+1,k)∗(evk+1)∗TY )|U is a rank-e locally free sheaf over U.

2.2. Basic facts on the Hilbert scheme of points on a surface

Let X be a simply-connected smooth projective surface, and X[n] be the Hilbert scheme
of points in X. An element in X[n] is represented by a length-n 0-dimensional closed
subscheme ξ of X. For ξ ∈ X[n], let Iξ be the corresponding sheaf of ideals. In X[n]×X,
we have the universal codimension-2 subscheme:

Zn = {(ξ, x) ⊂ X[n] ×X | x ∈ Supp (ξ)} ⊂ X[n] ×X. (11)

In X[n−1] ×X[n], we have the 2n-dimensional smooth incidence subscheme:

X[n−1,n] = {(ξ, η) ∈ X[n−1] ×X[n] | Iξ ⊃ Iη}. (12)

For a subset Y ⊂ X, we define the subset Mn(Y ) in the Hilbert scheme X[n]:

Mn(Y ) = {ξ ∈ X[n]| Supp(ξ) is a point in Y } ⊂ X[n]. (13)

In particular, for a fixed point x ∈ X, Mn(x) is just the punctual Hilbert scheme of points
on X at x. It is known that the punctual Hilbert schemes Mn(x) are isomorphic for all
the surfaces X and all the points x ∈ X.

The definitions and properties of the maps listed below can be found in [E-S].
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Notation. There exist various morphisms:

fn : X[n−1,n] → X[n−1] with fn(ξ, η) = ξ.

gn : X[n−1,n] → X[n] with gn(ξ, η) = η.

ψn : X[n−1,n] → Zn with ψn(ξ, η) =
(
η, Supp(Iξ/Iη)

)
.

q : X[n−1,n] → X with q(ξ, η) = Supp(Iξ/Iη).

Convention: Let V be an n-dimensional vector space. We use P(V ) to denote the set of
1-dimensional quotients of the vector space V .

Theorem 2.2. (see [E-S]) Adopt the above notations.
(i) The morphism ψn : X[n−1,n] → Zn is canonically isomorphic to the projectification

P(ωZn)→ Zn where ωZn is the dualizing sheaf of Zn;
(ii) The morphism (fn, q) : X[n−1,n] → X[n−1] × X is canonically isomorphic to the

blowing-up of X[n−1] ×X along Zn−1. The exceptional locus is

En = {(ξ, η) ∈ X[n−1,n] | Supp(ξ) = Supp(η) and ξ ⊂ η}; (14)

Let ξ ∈ X[n−k] and η ∈ X[k]. If Supp(ξ)∩ Supp(η) = ∅, then we use ξ+ η to represent
the closed subscheme ξ ∪ η in X[n]. Similarly, given a subvariety Y of X[n−k] and a point

η ∈ X[k] such that

( ⋃
ξ∈Y

Supp(ξ)

)
∩Supp(η) = ∅, we use Y +η to represent the subvariety

in X[n] consisting of all the points ξ + η with ξ ∈ Y .
Next, we review some results on homology groups of the Hilbert scheme X[n] due to

Göttsche [Got], Grojnowski [Gro], and Nakajima [Nak]. Their results say that the space

H def=
∞⊕
n=0

4n⊕
k=0

Hk(X[n],C) is an irreducible highest weight representation of the Heisenberg

algebra generated by a−n(α), n ∈ Z, α ∈ H∗(X,C) def=
4⊕

k=0

Hk(X,C). Moreover, |0〉 def= 1 ∈

H0(X[0],C) = C is a highest weight vector. It follows that the space H is a linear
span of elements of the form a−n1(α1) . . .a−nk(αk)|0〉 where k ≥ 0, n1, . . . , nk > 0,
and α1, . . . , αk ∈ H∗(X,C). The geometric interpretation of a−n1(α1) . . .a−nk(αk)|0〉
for homogeneous classes α1, . . . , αk ∈ H∗(X,C) can be understood as follows. For i =
1, . . . , k, let αi ∈ H|αi|(X,C) be represented by a cycle Ai such that A1, . . . , Ak are in
general position. Then,

a−n1(α1) . . . a−nk(αk)|0〉 ∈ Hm(X[n],C) (15)
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where n =
k∑
i=1

ni andm =
k∑
i=1

(2ni−2+|αi|). In addition, up to a scalar, a−n1(α1) . . .a−nk(αk)|0〉

is represented by the closure of the real-
k∑
i=1

(2ni − 2 + |αi|)-dimensional subset:

{ξ1 + . . .+ ξk ∈ X[n]|ξi ∈Mni(Ai), Supp(ξi) ∩ Supp(ξj) = ∅ for i 6= j} (16)

where Mni(Ai) is the subset of X[ni] defined by (13).
We shall write down the bases of the homology groups H2(X[n],C) and H4(X[n] ,C)

in terms of the Heisenberg operators. The following definition introduces some special
homology classes in H2(X[n] ,C) and H4(X[n],C).

Definition 2.1. Let x ∈ X, and C and C̃ be real-2-dimensional submanifolds of X.
Then, we define the following homology classes:

βC = a−1(C)a−1(x)n−1|0〉
βn = a−2(x)a−1(x)n−2|0〉

sn,1 = a−1(X)a−1(x)n−1|0〉
sn,2 = a−2(x)a−2(x)a−1(x)n−4|0〉
sn,3 = a−3(x)a−1(x)n−3|0〉
sC,1 = a−1(C)a−2(x)a−1(x)n−3|0〉
sC,2 = a−2(C)a−1(x)n−2|0〉
sC, eC = a−1(C)a−1(C̃)a−1(x)n−2|0〉.

Next, we discuss geometric representations of the above homology classes. First of
all, we note from (15) that βC , βn ∈ H2(X[n] ,C) and sn,1, sn,2, sn,3, sC,1, sC,2, sC, eC ∈
H4(X[n],C). For η ∈ X[n−1] with Supp(η) ∩ C = ∅, we see from (16) that

βC ∼ C + η

where the symbol “A1 ∼ A2” means that A1 and A2 are homologous as homology classes.
Similarly, for x ∈ X and η ∈ X[n−2] with x 6∈ Supp(η), we have

βn ∼M2(x) + η. (17)

For x1, x2 ∈ X and η ∈ X[n−4] satisfying x1 6= x2 and x1, x2 6∈ Supp(η),

sn,2 ∼M2(x1) +M2(x2) + η. (18)

For x ∈ X and η ∈ X[n−3] with x 6∈ C ∪ Supp(η) and Supp(η) ∩ C = ∅, we get

sn,3 ∼M3(x) + η, (19)

sC,1 ∼ C +M2(x) + η. (20)
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For a fixed η ∈ X[n−2] satisfying Supp(η) ∩ C = ∅, we have

sC,2 ∼M2(C) + η. (21)

For η = x1 + . . .+ xn−1 ∈ X[n−1] where x1, . . . , xn−1 are distinct, we obtain

sn,1 ∼ “the closure of (X\ Supp(η)) + η in X[n]”. (22)

Alternatively, consider the following commutative diagram:

X̃η ⊂ X[n−1,n] gn−→ X[n]y y(fn, q)

η ×X ⊂ X[n−1] ×X
(23)

where X̃η stands for the strict transform of η × X. By Theorem 2.2 (ii), (fn, q) is the
blowup of X[n−1]×X along Zn−1. So X̃η is isomorphic to the blowup of X at the (n−1)
distinct points x1, . . . , xn−1. Moreover, gn| eXη : X̃η → gn(X̃η) is an isomorphism and

gn(X̃η) is precisely the closure of (X\ Supp(η))+η in the Hilbert scheme X[n]. So in view
of (22), we conclude that

sn,1 ∼ gn(X̃η). (24)

Note that the (n− 1) exceptional curves in the surface gn(X̃η) are

M2(xi) + (η\{xi}), i = 1, . . . , n− 1. (25)

Finally, choose η ∈ X[n−2] such that Supp(η) ∩ (C ∪ C̃) = ∅. Then according to (16),
when C and C̃ are in general position, sC, eC is the closure of the subset

{x+ x̃+ η| x ∈ C, x̃ ∈ C̃, and x 6= x̃} ⊂ X[n]. (26)

Lemma 2.3. Assume that n ≥ 2 and X is simply-connected. Let {α1, . . . , αs} be a basis
of H2(X,C) represented by real surfaces {C1, . . . , Cs} respectively. Then,

(i) a basis of H2(X[n],C) consists of the homology classes βn, βC1 , . . . , βCs ;
(ii) a basis of H4(X[n],C) consists of the homology classes sn,1, sn,2, sn,3, sCi,1 (i =

1, . . . , s), sCi,2 (i = 1, . . . , s), and sCi,Cj (i, j = 1, . . . , s).

Proof. We shall only prove (ii) since similar argument works for (i).
Fix a point x ∈ X. Expand the basis {α1, . . . , αs} of H2(X,C) to the basis {α0 =

x, α1, . . . , αs, αs+1 = X} of H∗(X,C) = H0(X,C) ⊕ H2(X,C) ⊕ H4(X,C). By (15), a
basis of H4(X[n],C) consists of

a−n1(αm1 ) . . .a−nk(αmk )|0〉 (27)

satisfying ni ≥ 1,
k∑
i=1

ni = n, and
k∑
i=1

(2ni − 2 + |αmi |) = 4. Note that since X is simply-

connected, |αmi | ∈ {0, 2, 4} for every i. Also, ni ≤ 3 for every i.
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First of all, suppose that ni = 3 for some i. From
k∑
i=1

(2ni − 2 + |αmi|) = 4, we see

that such an i is unique and nj = 1 for j 6= i. Moreover, |αmj | = 0 for every j, i.e.,

αmj = α0 = x for every j. Since
k∑
i=1

ni = n, we have k = (n − 2). So in view of

Definition 2.1, the homology class (27) is sn,3.
In the following, we assume that ni ≤ 2 for every i. Then, ni = 2 for at most two i’s.

Suppose ni = 2 for two i’s, say, n1 = n2 = 2. Then, nj = 1 for j 6= 1, 2, k = (n− 2), and
|αmj | = 0 for every j. So the homology class (27) is sn,2.

Next, suppose ni = 2 for exactly one i (and nj = 1 for j 6= i), say, n1 = 2 (and nj = 1
for j 6= 1). Then, |αmi0 | = 2 for some i0 and |αmj | = 0 for j 6= i0. Thus, the homology
class (27) is sCm1 ,2

if i0 = 1, and sCm1 ,1
if i0 > 1.

Finally, assume ni = 1 for every i. Then, k = n and
k∑
i=1

|αmi| = 4. If |αmi0 | = 4 for

some i0 and |αmj | = 0 for j 6= i0, then the homology class (27) is sn,1. The remaining
case is when |αmi0 | = |αmi1 | = 2 for some i0 and i1 with i0 6= i1, and |αmj | = 0 for
j 6= i0, i1. In this case, the homology class (27) is sCmi0

,Cmi1
.

Next, we recall certain results proved in section 4 of [LQZ].

Theorem 2.4. (see [LQZ]) Let n ≥ 2, and X be simply-connected.
(i) A curve γ in X[n] is homologous to βn if and only if γ = fn+1(C) where C is a line

in the projective space (ψn+1)−1(η, x) for some (η, x) ∈ Zn+1. Moreover, in this case, the
point (η, x) and the line C are uniquely determined by γ;

(ii) Let M(βn) be the moduli space of all the curves in the Hilbert scheme X[n] homol-
ogous to βn. Then, M(βn) has dimension (2n− 2), and its top stratum consists of all the
points corresponding to curves of the form (2);

(iii) Let γ be the curve of the form (2). Then, its normal bundle in X[n] is

Nγ⊂X[n]
∼= O⊕(2n−2)

γ ⊕Oγ(−2). (28)

3. The 1-point Gromov-Witten invariants 〈α〉0,dβn of X[n]

In this section, we shall compute all the 1-point Gromov-Witten invariants 〈α〉0,dβn of
X[n] for n ≥ 2 and d ≥ 1. One of the key steps is to determine the obstruction bundle
over a Zariski open subset of the moduli space M0,0(X[n], dβn).

3.1. The obstruction bundle

We start with some notations. Let Sn be the symmetric group of n letters, and
| Supp(ξ)| be the number of points in Supp(ξ). Recall from (1) the Hilbert-Chow map
ρ : X[n] → X(n) = Xn/Sn, where Xn is the Cartesian product of n copies of X. Let
σ : Xn → X(n) be the natural quotient map.
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Notation. Put X[n]
∗ = {ξ ∈ X[n] | | Supp(ξ)| ≥ n− 1} and

X
(n)
∗ = ρ(X[n]

∗ ),

Xn
∗ = σ−1(X(n)

∗ ),

B = {ξ ∈ X[n] | | Supp(ξ)| < n},
B∗ = {ξ ∈ X[n] | | Supp(ξ)| = n − 1},

X
(n)
s∗ = ρ(B∗),

∆n∗ = σ−1(ρ(B)) ∩Xn
∗ =

∐
1≤i<j≤n

∆i,j
n∗

where ∆i,j
n∗ = {(x1, . . . , xi, . . . , xj, . . . , xn) ∈ Xn

∗ | xi = xj} for 1 ≤ i < j ≤ n.

When we compute the 1-point Gromov-Witten invariants 〈α〉0,dβn , onlyX[n]
∗ is involved

in most of the cases. Even though X[n] is very complicated, the open subset X[n]
∗ has a

very simple description given below (see [Fo2]). Let X̃n
∗ be the blow up of Xn

∗ along the
big diagonal ∆n∗. The action of Sn on Xn

∗ lifts to an action on X̃n
∗ and X

[n]
∗ = X̃n

∗ /Sn.
Let σ̃ : X̃n

∗ → X
[n]
∗ be the quotient map. Let Ei,j∗ ⊂ X̃n

∗ be the exceptional locus over
∆i,j
n∗. Consider the following morphisms:

p1,2 : ∆1,2
n∗ −→ X, (x, x, x3, . . . , xn)→ x, (29)

j2 : X(n)
s∗ −→ X, 2x+ x3 + . . .+ xn → x. (30)

Since the normal bundle of ∆1,2
n∗ in Xn

∗ is isomorphic to p∗1,2TX , we have E1,2
∗ ∼= P(p∗1,2T

∗
X).

The subgroup S2 × Sn−2 ⊂ Sn acts on ∆1,2
n∗ with the S2-factor acting trivially on ∆1,2

n∗ .
The action of S2 × Sn−2 on ∆1,2

n∗ lifts to an action on E1,2
∗ . It is easy to see that X(n)

s∗ =
∆1,2
n∗/(S2 × Sn−2) and B∗ = E1,2

∗ /(S2 × Sn−2). Regard p1,2 : ∆1,2
n∗ → X as an S2 × Sn−2-

equivariant morphism where S2 × Sn−2 acts on X trivially. Then, S2 × Sn−2 acts on
p∗1,2T

∗
X , and the isomorphism E1,2

∗ ∼= P(p∗1,2T
∗
X) is S2 × Sn−2-equivariant. So we get an

isomorphism

j1 : B∗ = E1,2
∗ /(S2 × Sn−2) ∼= P(p∗1,2T

∗
X)/(S2 × Sn−2) ∼= P(j∗2T

∗
X).

where the last isomorphism is due to the fact that the S2-factor acts trivially on p∗1,2TX
and the Sn−2-factor commutes with the morphism p1,2.

Next, we study OB∗(B∗). Since σ̃∗O
X

[n]
∗

(B∗) ∼= OgXn∗ (2
∑

1≤i<j≤nE
i,j
∗ ) and Ei,j∗ ∩

E1,2
∗ 6= ∅ if and only i = 1 and j = 2, we conclude that

(σ̃|E1,2
∗

)∗OB∗(B∗) ∼= σ̃∗O
X

[n]
∗

(B∗)|E1,2
∗
∼= OE1,2

∗
(2E1,2

∗ ) ∼= OP(p∗1,2T∗X )(−2) (31)

where we have used the fact that OE1,2
∗

(E1,2
∗ ) ∼= OP(p∗1,2T∗X )(−1) via the isomorphism

E1,2
∗ ∼= P(p∗1,2T ∗X). Note that OP(p∗1,2T∗X)(−2) = τ∗

(
OP(j∗2T∗X )(−2)

)
where τ : P(p∗1,2T ∗X)→

P(j∗2T
∗
X) is the natural morphism. Moreover, j1 ◦ (σ̃|E1,2

∗
) = τ via the isomorphism E1,2

∗ ∼=
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P(p∗1,2T
∗
X). Combining with (31), we obtain (σ̃|E1,2

∗
)∗OB∗(B∗) ∼= (σ̃|E1,2

∗
)∗
(
j∗1OP(j∗2T∗X)(−2)

)
.

Since Pic(B∗) has no torsion, we have

OB∗(B∗) ∼= j∗1OP(j∗2T∗X )(−2). (32)

Consider the open subset U0 of M0,0(X[n], dβn) consisting of stable maps [µ : D → X[n]]
such that µ(D) ⊂ X

[n]
∗ . Similarly, take the open subset U1 of M0,1(X[n] , dβn) consisting

of stable maps [µ : (D; p) → X[n]] such that µ(D) ⊂ X
[n]
∗ . Clearly U1 = f−1

1,0 (U0). Let
[µ : (D; p)→ X[n]] ∈ U1. Since µ∗(D) ∼ dβn, we must have µ(D) = M2(x2)+x3 + . . .+xn
for some distinct points x2, . . . , xn ∈ X. Hence µ(D) ⊂ B∗. Moreover, the composite
ρ ◦ ev1 sends the stable map [µ : (D; p) → X[n]] to the point 2x2 + x3 + . . .+ xn, which
is independent of the marked point p on D. Hence ev1 induces a morphism φ from U0

to ρ(B∗). Putting ẽv1 = ev1|U1 and f̃1,0 = f1,0|U1 , we have the following commutative
diagram:

U1
fev1→ B∗

j1∼= P(j∗2T
∗
X)

↓f̃1,0 ↓ρ ↓π

U0
φ→ ρ(B∗) = X

(n)
s∗

j2→ X

(33)

where π : P(j∗2T ∗X)→ X
(n)
s∗ is the natural projection of the P1-bundle.

Note that the fiber φ−1(2x2+x3+. . .+xn) over a fixed point 2x2+x3+. . .+xn ∈ ρ(B∗)
is simply M0,0(M2(x2) + x3 + . . .+ xn, d[M2(x2) + x3 + . . .+ xn]) which is isomorphic
to the moduli space M0,0(P1 , d[P1]) via the isomorphism M2(x2) + x3 + . . .+ xn ∼= P1.
Hence the complex dimension of U0 is equal to

dim M0,0(P1, d[P1]) + 2(n− 1) = 2n− 3 + 2d− 1.

The expected dimension of M0,0(X[n], dβn) is 2n− 3 according to the formula (7) where
we used KX[n] · dβn = 0. Hence the excess dimension of U0 is e = (2d− 1).

Lemma 3.1. With notations as above, the restriction of R1(f1,0)∗(ev∗1TX[n] ) to U0 is a
locally free sheaf of rank (2d− 1).

Proof. Take a stable map u = [µ : D → X[n]] in U0, and consider

H1(f−1
1,0 (u), (ev∗1TX[n] )|f−1

1,0(u)) ∼= H1(D, µ∗TX[n] ).

Since µ(D) = M2(x2) + x3 + . . .+ xn ∼= P1 for some distinct points x2, . . . , xn, we have
TX[n] |µ(D) = OP1(2)⊕OP1(−2)⊕O(2n−2)

P1 by Theorem 2.4 (iii). Thus

H1(D, µ∗TX[n] ) ∼= H1(D, µ∗OP1(−2))

which has dimension equal to the excess dimension e = (2d− 1). Hence the direct image
sheaf R1(f1,0)∗(ev∗1TX[n] ) over U0 is locally free of rank (2d− 1).
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Suppose that M1 is a closed subset of M0,1(X[n], dβn) contained in U1 and M0 =
f1,0(M1) ⊂ U0 ⊂M0,0(X[n] , dβn). By Proposition 2.1 (i) and (iii), we have

[M0,1(Y, β)]vir|M1 = (f̃1,0)∗c2d−1

(
(R1(f1,0)∗(ev1)∗TX[n] )|M0

)
. (34)

Hence it is crucial to determine the sheaf R1(f1,0)∗(ev1)∗TX[n] over U0.

Lemma 3.2. Let V denote the restriction of R1(f1,0)∗(ev1)∗TX[n] to U0. Then,
(i) V ∼= R1(f̃1,0)∗(ẽv1)∗OB∗(B∗) ∼= R1(f̃1,0)∗(j1 ◦ ẽv1)∗OP(j∗2T∗X)(−2).
(ii) the locally free sheaf V sits in the exact sequence

0 → (j2 ◦ φ)∗OX(−KX )→ V
→ R1(f̃1,0)∗(j1 ◦ ẽv1)∗((j2 ◦ π)∗TX ⊗OP(j∗2T∗X)(−1))→ 0. (35)

Proof. (i) Since ev1(U1) ⊂ B∗, we have ((ev1)∗TX[n] )|U1 = (ẽv1)∗(T
X

[n]
∗
|B∗) and V =

(R1(f1,0)∗(ev1)∗TX[n])|U0 = R1(f̃1,0)∗
(
((ev1)∗TX[n])|U1

)
= R1(f̃1,0)∗(ẽv1)∗(TX[n] |B∗). Since

B∗ is a smooth codimension-1 subvariety of X[n], we obtain the exact sequence

0→ TB∗ → TX[n] |B∗ → OB∗(B∗)→ 0. (36)

Applying (ẽv1)∗ and (f̃1,0)∗ to the exact sequence (36), we get

R1(f̃1,0)∗(ẽv1)∗TB∗ → V → R1(f̃1,0)∗(ẽv1)∗OB∗(B∗)→ 0.

where we have used R2(f̃1,0)∗(ẽv1)∗TB∗ = 0 since f̃1,0 is of relative dimension 1.
If [µ : D → X[n]] is a stable map in U0, then µ(D) = M2(x2) + x3 + . . . + xn.

Hence the normal bundle of µ(D) in B∗ is trivial since µ(D) is a fiber of the P1-bundle
P(j∗2T

∗
X) over X(n)

s∗ . Thus TB∗ |µ(D)
∼= Oµ(D)(2)⊕O⊕(2n−2)

µ(D) . Therefore, H1(D, µ∗TB∗) ∼=
H1(D, µ∗(Oµ(D)(2) ⊕ O⊕(2n−2)

µ(D) )) = 0, and R1(f̃1,0)∗(ẽv1)∗TB∗ = 0. So in view of (32),
we have

V ∼= R1(f̃1,0)∗(ẽv1)∗OB∗(B∗) ∼= R1(f̃1,0)∗(j1 ◦ ẽv1)∗OP(j∗2T∗X)(−2).

(ii) For simplicity, we denote P(j∗2T
∗
X) by P. Consider the natural surjection π∗(j∗2T

∗
X)→

OP(1)→ 0. The kernel of this surjection is a line bundle. By comparing the first Chern
classes, we get the following exact sequence:

0→ π∗O
X

(n)
s∗

(j∗2KX) ⊗OP(−1)→ π∗(j∗2T
∗
X)→ OP(1)→ 0. (37)

Tensoring (37) with π∗O
X

(n)
s∗

(−j∗2KX)⊗OP(−1), we get

0 → OP(−2)→ (j2 ◦ π)∗(T ∗X ⊗OX(−KX)) ⊗OP(−1)
→ (j2 ◦ π)∗OX(−KX)→ 0. (38)

Note that T ∗X ⊗OX(−KX) ∼= TX . Applying (j1 ◦ ẽv1)∗ to (38) yields

0 → (j1 ◦ ẽv1)∗OP(−2)→ (j1 ◦ ẽv1)∗((j2 ◦ π)∗TX ⊗OP(−1))
→ (j2 ◦ π ◦ j1 ◦ ẽv1)∗OX(−KX)→ 0. (39)
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By (33), we have (j2 ◦ π ◦ j1 ◦ ẽv1)∗ = (j2 ◦φ ◦ f̃1,0)∗ = (f̃1,0)∗ ◦ (j2 ◦φ)∗. So rewriting the
3rd term in the exact sequence (39), we obtain

0 → (j1 ◦ ẽv1)∗OP(−2)→ (j1 ◦ ẽv1)∗((j2 ◦ π)∗TX ⊗OP(−1))

→ (f̃1,0)∗((j2 ◦ φ)∗OX(−KX))→ 0. (40)

Applying (f̃1,0)∗ to the above exact sequence and using part (i), we have

0 → (f̃1,0)∗(f̃1,0)∗((j2 ◦ φ)∗OX(−KX))→ V
→ R1(f̃1,0)∗(j1 ◦ ẽv1)∗((j2 ◦ π)∗TX ⊗OP(−1))

→ R1(f̃1,0)∗(f̃1,0)∗((j2 ◦ φ)∗OX(−KX)).

where we have used (f̃1,0)∗(j1 ◦ ẽv1)∗((j2 ◦π)∗TX ⊗OP(−1)) = 0. Note that (f̃1,0)∗OU1
∼=

OU0 and R1(f̃1,0)∗OU1 = 0. So we get

(f̃1,0)∗(f̃1,0)∗((j2 ◦ φ)∗OX(−KX)) ∼= (j2 ◦ φ)∗OX(−KX)⊗ (f̃1,0)∗OU1

∼= (j2 ◦ φ)∗OX(−KX)

by the projection formula. Similarly,R1(f̃1,0)∗(f̃1,0)∗((j2◦φ)∗OX(−KX)) = 0. Therefore,
the locally free sheaf V sits in the exact sequence (35).

Remark 3.1. Fix distinct points x2, . . . , xn on X. Via the isomorphism φ−1(2x2 +x3 +
. . .+ xn) ∼= M0,0(P1, d[P1]), the restriction of R1(f̃1,0)∗(j1 ◦ ẽv1)∗((j2 ◦ π)∗TX ⊗OP(−1))
to φ−1(2x2 + x3 + . . .+ xn) is isomorphic to

R1(f1,0)∗(ev1)∗(OP1(−1) ⊕OP1(−1))

where by abusing notations, we still use f1,0 and ev1 to denote the forgetful map and the
evaluation map from M0,1(P1, d[P1]) to M0,0(P1, d[P1]) and P1 respectively.

3.2. The 1-point Gromov-Witten invariants 〈α〉0,dβn

In this subsection, we compute all the 1-point Gromov-Witten invariants 〈α〉0,dβn
for the Hilbert schemes X[n]. Recall from (8) and (7) that |α| = 4n − 4. In view of
Lemma 2.3 (ii), we need only to compute 〈α〉0,dβn when α is the Poincaré duals of sn,1,
sn,2, sn,3, sC1,1, sC1,2, and sC1,C2 where C1 and C2 are two smooth real surfaces in X.
These six cases will be divided into two lemmas.

Lemma 3.3. Let d ≥ 1, and C1 and C2 be smooth real surfaces in X.
(i) If α is the Poincaré dual of sn,1, sC1,C2 , or sC1,1, then 〈α〉0,dβn = 0.
(ii) If α is the Poincaré dual of sC1,2, then 〈α〉0,dβn = 2(KX · C1)/d2.

Proof. (i) Suppose that α is Poincaré dual to sn,1. Fix distinct points x1, . . . , xn−1 ∈ X
which are not contained in C1 ∪ C2. By (24), sn,1 ∼ gn(X̃η) ∼= X̃η where X̃η is the
blow up of X along η = x1 + . . . + xn−1. Moreover, the exceptional curves in gn(X̃η)
are ρ−1(x1 + . . . + xi−1 + 2xi + xi+1 + . . . + xn−1) for 1 ≤ i ≤ n − 1. Let M1 be

64



LI, QIN

the subset of M0,1(X[n], dβn) consisting of all the stable maps [µ : (D; p) → X[n]] such
that µ(p) ∈ gn(X̃η). In this case, µ(D) is one of the exceptional curves in gn(X̃η) ⊂
B∗. In particular, the stable maps [µ : (D; p) → X[n]] are contained in U1, and M1 =∐

1≤i≤n−1(f̃1,0)−1(φ−1(x1+. . .+xi−1+2xi+xi+1+. . .+xn−1)). So as algebraic cycles, we
have [M1] =

∑n−1
i=1 (f̃1,0)∗φ∗[x1 + . . .+xi−1 +2xi+xi+1 + . . .+xn−1]. By Lemma 3.2 (ii),

we get c2d−1(V) = −(j2 ◦ φ)∗KX · c2d−2(E) where E = R1(f̃1,0)∗(j1 ◦ ẽv1)∗((j2 ◦ π)∗TX ⊗
OP(j∗2T∗X )(−1)). In view of (9) and (34),

〈α〉0,dβn =
∫

[M0,1(Y,β)]vir
(ev1)∗α = [M1] · [M0,1(Y, β)]vir

= [M1] · [M0,1(Y, β)]vir|M1 = [M1] · (f̃1,0)∗(c2d−1(V))

= −
n−1∑
i=1

(f̃1,0)∗
(
φ∗([x1 + . . .+ 2xi + . . .+ xn−1] · j∗2KX) · c2d−2(E)

)
= 0.

Next let α be the Poincaré dual of sC1,C2 . We may assume that C1 and C2 intersect
transversally at the points y1, . . . , ym. By (26), sC1,C2 is the closure of

{x+ x̃+ x1 + . . .+ xn−2| x ∈ C1, x̃ ∈ C2, and x 6= x̃} ⊂ X[n].

Let M′1 ⊂ M0,1(X[n], dβn) consist of all the stable maps [µ : (D; p) → X[n]] such that
µ(p) ∈ sC1,C2 . In this case, ρ(µ(D)) = 2yk + x1 + . . .+ xn−2 for some k with 1 ≤ k ≤ m.
Therefore, µ(D) = ρ−1(2yk+x1 + . . .+xn−2). Hence the stable map [µ : (D; p)→ X[n]] is
contained in U1. So M′1 ⊂ U1 is the disjoint union of (f̃1,0)−1(φ−1(2yk+x1 + . . .+xn−2)),
1 ≤ k ≤ m, with ± orientations. By the same computations as in the previous paragraph,
we obtain 〈α〉0,dβn = 0.

For the case of sC1,1, the proof is similar to the cases of sn,1 and sC1,C2 .
(ii) Let η̃ = x1 + . . .+ xn−2. By (21), sC1,2 ∼ M2(C1) + η̃ = ρ−1(2C1 + η̃). Thus, we

have α = PD(ρ−1(2C1 + η̃)) where PD stands for the Poincaré dual. So we see from (34)
and Lemma 3.2 (ii) that

〈α〉0,dβn =
∫

[M0,1(Y,β)]vir
(ev1)∗α =

∫
−(f̃1,0)∗(j2◦φ)∗KX·(f̃1,0)∗c2d−2(E)

(ev1)∗α

= −
∫

(fev1)∗(ρ∗j∗2KX)·(f̃1,0)∗c2d−2(E)
(ev1)∗α

= −
∫

(fev1)∗(ρ∗j∗2KX)·(f̃1,0)∗c2d−2(E)
(ẽv1)∗PD(ρ−1(2C1 + η̃) · c1(OB∗(B∗)))

= −
∫

(f̃1,0)∗c2d−2(E)
(ẽv1)∗PD

(
ρ−1

(
(j∗2KX) · (2C1 + η̃)

)
· c1(OB∗(B∗))

)
= 2(KX · C1) ·

∫
(f̃1,0)∗c2d−2(E)

(ẽv1)∗PD(ξ) (41)
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where ξ ∈ ρ−1(2x + η̃) = ρ−1(2x+ x1 + . . .+ xn−2) is a fixed point for some fixed point
x ∈ C1. Also, we have used the isomorphism (32) in the last step.

Let M′′1 ⊂ M0,1(X[n], dβn) be the subset consisting of all stable maps [µ : (D; p) →
X[n]] with µ(p) = ξ. If [µ : (D; p) → X[n]] ∈ M′′1 , then ρ(µ(D)) = ρ(µ(p)) = 2x + x1 +
. . .+ xn−2. So µ(D) = ρ−1(2x + x1 + . . .+ xn−2). Thus the restriction of the forgetful
map f̃1,0 to M′′1 gives a degree-d morphism from M′′1 to M′′0

def= φ−1(2x+x1 + . . .+xn−2).
Hence, as algebraic cycles, we have (f̃1,0)∗[M′′1 ] = d[M′′0] = d · φ∗[2x + x1 + . . .+ xn−2].
By (41), we obtain

〈α〉0,dβ2 = 2(KX · C1) · [M′′1 ] · (f̃1,0)∗c2d−2(E)

= 2(KX · C1) · (f̃1,0)∗[M′′1 ] · c2d−2(E)
= 2d(KX · C1) · φ∗[2x+ x1 + . . .+ xn−2] · c2d−2(E)
= 2d(KX · C1) · c2d−2(E|φ−1(2x+x1+...+xn−2)). (42)

By Remark 3.1, E|φ−1(2x+x1+...+xn−2)
∼= R1(f1,0)∗(ev1)∗(OP1(−1) ⊕ OP1(−1)) where

f1,0 and ev1 denote the forgetful map and the evaluation map from the moduli space
M0,1(P1 , d[P1]) to M0,0(P1 , d[P1]) and P1 respectively. By the Theorem 9.2.3 in [C-K],
c2d−2(R1(f1,0)∗(ev1)∗(OP1(−1) ⊕OP1(−1))) = 1/d3. So we have

c2d−2(E|φ−1(2x+x1+...+xn−2)) = c2d−2(R1(f1,0)∗(ev1)∗(OP1(−1) ⊕OP1(−1)) = 1/d3.

Combining this with (42), we conclude that 〈α〉0,dβn = 2(KX · C1)/d2.

Lemma 3.4. Let d ≥ 1. If α is the Poincaré dual of sn,2 or sn,3, then 〈α〉0,dβn = 0.

Proof. Since similar argument works for sn,2, we shall only prove the lemma for sn,3.
So assume that α is the Poincaré dual of sn,3. Let x1, . . . , xn−2 ∈ X be fixed distinct
points on X contained in a small analytic open subset U of X. We may assume that U
is independent of the smooth surface X. Let U′1 ⊂M0,1(X[n], dβn) be the analytic open
subset consisting of all stable maps [µ : (D; p) → X[n]] with µ(p) ∈ U [n]. Since µ∗(D) ∼
dβn, we see that Supp(µ(D)) = Supp(µ(p)) for [µ : (D; p)→ X[n]] ∈M0,1(X[n] , dβn). So
µ(D) ⊂ U [n], and U′1 is independent of X.

Next, recall from (19) that sn,3 is represented by M3(x1) + x2 + . . .+ xn−2. Let M1 ⊂
M0,1(X[n] , dβn) be the closed subset consisting of all stable maps [µ : (D; p)→ X[n]] with
µ(p) ∈M3(x1)+x2 +. . .+xn−2. Then, M1 ⊂ U′1 since M3(x1)+x2 +. . .+xn−2 ⊂ U [n]. In
addition, since Supp(µ(D)) = Supp(µ(p)), we must have µ(D) ⊂M3(x1)+x2 + . . .+xn−2

for every [µ : (D; p)→ X[n]] ∈M1. So M1 is independent ofX. Thus the pull-back ev∗1(α)
is also independent of X.

In summary, M1 ⊂ U′1, U′1 is analytic open in M0,1(X[n], dβn), and M1 and U′1 are
independent of X. It follows from the constructions of the virtual fundamental class
(see [LT2, LT3, Ru1]) that the restriction [M0,1(X[n], dβn)]vir|M1 is independent of the
smooth surface X. So the 1-point Gromov-Witten invariant 〈α〉0,dβn , which is defined
to be [M0,1(X[n], dβn)]vir · ev∗1(α) with ev∗1(α) being independent of X, is independent
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of X as well. Since all the Gromov-Witten invariants 〈α1, . . . , αk〉0,β with β 6= 0 for a
K3-surface are zero, we conclude that 〈α〉0,dβn = 0 for d ≥ 1.

Summarizing Lemma 3.3 and Lemma 3.4, we obtain our main result.

Theorem 3.5. Let X be a simply-connected smooth projective surface. Let n ≥ 2, d ≥ 1,
and C1 and C2 be two smooth real surfaces in X.

(i) If α is the Poincaré dual of sn,1, sC1,C2 , sC1,1, sn,2 or sn,3, then 〈α〉0,dβn = 0.
(ii) If α is the Poincaré dual of sC1,2, then 〈α〉0,dβn = 2(KX · C1)/d2.
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