On 1-point Gromov-Witten invariants of the Hilbert schemes of points on surfaces

Wei-Ping Li, Zhenbo Qin

Abstract

We compute certain 1-point genus-0 Gromov-Witten invariants of the Hilbert scheme of points on a simply-connected smooth projective surface.

1. Introduction

The Hilbert scheme $X^{[n]}$ of points in a smooth projective surface X is the set of length$n 0$-dimensional closed subschemes of X. On one hand, $X^{[n]}$ is the moduli space of rank-1 torsion free sheaves V on X such that the first and second Chern classes of V are equal to 0 and n respectively. It is the simplest one among the moduli spaces of rank- r stable vector bundles (or sheaves in general) on a projective surface, which are isomorphic to the moduli spaces of anti-self-dual Yang-Mills connections on some principle bundles over X. Mathematicians as well as physicists showed great interest in these moduli spaces. One area of interest is the Gromov-Witten invariants of the Hilbert scheme $X^{[n]}$. On the other hand, the Hilbert scheme $X^{[n]}$ is smooth [Fo1]. Hence it is the desingularization of the n-th symmetric product $X^{(n)}$ of X. In fact, the Hilbert-Chow map

$$
\begin{equation*}
\rho: X^{[n]} \rightarrow X^{(n)} \tag{1}
\end{equation*}
$$

sending an element in $X^{[n]}$ to its support in $X^{(n)}$ is a crepant resolution of the orbifold $X^{(n)}$. Recently, Ruan [Ru2] formulated some conjecture on the relation between the cohomology rings of crepant resolutions of orbifolds and the orbifold cohomology rings of the orbifolds themselves. It turns out that the Gromov-Witten invariants of the crepant resolutions appear in a very interesting way in Ruan's conjecture. In this paper, we shall compute the 1-point Gromov-Witten invariants of $X^{[n]}$ with respect to some special degree-2 homology cycles on $X^{[n]}$. Our result partially verifies Ruan's conjecture for the crepant resolution $\rho: X^{[n]} \rightarrow X^{(n)}$.

Throughout the paper, we assume that X is a simply-connected smooth projective surface. An element in $X^{[n]}$ is represented by a length- $n 0$-dimensional closed subscheme ξ of X. Let $x_{1}, \ldots, x_{n-1} \in X$ be distinct but fixed points. Let $M_{2}\left(x_{1}\right)=$

[^0]
LI, QIN

$\left\{\xi \in X^{[2]} \mid \operatorname{Supp}(\xi)=\left\{x_{1}\right\}\right\}$ be the punctual Hilbert scheme parametrizing length-2 0dimensional subschemes supported at x_{1}. It is known that $M_{2}\left(x_{1}\right) \cong \mathbb{P}^{1}$. Let β_{n} be the smooth rational curve in $X^{[n]}$ defined by

$$
\begin{equation*}
\left\{\xi+x_{2}+\ldots+x_{n-1} \in X^{[n]} \mid \xi \in M_{2}\left(x_{1}\right)\right\} . \tag{2}
\end{equation*}
$$

Clearly, the curve β_{n} is mapped to a point by the Hilbert-Chow map ρ.
Let d be a positive integer, and let $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ be the moduli space of 1-point stable maps $\mu:(D ; p) \rightarrow X^{[n]}$ from a genus- 0 nodal curve D with one marked point p to $X^{[n]}$ such that $\mu_{*}(D)$ is homologous to $d \beta_{n}$. A point in $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ is denoted by $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$. The expected complex dimension of the moduli space $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ is given by

$$
\begin{equation*}
\mathfrak{d}=-K_{X^{[n]}} \cdot d \beta_{n}+\operatorname{dim} X^{[n]}-3+1=2 n-2 . \tag{3}
\end{equation*}
$$

Here we used the fact that $K_{X^{[n]}} \cdot \beta_{n}=0$ since the canonical class $K_{X^{[n]}}$ of $X^{[n]}$ is the pullback of a divisor on $X^{(n)}$ via the Hilbert-Chow map.

Take a cohomology class $\alpha \in H^{4 n-4}\left(X^{[n]}, \mathbb{C}\right)$. Consider the evaluation map

$$
\begin{equation*}
e v_{1}: \overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right) \rightarrow X^{[n]}, \quad e v_{1}\left(\left[\mu:(D ; p) \rightarrow X^{[n]}\right]\right)=\mu(p) \tag{4}
\end{equation*}
$$

Let $\left[\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)\right]^{v i r}$ be the virtual fundamental class. The main result of the paper is the computation of the 1-point Gromov-Witten invariant

$$
\begin{equation*}
\langle\alpha\rangle_{0, d \beta_{n}} \stackrel{\text { def }}{=} \int_{\left[\bar{M}_{0,1}\left(X^{[n]}, d \beta_{n}\right)\right]^{\text {vir }}} e v_{1}^{*}(\alpha) . \tag{5}
\end{equation*}
$$

We refer to Theorem 3.5 for the detailed statement of the main result.
Our motivation for computing the 1-point Gromov-Witten invariant (5) comes from the above-mentioned Ruan's conjecture for a crepant resolution $\rho: Y \rightarrow Z$ of an orbifold Z. An essential ingredient in Ruan's conjecture is the quantum corrections which are related to the 3 -point Gromov-Witten invariants $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0, \beta}$ in which $\beta \neq 0$ and $\rho_{*}(\beta)=$ 0 . In our case, the symmetric product $X^{(n)}$ is an orbifold, and the Hilbert-Chow map $\rho: X^{[n]} \rightarrow X^{(n)}$ is a crepant resolution of $X^{(n)}$. Moreover, if $\beta \neq 0$ and $\rho_{*}(\beta)=0$ for some $\beta \in H_{2}\left(X^{[n]} ; \mathbb{Z}\right)$, then necessarily $\beta=d \beta_{n}$ for some positive integer d. Even though it remains to be a challenge to compute all the 3-point Gromov-Witten invariants $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0, d \beta_{n}}$ for $X^{[n]}$ at the present time, we are able to perform computations in some special cases. In particular, we are successful in computing all the 1-point Gromov-Witten invariants $\langle\alpha\rangle_{0, d \beta_{n}}$. Our Theorem 3.5 partially verifies Ruan's conjecture for the crepant resolution $\rho: X^{[n]} \rightarrow X^{(n)}$. We remark that when $n=2$, all the 3-point Gromov-Witten invariants of $X^{[2]}$ can be reduced to 1-point Gromov-Witten invariants of $X^{[2]}$. Indeed, our result for $n=2$ has been used by Ruan [Ru2] to verify his conjecture for the crepant resolution $\rho: X^{[2]} \rightarrow X^{(2)}$ of the symmetric product $X^{(2)}$.

The key step in computing the 1-point Gromov-Witten invariants $\langle\alpha\rangle_{0, d \beta_{n}}$ is to determine the obstruction bundle over the moduli space $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$. Even though the curves homologous to $d \beta_{n}$ in $X^{[n]}$ are complicated, when we compute $\langle\alpha\rangle_{0, d \beta_{n}}$, we only
need to deal with those stable maps $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$ such that $\mu(D)$ is of the form (2). Using the earlier work [LQZ] concerning rational curves of degree- 1 in $X^{[n]}$, we are able to determine the obstruction bundle over a Zariski open subset of $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$, which is sufficient for us to compute $\langle\alpha\rangle_{0, d \beta_{n}}$.

Finally, this paper is organized as follows. In section two, we review Gromov-Witten invariants and virtual fundamental classes. In addition, we discuss some basics of the Hilbert scheme $X^{[n]}$, and determine a basis of $H_{4}\left(X^{[n]}, \mathbb{C}\right)$ by using the results of Göttsche, Grojnowski, and Nakajima [Got, Gro, Nak]. In section three, we study the obstruction bundle, and prove Theorem 3.5.

2. Preliminaries

In this section, we shall review the notions of stable maps and Gromov-Witten invariants. In addition, we shall recall some basic facts and notations for the Hilbert scheme of points on a smooth projective surface.

2.1. Stable maps and Gromov-Witten invariants

Let Y be a smooth projective variety. An k-point stable map to Y consists of a complete nodal curve D with k distinct ordered smooth points p_{1}, \ldots, p_{k} and a morphism $\mu: D \rightarrow Y$ such that the data ($\mu, D, p_{1}, \ldots, p_{k}$) has only finitely many automorphisms. In this case, the stable map is denoted by $\left[\mu:\left(D ; p_{1}, \ldots, p_{k}\right) \rightarrow Y\right]$. For a fixed homology class $\beta \in H_{2}(Y, \mathbb{Z})$, let $\overline{\mathfrak{M}}_{g, k}(Y, \beta)$ be the coarse moduli space parameterizing all the stable maps $\left[\mu:\left(D ; p_{1}, \ldots, p_{k}\right) \rightarrow Y\right]$ such that $\mu_{*}[D]=\beta$ and the arithmetic genus of D is g. Then, we have the evaluation map:

$$
\begin{equation*}
e v_{k}: \overline{\mathfrak{M}}_{g, k}(Y, \beta) \rightarrow Y^{k} \tag{6}
\end{equation*}
$$

defined by $\operatorname{ev}_{k}\left(\left[\mu:\left(D ; p_{1}, \ldots, p_{k}\right) \rightarrow Y\right]\right)=\left(\mu\left(p_{1}\right), \ldots, \mu\left(p_{k}\right)\right)$. It is known [F-P, LT1, LT2, B-F] that the coarse moduli space $\overline{\mathfrak{M}}_{g, k}(Y, \beta)$ is projective and has a virtual fundamental class $\left[\overline{\mathfrak{M}}_{g, k}(Y, \beta)\right]^{\text {vir }} \in A_{\mathfrak{d}}\left(\overline{\mathfrak{M}}_{g, k}(Y, \beta)\right)$ where

$$
\begin{equation*}
\mathfrak{d}=-\left(K_{Y} \cdot \beta\right)+(\operatorname{dim}(Y)-3)(1-g)+k \tag{7}
\end{equation*}
$$

is the expected complex dimension of $\overline{\mathfrak{M}}_{g, k}(Y, \beta)$, and $A_{\mathfrak{d}}\left(\overline{\mathfrak{M}}_{g, k}(Y, \beta)\right)$ is the Chow group of \mathfrak{d}-dimensional cycles in the moduli space $\overline{\mathfrak{M}}_{g, k}(Y, \beta)$.

The Gromov-Witten invariants are defined by using the virtual fundamental class $\left[\overline{\mathfrak{M}}_{g, k}(Y, \beta)\right]^{\text {vir }}$. Recall that an element $\alpha \in H^{*}(Y, \mathbb{C}) \stackrel{\text { def }}{=} \bigoplus_{j=0}^{2 \operatorname{dim}_{C}(Y)} H^{j}(Y, \mathbb{C})$ is homogeneous if $\alpha \in H^{j}(Y, \mathbb{C})$ for some j; in this case, we take $|\alpha|=j$. Let $\alpha_{1}, \ldots, \alpha_{k} \in H^{*}(Y, \mathbb{C})$ such that every α_{i} is homogeneous and

$$
\begin{equation*}
\sum_{i=1}^{k}\left|\alpha_{i}\right|=2 \mathfrak{d} \tag{8}
\end{equation*}
$$

Then, we have the k-point Gromov-Witten invariant defined by:

$$
\begin{equation*}
\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle_{g, \beta}=\int_{\left[\overline{\mathfrak{M}}_{g, k}(Y, \beta)\right]_{\mathrm{vir}}} e v_{k}^{*}\left(\alpha_{1} \otimes \ldots \otimes \alpha_{k}\right) \tag{9}
\end{equation*}
$$

Next, we summarize certain properties concerning the virtual fundamental class. To begin with, we recall that the excess dimension is the difference between the dimension of $\overline{\mathfrak{M}}_{g, k}(Y, \beta)$ and the expected dimension \mathfrak{d} in (7). Let T_{Y} stand for the tangent sheaf of Y. For $0 \leq i<k$, we shall use

$$
\begin{equation*}
f_{k, i}: \overline{\mathfrak{M}}_{g, k}(Y, \beta) \rightarrow \overline{\mathfrak{M}}_{g, i}(Y, \beta) \tag{10}
\end{equation*}
$$

to stand for the forgetful map obtained by forgetting the last ($k-i$) marked points and contracting all the unstable components. It is known that $f_{k, i}$ is flat when $\beta \neq 0$ and $0 \leq i<k$. The following can be found in [LT1, Beh, Get, C-K, LiJ].

Proposition 2.1. Let $\beta \in H_{2}(Y, \mathbb{Z})$ and $\beta \neq 0$. Let e be the excess dimension of $\overline{\mathfrak{M}}_{g, k}(Y, \beta)$, and $\mathfrak{M} \subset \mathfrak{M}_{g, k}(Y, \beta)$ be a closed subscheme. Then,
(i) $\left[\overline{\mathfrak{M}}_{g, k}(Y, \beta)\right]^{v i r}=\left(f_{k, 0}\right)^{*}\left[\overline{\mathfrak{M}}_{g, 0}(Y, \beta)\right]^{\text {vir }}$;
(ii) $\left[\overline{\mathfrak{M}}_{g, k}(Y, \beta)\right]^{v i r}=c_{e}\left(R^{1}\left(f_{k+1, k}\right)_{*}\left(e v_{k+1}\right)^{*} T_{Y}\right)$ if $R^{1}\left(f_{k+1, k}\right)_{*}\left(e v_{k+1}\right)^{*} T_{Y}$ is a rank-e locally free sheaf over the moduli space $\overline{\mathfrak{M}}_{g, k}(Y, \beta)$;
(iii) $\left.\left[\overline{\mathfrak{M}}_{g, k}(Y, \beta)\right]^{v i r}\right|_{\mathfrak{M}}=c_{e}\left(\left.\left(R^{1}\left(f_{k+1, k}\right)_{*}\left(e v_{k+1}\right)^{*} T_{Y}\right)\right|_{\mathfrak{M}}\right)$ if there exists an open subset \mathfrak{U} of $\overline{\mathfrak{M}}_{g, k}(Y, \beta)$ such that $\mathfrak{M} \subset \mathfrak{U}$ (i.e, \mathfrak{U} is an open neighborhood of \mathfrak{M}) and the restriction $\left.\left(R^{1}\left(f_{k+1, k}\right)_{*}\left(e v_{k+1}\right)^{*} T_{Y}\right)\right|_{\mathfrak{U}}$ is a rank-e locally free sheaf over \mathfrak{U}.

2.2. Basic facts on the Hilbert scheme of points on a surface

Let X be a simply-connected smooth projective surface, and $X^{[n]}$ be the Hilbert scheme of points in X. An element in $X^{[n]}$ is represented by a length- n 0-dimensional closed subscheme ξ of X. For $\xi \in X^{[n]}$, let I_{ξ} be the corresponding sheaf of ideals. In $X^{[n]} \times X$, we have the universal codimension- 2 subscheme:

$$
\begin{equation*}
\mathcal{Z}_{n}=\left\{(\xi, x) \subset X^{[n]} \times X \mid x \in \operatorname{Supp}(\xi)\right\} \subset X^{[n]} \times X \tag{11}
\end{equation*}
$$

In $X^{[n-1]} \times X^{[n]}$, we have the $2 n$-dimensional smooth incidence subscheme:

$$
\begin{equation*}
X^{[n-1, n]}=\left\{(\xi, \eta) \in X^{[n-1]} \times X^{[n]} \mid I_{\xi} \supset I_{\eta}\right\} \tag{12}
\end{equation*}
$$

For a subset $Y \subset X$, we define the subset $M_{n}(Y)$ in the Hilbert scheme $X^{[n]}$:

$$
\begin{equation*}
M_{n}(Y)=\left\{\xi \in X^{[n]} \mid \operatorname{Supp}(\xi) \text { is a point in } Y\right\} \subset X^{[n]} \tag{13}
\end{equation*}
$$

In particular, for a fixed point $x \in X, M_{n}(x)$ is just the punctual Hilbert scheme of points on X at x. It is known that the punctual Hilbert schemes $M_{n}(x)$ are isomorphic for all the surfaces X and all the points $x \in X$.

The definitions and properties of the maps listed below can be found in [E-S].

Notation. There exist various morphisms:

$$
\begin{aligned}
f_{n} & : X^{[n-1, n]} \rightarrow X^{[n-1]} \text { with } f_{n}(\xi, \eta)=\xi \\
g_{n} & : X^{[n-1, n]} \rightarrow X^{[n]} \text { with } g_{n}(\xi, \eta)=\eta . \\
\psi_{n} & : X^{[n-1, n]} \rightarrow \mathcal{Z}_{n} \text { with } \psi_{n}(\xi, \eta)=\left(\eta, \operatorname{Supp}\left(I_{\xi} / I_{\eta}\right)\right) . \\
q & : X^{[n-1, n]} \rightarrow X \text { with } q(\xi, \eta)=\operatorname{Supp}\left(I_{\xi} / I_{\eta}\right) .
\end{aligned}
$$

Convention: Let V be an n-dimensional vector space. We use $\mathbb{P}(V)$ to denote the set of 1-dimensional quotients of the vector space V.

Theorem 2.2. (see $[\mathrm{E}-\mathrm{S}]$) Adopt the above notations.
(i) The morphism $\psi_{n}: X^{[n-1, n]} \rightarrow \mathcal{Z}_{n}$ is canonically isomorphic to the projectification $\mathbb{P}\left(\omega_{\mathcal{Z}_{n}}\right) \rightarrow \mathcal{Z}_{n}$ where $\omega_{\mathcal{Z}_{n}}$ is the dualizing sheaf of $\mathcal{Z}_{n} ;$
(ii) The morphism $\left(f_{n}, q\right): X^{[n-1, n]} \rightarrow X^{[n-1]} \times X$ is canonically isomorphic to the blowing-up of $X^{[n-1]} \times X$ along \mathcal{Z}_{n-1}. The exceptional locus is

$$
\begin{equation*}
E_{n}=\left\{(\xi, \eta) \in X^{[n-1, n]} \mid \operatorname{Supp}(\xi)=\operatorname{Supp}(\eta) \text { and } \xi \subset \eta\right\} \tag{14}
\end{equation*}
$$

Let $\xi \in X^{[n-k]}$ and $\eta \in X^{[k]}$. If $\operatorname{Supp}(\xi) \cap \operatorname{Supp}(\eta)=\emptyset$, then we use $\xi+\eta$ to represent the closed subscheme $\xi \cup \eta$ in $X^{[n]}$. Similarly, given a subvariety Y of $X^{[n-k]}$ and a point $\eta \in X^{[k]}$ such that $\left(\bigcup_{\xi \in Y} \operatorname{Supp}(\xi)\right) \cap \operatorname{Supp}(\eta)=\emptyset$, we use $Y+\eta$ to represent the subvariety in $X^{[n]}$ consisting of all the points $\xi+\eta$ with $\xi \in Y$.

Next, we review some results on homology groups of the Hilbert scheme $X^{[n]}$ due to Göttsche [Got], Grojnowski [Gro], and Nakajima [Nak]. Their results say that the space $\mathbb{H} \xlongequal{\text { def }} \bigoplus_{n=0}^{\infty} \bigoplus_{k=0}^{4 n} H_{k}\left(X^{[n]}, \mathbb{C}\right)$ is an irreducible highest weight representation of the Heisenberg algebra generated by $\mathfrak{a}_{-n}(\alpha), n \in \mathbb{Z}, \alpha \in H_{*}(X, \mathbb{C}) \stackrel{\text { def }}{=} \bigoplus_{k=0}^{4} H_{k}(X, \mathbb{C})$. Moreover, $|0\rangle \stackrel{\text { def }}{=} 1 \in$ $H_{0}\left(X^{[0]}, \mathbb{C}\right)=\mathbb{C}$ is a highest weight vector. It follows that the space \mathbb{H} is a linear span of elements of the form $\mathfrak{a}_{-n_{1}}\left(\alpha_{1}\right) \ldots \mathfrak{a}_{-n_{k}}\left(\alpha_{k}\right)|0\rangle$ where $k \geq 0, n_{1}, \ldots, n_{k}>0$, and $\alpha_{1}, \ldots, \alpha_{k} \in H_{*}(X, \mathbb{C})$. The geometric interpretation of $\mathfrak{a}_{-n_{1}}\left(\alpha_{1}\right) \ldots \mathfrak{a}_{-n_{k}}\left(\alpha_{k}\right)|0\rangle$ for homogeneous classes $\alpha_{1}, \ldots, \alpha_{k} \in H_{*}(X, \mathbb{C})$ can be understood as follows. For $i=$ $1, \ldots, k$, let $\alpha_{i} \in H_{\left|\alpha_{i}\right|}(X, \mathbb{C})$ be represented by a cycle A_{i} such that A_{1}, \ldots, A_{k} are in general position. Then,

$$
\begin{equation*}
\mathfrak{a}_{-n_{1}}\left(\alpha_{1}\right) \ldots \mathfrak{a}_{-n_{k}}\left(\alpha_{k}\right)|0\rangle \in H_{m}\left(X^{[n]}, \mathbb{C}\right) \tag{15}
\end{equation*}
$$

where $n=\sum_{i=1}^{k} n_{i}$ and $m=\sum_{i=1}^{k}\left(2 n_{i}-2+\left|\alpha_{i}\right|\right)$. In addition, up to a scalar, $\mathfrak{a}_{-n_{1}}\left(\alpha_{1}\right) \ldots \mathfrak{a}_{-n_{k}}\left(\alpha_{k}\right)|0\rangle$ is represented by the closure of the real- $\sum_{i=1}^{k}\left(2 n_{i}-2+\left|\alpha_{i}\right|\right)$-dimensional subset:

$$
\begin{equation*}
\left\{\xi_{1}+\ldots+\xi_{k} \in X^{[n]} \mid \xi_{i} \in M_{n_{i}}\left(A_{i}\right), \operatorname{Supp}\left(\xi_{i}\right) \cap \operatorname{Supp}\left(\xi_{j}\right)=\emptyset \text { for } i \neq j\right\} \tag{16}
\end{equation*}
$$

where $M_{n_{i}}\left(A_{i}\right)$ is the subset of $X^{\left[n_{i}\right]}$ defined by (13).
We shall write down the bases of the homology groups $H_{2}\left(X^{[n]}, \mathbb{C}\right)$ and $H_{4}\left(X^{[n]}, \mathbb{C}\right)$ in terms of the Heisenberg operators. The following definition introduces some special homology classes in $H_{2}\left(X^{[n]}, \mathbb{C}\right)$ and $H_{4}\left(X^{[n]}, \mathbb{C}\right)$.

Definition 2.1. Let $x \in X$, and C and \widetilde{C} be real-2-dimensional submanifolds of X. Then, we define the following homology classes:

$$
\begin{aligned}
\beta_{C} & =\mathfrak{a}_{-1}(C) \mathfrak{a}_{-1}(x)^{n-1}|0\rangle \\
\beta_{n} & =\mathfrak{a}_{-2}(x) \mathfrak{a}_{-1}(x)^{n-2}|0\rangle \\
\mathfrak{s}_{n, 1} & =\mathfrak{a}_{-1}(X) \mathfrak{a}_{-1}(x)^{n-1}|0\rangle \\
\mathfrak{s}_{n, 2} & =\mathfrak{a}_{-2}(x) \mathfrak{a}_{-2}(x) \mathfrak{a}_{-1}(x)^{n-4}|0\rangle \\
\mathfrak{s}_{n, 3} & =\mathfrak{a}_{-3}(x) \mathfrak{a}_{-1}(x)^{n-3}|0\rangle \\
\mathfrak{s}_{C, 1} & =\mathfrak{a}_{-1}(C) \mathfrak{a}_{-2}(x) \mathfrak{a}_{-1}(x)^{n-3}|0\rangle \\
\mathfrak{s}_{C, 2} & =\mathfrak{a}_{-2}(C) \mathfrak{a}_{-1}(x)^{n-2}|0\rangle \\
\mathfrak{s}_{C, \widetilde{C}} & =\mathfrak{a}_{-1}(C) \mathfrak{a}_{-1}(\widetilde{C}) \mathfrak{a}_{-1}(x)^{n-2}|0\rangle .
\end{aligned}
$$

Next, we discuss geometric representations of the above homology classes. First of all, we note from (15) that $\beta_{C}, \beta_{n} \in H_{2}\left(X^{[n]}, \mathbb{C}\right)$ and $\mathfrak{s}_{n, 1}, \mathfrak{s}_{n, 2}, \mathfrak{s}_{n, 3}, \mathfrak{s}_{C, 1}, \mathfrak{s}_{C, 2}, \mathfrak{s}_{C, \bar{C}} \in$ $H_{4}\left(X^{[n]}, \mathbb{C}\right)$. For $\eta \in X^{[n-1]}$ with $\operatorname{Supp}(\eta) \cap C=\emptyset$, we see from (16) that

$$
\beta_{C} \sim C+\eta
$$

where the symbol " $A_{1} \sim A_{2}$ " means that A_{1} and A_{2} are homologous as homology classes. Similarly, for $x \in X$ and $\eta \in X^{[n-2]}$ with $x \notin \operatorname{Supp}(\eta)$, we have

$$
\begin{equation*}
\beta_{n} \sim M_{2}(x)+\eta \tag{17}
\end{equation*}
$$

For $x_{1}, x_{2} \in X$ and $\eta \in X^{[n-4]}$ satisfying $x_{1} \neq x_{2}$ and $x_{1}, x_{2} \notin \operatorname{Supp}(\eta)$,

$$
\begin{equation*}
\mathfrak{s}_{n, 2} \sim M_{2}\left(x_{1}\right)+M_{2}\left(x_{2}\right)+\eta . \tag{18}
\end{equation*}
$$

For $x \in X$ and $\eta \in X^{[n-3]}$ with $x \notin C \cup \operatorname{Supp}(\eta)$ and $\operatorname{Supp}(\eta) \cap C=\emptyset$, we get

$$
\begin{gather*}
\mathfrak{s}_{n, 3} \sim M_{3}(x)+\eta, \tag{19}\\
\mathfrak{s}_{C, 1} \sim C+M_{2}(x)+\eta . \tag{20}
\end{gather*}
$$

For a fixed $\eta \in X^{[n-2]}$ satisfying $\operatorname{Supp}(\eta) \cap C=\emptyset$, we have

$$
\begin{equation*}
\mathfrak{s}_{C, 2} \sim M_{2}(C)+\eta \tag{21}
\end{equation*}
$$

For $\eta=x_{1}+\ldots+x_{n-1} \in X^{[n-1]}$ where x_{1}, \ldots, x_{n-1} are distinct, we obtain

$$
\begin{equation*}
\mathfrak{s}_{n, 1} \sim \text { "the closure of }(X \backslash \operatorname{Supp}(\eta))+\eta \text { in } X^{[n] " .} \tag{22}
\end{equation*}
$$

Alternatively, consider the following commutative diagram:

$$
\begin{array}{clccc}
{\underset{X}{X}}_{\eta} & \subset & X^{[n-1, n]} \quad \stackrel{g_{n}}{\longrightarrow} X^{[n]} \tag{23}\\
\eta \times X & \subset & X^{[n-1]} \times X & &
\end{array}
$$

where \widetilde{X}_{η} stands for the strict transform of $\eta \times X$. By Theorem 2.2 (ii), $\left(f_{n}, q\right)$ is the blowup of $X^{[n-1]} \times X$ along \mathcal{Z}_{n-1}. So \widetilde{X}_{η} is isomorphic to the blowup of X at the $(n-1)$ distinct points x_{1}, \ldots, x_{n-1}. Moreover, $\left.g_{n}\right|_{\tilde{X}_{\eta}}: \widetilde{X}_{\eta} \rightarrow g_{n}\left(\widetilde{X}_{\eta}\right)$ is an isomorphism and $g_{n}\left(\widetilde{X}_{\eta}\right)$ is precisely the closure of $(X \backslash \operatorname{Supp}(\eta))+\eta$ in the Hilbert scheme $X^{[n]}$. So in view of (22), we conclude that

$$
\begin{equation*}
\mathfrak{s}_{n, 1} \sim g_{n}\left(\widetilde{X}_{\eta}\right) \tag{24}
\end{equation*}
$$

Note that the $(n-1)$ exceptional curves in the surface $g_{n}\left(\widetilde{X}_{\eta}\right)$ are

$$
\begin{equation*}
M_{2}\left(x_{i}\right)+\left(\eta \backslash\left\{x_{i}\right\}\right), \quad i=1, \ldots, n-1 . \tag{25}
\end{equation*}
$$

Finally, choose $\eta \in X^{[n-2]}$ such that $\operatorname{Supp}(\eta) \cap(C \cup \widetilde{C})=\emptyset$. Then according to (16), when C and \widetilde{C} are in general position, $\mathfrak{s}_{C, \widetilde{C}}$ is the closure of the subset

$$
\begin{equation*}
\{x+\tilde{x}+\eta \mid x \in C, \tilde{x} \in \widetilde{C}, \text { and } x \neq \tilde{x}\} \subset X^{[n]} \tag{26}
\end{equation*}
$$

Lemma 2.3. Assume that $n \geq 2$ and X is simply-connected. Let $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ be a basis of $H_{2}(X, \mathbb{C})$ represented by real surfaces $\left\{C_{1}, \ldots, C_{s}\right\}$ respectively. Then,
(i) a basis of $H_{2}\left(X^{[n]}, \mathbb{C}\right)$ consists of the homology classes $\beta_{n}, \beta_{C_{1}}, \ldots, \beta_{C_{s}}$;
(ii) a basis of $H_{4}\left(X^{[n]}, \mathbb{C}\right)$ consists of the homology classes $\mathfrak{s}_{n, 1}, \mathfrak{s}_{n, 2}, \mathfrak{s}_{n, 3}, \mathfrak{s}_{C_{i}, 1} \quad(i=$ $1, \ldots, s), \mathfrak{s}_{C_{i}, 2}(i=1, \ldots, s)$, and $\mathfrak{s}_{C_{i}, C_{j}}(i, j=1, \ldots, s)$.
Proof. We shall only prove (ii) since similar argument works for (i).
Fix a point $x \in X$. Expand the basis $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ of $H_{2}(X, \mathbb{C})$ to the basis $\left\{\alpha_{0}=\right.$ $\left.x, \alpha_{1}, \ldots, \alpha_{s}, \alpha_{s+1}=X\right\}$ of $H_{*}(X, \mathbb{C})=H_{0}(X, \mathbb{C}) \oplus H_{2}(X, \mathbb{C}) \oplus H_{4}(X, \mathbb{C})$. By (15), a basis of $H_{4}\left(X^{[n]}, \mathbb{C}\right)$ consists of

$$
\begin{equation*}
\mathfrak{a}_{-n_{1}}\left(\alpha_{m_{1}}\right) \ldots \mathfrak{a}_{-n_{k}}\left(\alpha_{m_{k}}\right)|0\rangle \tag{27}
\end{equation*}
$$

satisfying $n_{i} \geq 1, \sum_{i=1}^{k} n_{i}=n$, and $\sum_{i=1}^{k}\left(2 n_{i}-2+\left|\alpha_{m_{i}}\right|\right)=4$. Note that since X is simplyconnected, $\left|\alpha_{m_{i}}\right| \in\{0,2,4\}$ for every i. Also, $n_{i} \leq 3$ for every i.

First of all, suppose that $n_{i}=3$ for some i. From $\sum_{i=1}^{k}\left(2 n_{i}-2+\left|\alpha_{m_{i}}\right|\right)=4$, we see that such an i is unique and $n_{j}=1$ for $j \neq i$. Moreover, $\left|\alpha_{m_{j}}\right|=0$ for every j, i.e., $\alpha_{m_{j}}=\alpha_{0}=x$ for every j. Since $\sum_{i=1}^{k} n_{i}=n$, we have $k=(n-2)$. So in view of Definition 2.1, the homology class (27) is $\mathfrak{s}_{n, 3}$.

In the following, we assume that $n_{i} \leq 2$ for every i. Then, $n_{i}=2$ for at most two i 's. Suppose $n_{i}=2$ for two i 's, say, $n_{1}=n_{2}=2$. Then, $n_{j}=1$ for $j \neq 1,2, k=(n-2)$, and $\left|\alpha_{m_{j}}\right|=0$ for every j. So the homology class (27) is $\mathfrak{s}_{n, 2}$.

Next, suppose $n_{i}=2$ for exactly one i (and $n_{j}=1$ for $j \neq i$), say, $n_{1}=2$ (and $n_{j}=1$ for $j \neq 1$). Then, $\left|\alpha_{m_{i_{0}}}\right|=2$ for some i_{0} and $\left|\alpha_{m_{j}}\right|=0$ for $j \neq i_{0}$. Thus, the homology class (27) is $\mathfrak{s}_{C_{m_{1}}, 2}$ if $i_{0}=1$, and $\mathfrak{s}_{C_{m_{1}}, 1}$ if $i_{0}>1$.

Finally, assume $n_{i}=1$ for every i. Then, $k=n$ and $\sum_{i=1}^{k}\left|\alpha_{m_{i}}\right|=4$. If $\left|\alpha_{m_{i_{0}}}\right|=4$ for some i_{0} and $\left|\alpha_{m_{j}}\right|=0$ for $j \neq i_{0}$, then the homology class (27) is $\mathfrak{s}_{n, 1}$. The remaining case is when $\left|\alpha_{m_{i_{0}}}\right|=\left|\alpha_{m_{i_{1}}}\right|=2$ for some i_{0} and i_{1} with $i_{0} \neq i_{1}$, and $\left|\alpha_{m_{j}}\right|=0$ for $j \neq i_{0}, i_{1}$. In this case, the homology class (27) is $\mathfrak{s}_{C_{m_{i}}}, C_{m_{i_{1}}}$.

Next, we recall certain results proved in section 4 of [LQZ].
Theorem 2.4. (see [LQZ]) Let $n \geq 2$, and X be simply-connected.
(i) A curve γ in $X^{[n]}$ is homologous to β_{n} if and only if $\gamma=f_{n+1}(C)$ where C is a line in the projective space $\left(\psi_{n+1}\right)^{-1}(\eta, x)$ for some $(\eta, x) \in \mathcal{Z}_{n+1}$. Moreover, in this case, the point (η, x) and the line C are uniquely determined by γ;
(ii) Let $\mathfrak{M}\left(\beta_{n}\right)$ be the moduli space of all the curves in the Hilbert scheme $X^{[n]}$ homologous to β_{n}. Then, $\mathfrak{M}\left(\beta_{n}\right)$ has dimension $(2 n-2)$, and its top stratum consists of all the points corresponding to curves of the form (2);
(iii) Let γ be the curve of the form (2). Then, its normal bundle in $X^{[n]}$ is

$$
\begin{equation*}
N_{\gamma \subset X[n]} \cong \mathcal{O}_{\gamma}^{\oplus(2 n-2)} \oplus \mathcal{O}_{\gamma}(-2) \tag{28}
\end{equation*}
$$

3. The 1-point Gromov-Witten invariants $\langle\alpha\rangle_{0, d \beta_{n}}$ of $X^{[n]}$

In this section, we shall compute all the 1-point Gromov-Witten invariants $\langle\alpha\rangle_{0, d \beta_{n}}$ of $X^{[n]}$ for $n \geq 2$ and $d \geq 1$. One of the key steps is to determine the obstruction bundle over a Zariski open subset of the moduli space $\overline{\mathfrak{M}}_{0,0}\left(X^{[n]}, d \beta_{n}\right)$.

3.1. The obstruction bundle

We start with some notations. Let S_{n} be the symmetric group of n letters, and $|\operatorname{Supp}(\xi)|$ be the number of points in $\operatorname{Supp}(\xi)$. Recall from (1) the Hilbert-Chow map $\rho: X^{[n]} \rightarrow X^{(n)}=X^{n} / S_{n}$, where X^{n} is the Cartesian product of n copies of X. Let $\sigma: X^{n} \rightarrow X^{(n)}$ be the natural quotient map.

Notation. Put $X_{*}^{[n]}=\left\{\xi \in X^{[n]}| | \operatorname{Supp}(\xi) \mid \geq n-1\right\}$ and

$$
\begin{aligned}
X_{*}^{(n)} & =\rho\left(X_{*}^{[n]}\right), \\
X_{*}^{n} & =\sigma^{-1}\left(X_{*}^{(n)}\right), \\
B & =\left\{\xi \in X^{[n]}| | \operatorname{Supp}(\xi) \mid<n\right\}, \\
B_{*} & =\left\{\xi \in X^{[n]}| | \operatorname{Supp}(\xi) \mid=n-1\right\}, \\
X_{s *}^{(n)} & =\rho\left(B_{*}\right), \\
\Delta_{n *} & =\sigma^{-1}(\rho(B)) \cap X_{*}^{n}=\coprod_{1 \leq i<j \leq n} \Delta_{n *}^{i, j}
\end{aligned}
$$

where $\Delta_{n *}^{i, j}=\left\{\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right) \in X_{*}^{n} \mid x_{i}=x_{j}\right\}$ for $1 \leq i<j \leq n$.
When we compute the 1-point Gromov-Witten invariants $\langle\alpha\rangle_{0, d \beta_{n}}$, only $X_{*}^{[n]}$ is involved in most of the cases. Even though $X^{[n]}$ is very complicated, the open subset $X_{*}^{[n]}$ has a very simple description given below (see [Fo2]). Let $\widetilde{X_{*}^{n}}$ be the blow up of X_{*}^{n} along the big diagonal $\Delta_{n *}$. The action of S_{n} on X_{*}^{n} lifts to an action on $\widetilde{X_{*}^{n}}$ and $X_{*}^{[n]}=\widetilde{X_{*}^{n}} / S_{n}$. Let $\tilde{\sigma}: \widetilde{X_{*}^{n}} \rightarrow X_{*}^{[n]}$ be the quotient map. Let $E_{*}^{i, j} \subset \widetilde{X_{*}^{n}}$ be the exceptional locus over $\Delta_{n *}^{i, j}$. Consider the following morphisms:

$$
\begin{align*}
p_{1,2} & : \Delta_{n *}^{1,2} \longrightarrow X, \quad\left(x, x, x_{3}, \ldots, x_{n}\right) \rightarrow x \tag{29}\\
j_{2} & : X_{s *}^{(n)} \longrightarrow X, \quad 2 x+x_{3}+\ldots+x_{n} \rightarrow x . \tag{30}
\end{align*}
$$

Since the normal bundle of $\Delta_{n *}^{1,2}$ in X_{*}^{n} is isomorphic to $p_{1,2}^{*} T_{X}$, we have $E_{*}^{1,2} \cong \mathbb{P}\left(p_{1,2}^{*} T_{X}^{*}\right)$. The subgroup $S_{2} \times S_{n-2} \subset S_{n}$ acts on $\Delta_{n *}^{1,2}$ with the S_{2}-factor acting trivially on $\Delta_{n *}^{1,2}$. The action of $S_{2} \times S_{n-2}$ on $\Delta_{n *}^{1,2}$ lifts to an action on $E_{*}^{1,2}$. It is easy to see that $X_{s *}^{(n)}=$ $\Delta_{n *}^{1,2} /\left(S_{2} \times S_{n-2}\right)$ and $B_{*}=E_{*}^{1,2} /\left(S_{2} \times S_{n-2}\right)$. Regard $p_{1,2}: \Delta_{n *}^{1,2} \rightarrow X$ as an $S_{2} \times S_{n-2^{-}}$ equivariant morphism where $S_{2} \times S_{n-2}$ acts on X trivially. Then, $S_{2} \times S_{n-2}$ acts on $p_{1,2}^{*} T_{X}^{*}$, and the isomorphism $E_{*}^{1,2} \cong \mathbb{P}\left(p_{1,2}^{*} T_{X}^{*}\right)$ is $S_{2} \times S_{n-2}$-equivariant. So we get an isomorphism

$$
j_{1}: B_{*}=E_{*}^{1,2} /\left(S_{2} \times S_{n-2}\right) \cong \mathbb{P}\left(p_{1,2}^{*} T_{X}^{*}\right) /\left(S_{2} \times S_{n-2}\right) \cong \mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)
$$

where the last isomorphism is due to the fact that the S_{2}-factor acts trivially on $p_{1,2}^{*} T_{X}$ and the S_{n-2}-factor commutes with the morphism $p_{1,2}$.

Next, we study $\mathcal{O}_{B_{*}}\left(B_{*}\right)$. Since $\tilde{\sigma}^{*} \mathcal{O}_{X_{*}^{[n]}}\left(B_{*}\right) \cong \mathcal{O}_{\widehat{X_{*}^{n}}}\left(2 \sum_{1 \leq i<j \leq n} E_{*}^{i, j}\right)$ and $E_{*}^{i, j} \cap$ $E_{*}^{1,2} \neq \emptyset$ if and only $i=1$ and $j=2$, we conclude that

$$
\begin{equation*}
\left.\left(\left.\tilde{\sigma}\right|_{E_{*}^{1,2}}\right)^{*} \mathcal{O}_{B_{*}}\left(B_{*}\right) \cong \tilde{\sigma}^{*} \mathcal{O}_{X_{*}^{[n]}}\left(B_{*}\right)\right|_{E_{*}^{1,2}} \cong \mathcal{O}_{E_{*}^{1,2}}\left(2 E_{*}^{1,2}\right) \cong \mathcal{O}_{\mathbb{P}\left(p_{1,2}^{*} T_{X}^{*}\right)}(-2) \tag{31}
\end{equation*}
$$

where we have used the fact that $\mathcal{O}_{E_{*}^{1,2}}\left(E_{*}^{1,2}\right) \cong \mathcal{O}_{\mathbb{P}\left(p_{1,2}^{*} T_{X}^{*}\right)}(-1)$ via the isomorphism $E_{*}^{1,2} \cong \mathbb{P}\left(p_{1,2}^{*} T_{X}^{*}\right)$. Note that $\mathcal{O}_{\mathbb{P}\left(p_{1,2}^{*} T_{X}^{*}\right)}(-2)=\tau^{*}\left(\mathcal{O}_{\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)}(-2)\right)$ where $\tau: \mathbb{P}\left(p_{1,2}^{*} T_{X}^{*}\right) \rightarrow$ $\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)$ is the natural morphism. Moreover, $j_{1} \circ\left(\left.\tilde{\sigma}\right|_{E_{*}^{1,2}}\right)=\tau$ via the isomorphism $E_{*}^{1,2} \cong$

LI, QIN

$\mathbb{P}\left(p_{1,2}^{*} T_{X}^{*}\right)$. Combining with (31), we obtain $\left(\left.\tilde{\sigma}\right|_{E_{*}^{1,2}}\right)^{*} \mathcal{O}_{B_{*}}\left(B_{*}\right) \cong\left(\left.\tilde{\sigma}\right|_{E_{*}^{1,2}}\right)^{*}\left(j_{1}^{*} \mathcal{O}_{\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)}(-2)\right)$. Since $\operatorname{Pic}\left(B_{*}\right)$ has no torsion, we have

$$
\begin{equation*}
\mathcal{O}_{B_{*}}\left(B_{*}\right) \cong j_{1}^{*} \mathcal{O}_{\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)}(-2) \tag{32}
\end{equation*}
$$

Consider the open subset \mathfrak{U}_{0} of $\overline{\mathfrak{M}}_{0,0}\left(X^{[n]}, d \beta_{n}\right)$ consisting of stable maps $\left[\mu: D \rightarrow X^{[n]}\right]$ such that $\mu(D) \subset X_{*}^{[n]}$. Similarly, take the open subset \mathfrak{U}_{1} of $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ consisting of stable maps $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$ such that $\mu(D) \subset X_{*}^{[n]}$. Clearly $\mathfrak{U}_{1}=f_{1,0}^{-1}\left(\mathfrak{U}_{0}\right)$. Let $\left[\mu:(D ; p) \rightarrow X^{[n]}\right] \in \mathfrak{U}_{1}$. Since $\mu_{*}(D) \sim d \beta_{n}$, we must have $\mu(D)=M_{2}\left(x_{2}\right)+x_{3}+\ldots+x_{n}$ for some distinct points $x_{2}, \ldots, x_{n} \in X$. Hence $\mu(D) \subset B_{*}$. Moreover, the composite $\rho \circ e v_{1}$ sends the stable map $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$ to the point $2 x_{2}+x_{3}+\ldots+x_{n}$, which is independent of the marked point p on D. Hence $e v_{1}$ induces a morphism ϕ from \mathfrak{U}_{0} to $\rho\left(B_{*}\right)$. Putting $\widetilde{e v}_{1}=\left.e v_{1}\right|_{\mathfrak{L}_{1}}$ and $\tilde{f}_{1,0}=\left.f_{1,0}\right|_{\mathfrak{U}_{1}}$, we have the following commutative diagram:

$$
\begin{array}{ccccccc}
\mathfrak{U}_{1} & \stackrel{\widetilde{e ِ}_{1}}{\longrightarrow} & B_{*} & \stackrel{j_{1}}{\cong} \mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right) & & \tag{33}\\
\downarrow^{\tilde{f}_{1,0}} & & \downarrow^{\rho} & & \downarrow^{\pi} & & \\
\mathfrak{U}_{0} & \xrightarrow{\phi} & \rho\left(B_{*}\right) & = & X_{s *}^{(n)} & \xrightarrow{j_{2}} & X
\end{array}
$$

where $\pi: \mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right) \rightarrow X_{s *}^{(n)}$ is the natural projection of the \mathbb{P}^{1}-bundle.
Note that the fiber $\phi^{-1}\left(2 x_{2}+x_{3}+\ldots+x_{n}\right)$ over a fixed point $2 x_{2}+x_{3}+\ldots+x_{n} \in \rho\left(B_{*}\right)$ is simply $\overline{\mathfrak{M}}_{0,0}\left(M_{2}\left(x_{2}\right)+x_{3}+\ldots+x_{n}, d\left[M_{2}\left(x_{2}\right)+x_{3}+\ldots+x_{n}\right]\right)$ which is isomorphic to the moduli space $\overline{\mathfrak{M}}_{0,0}\left(\mathbb{P}^{1}, d\left[\mathbb{P}^{1}\right]\right)$ via the isomorphism $M_{2}\left(x_{2}\right)+x_{3}+\ldots+x_{n} \cong \mathbb{P}^{1}$. Hence the complex dimension of \mathfrak{U}_{0} is equal to

$$
\operatorname{dim} \overline{\mathfrak{M}}_{0,0}\left(\mathbb{P}^{1}, d\left[\mathbb{P}^{1}\right]\right)+2(n-1)=2 n-3+2 d-1
$$

The expected dimension of $\mathfrak{M}_{0,0}\left(X^{[n]}, d \beta_{n}\right)$ is $2 n-3$ according to the formula (7) where we used $K_{X[n]} \cdot d \beta_{n}=0$. Hence the excess dimension of \mathfrak{U}_{0} is $e=(2 d-1)$.

Lemma 3.1. With notations as above, the restriction of $R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}^{*} T_{X^{[n]}}\right)$ to \mathfrak{U}_{0} is a locally free sheaf of rank $(2 d-1)$.

Proof. Take a stable map $u=\left[\mu: D \rightarrow X^{[n]}\right]$ in \mathfrak{U}_{0}, and consider

$$
H^{1}\left(f_{1,0}^{-1}(u),\left.\left(e v_{1}^{*} T_{X^{[n]}}\right)\right|_{f_{1,0}(u)} ^{-1}\right) \cong H^{1}\left(D, \mu^{*} T_{X^{[n]}}\right)
$$

Since $\mu(D)=M_{2}\left(x_{2}\right)+x_{3}+\ldots+x_{n} \cong \mathbb{P}^{1}$ for some distinct points x_{2}, \ldots, x_{n}, we have $\left.T_{X^{[n]}}\right|_{\mu(D)}=\mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{1}}^{(2 n-2)}$ by Theorem 2.4 (iii). Thus

$$
H^{1}\left(D, \mu^{*} T_{X[n]}\right) \cong H^{1}\left(D, \mu^{*} \mathcal{O}_{\mathbb{P}^{1}}(-2)\right)
$$

which has dimension equal to the excess dimension $e=(2 d-1)$. Hence the direct image sheaf $R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}^{*} T_{X^{[n]}}\right)$ over \mathfrak{U}_{0} is locally free of rank $(2 d-1)$.

Suppose that \mathfrak{M}_{1} is a closed subset of $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ contained in \mathfrak{U}_{1} and $\mathfrak{M}_{0}=$ $f_{1,0}\left(\mathfrak{M}_{1}\right) \subset \mathfrak{U}_{0} \subset \overline{\mathfrak{M}}_{0,0}\left(X^{[n]}, d \beta_{n}\right)$. By Proposition 2.1 (i) and (iii), we have

$$
\begin{equation*}
\left.\left[\overline{\mathfrak{M}}_{0,1}(Y, \beta)\right]^{\mathrm{vir}}\right|_{\mathfrak{M}_{1}}=\left(\tilde{f}_{1,0}\right)^{*} c_{2 d-1}\left(\left.\left(R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}\right)^{*} T_{X^{[n]}}\right)\right|_{\mathfrak{M}_{0}}\right) . \tag{34}
\end{equation*}
$$

Hence it is crucial to determine the sheaf $R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}\right)^{*} T_{X^{[n]}}$ over \mathfrak{U}_{0}.
Lemma 3.2. Let \mathcal{V} denote the restriction of $R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}\right)^{*} T_{X^{[n]}}$ to \mathfrak{U}_{0}. Then,
(i) $\left.\mathcal{V} \cong R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(\widetilde{e v}_{1}\right)^{*} \mathcal{O}_{B_{*}}\left(B_{*}\right) \cong R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(j_{1} \circ \widetilde{e v}\right)\right)^{*} \mathcal{O}_{\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)}(-2)$.
(ii) the locally free sheaf \mathcal{V} sits in the exact sequence

$$
\begin{align*}
0 & \rightarrow\left(j_{2} \circ \phi\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right) \rightarrow \mathcal{V} \\
& \rightarrow R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(j_{1} \circ \widetilde{e v}_{1}\right)^{*}\left(\left(j_{2} \circ \pi\right)^{*} T_{X} \otimes \mathcal{O}_{\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)}(-1)\right) \rightarrow 0 . \tag{35}
\end{align*}
$$

Proof. (i) Since $e v_{1}\left(\mathfrak{U}_{1}\right) \subset B_{*}$, we have $\left.\left(\left(e v_{1}\right)^{*} T_{X^{[n]}}\right)\right|_{\mathfrak{U}_{1}}=\left(\widetilde{e v}_{1}\right)^{*}\left(T_{X_{*}^{[n]} \mid B_{*}}\right)$ and $\mathcal{V}=$ $\left.\left(R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}\right)^{*} T_{X[n]}\right)\right|_{\mathfrak{U}_{0}}=R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(\left.\left(\left(e v_{1}\right)^{*} T_{X^{[n]}}\right)\right|_{\mathfrak{L}_{1}}\right)=R^{1}\left(\tilde{f}_{1,0}\right)_{*}(\widetilde{e v} 1)^{*}\left(\left.T_{X^{[n]}}\right|_{B_{*}}\right)$. Since B_{*} is a smooth codimension- 1 subvariety of $X^{[n]}$, we obtain the exact sequence

$$
\begin{equation*}
\left.0 \rightarrow T_{B_{*}} \rightarrow T_{X^{[n]}}\right|_{B_{*}} \rightarrow \mathcal{O}_{B_{*}}\left(B_{*}\right) \rightarrow 0 . \tag{36}
\end{equation*}
$$

Applying $\left(\widetilde{e v}_{1}\right)^{*}$ and $\left(\tilde{f}_{1,0}\right)_{*}$ to the exact sequence (36), we get

$$
R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(\widetilde{e v}_{1}\right)^{*} T_{B_{*}} \rightarrow \mathcal{V} \rightarrow R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(\widetilde{e v}_{1}\right)^{*} \mathcal{O}_{B_{*}}\left(B_{*}\right) \rightarrow 0
$$

where we have used $R^{2}\left(\tilde{f}_{1,0}\right)_{*}\left(\widetilde{e v}_{1}\right)^{*} T_{B_{*}}=0$ since $\tilde{f}_{1,0}$ is of relative dimension 1 .
If $\left[\mu: D \rightarrow X^{[n]}\right]$ is a stable map in \mathfrak{U}_{0}, then $\mu(D)=M_{2}\left(x_{2}\right)+x_{3}+\ldots+x_{n}$. Hence the normal bundle of $\mu(D)$ in B_{*} is trivial since $\mu(D)$ is a fiber of the \mathbb{P}^{1}-bundle $\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)$ over $X_{s *}^{(n)}$. Thus $\left.T_{B_{*}}\right|_{\mu(D)} \cong \mathcal{O}_{\mu(D)}(2) \oplus \mathcal{O}_{\mu(D)}^{\oplus(2 n-2)}$. Therefore, $H^{1}\left(D, \mu^{*} T_{B_{*}}\right) \cong$ $H^{1}\left(D, \mu^{*}\left(\mathcal{O}_{\mu(D)}(2) \oplus \mathcal{O}_{\mu(D)}^{\oplus(2 n-2)}\right)\right)=0$, and $R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(\widetilde{e v}_{1}\right)^{*} T_{B_{*}}=0$. So in view of (32), we have

$$
\mathcal{V} \cong R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(\widetilde{e v}_{1}\right)^{*} \mathcal{O}_{B_{*}}\left(B_{*}\right) \cong R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(j_{1} \circ \widetilde{e v}_{1}\right)^{*} \mathcal{O}_{\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)}(-2)
$$

(ii) For simplicity, we denote $\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)$ by \mathbb{P}. Consider the natural surjection $\pi^{*}\left(j_{2}^{*} T_{X}^{*}\right) \rightarrow$ $\mathcal{O}_{\mathbb{P}}(1) \rightarrow 0$. The kernel of this surjection is a line bundle. By comparing the first Chern classes, we get the following exact sequence:

$$
\begin{equation*}
0 \rightarrow \pi^{*} \mathcal{O}_{X_{s *}^{(n)}}\left(j_{2}^{*} K_{X}\right) \otimes \mathcal{O}_{\mathbb{P}}(-1) \rightarrow \pi^{*}\left(j_{2}^{*} T_{X}^{*}\right) \rightarrow \mathcal{O}_{\mathbb{P}}(1) \rightarrow 0 \tag{37}
\end{equation*}
$$

Tensoring (37) with $\pi^{*} \mathcal{O}_{X_{s *}^{(n)}}\left(-j_{2}^{*} K_{X}\right) \otimes \mathcal{O}_{\mathbb{P}}(-1)$, we get

$$
\begin{align*}
0 \rightarrow & \mathcal{O}_{\mathbb{P}}(-2) \rightarrow\left(j_{2} \circ \pi\right)^{*}\left(T_{X}^{*} \otimes \mathcal{O}_{X}\left(-K_{X}\right)\right) \otimes \mathcal{O}_{\mathbb{P}}(-1) \\
& \rightarrow\left(j_{2} \circ \pi\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right) \rightarrow 0 . \tag{38}
\end{align*}
$$

Note that $T_{X}^{*} \otimes \mathcal{O}_{X}\left(-K_{X}\right) \cong T_{X}$. Applying $\left(j_{1} \circ \widetilde{e v}_{1}\right)^{*}$ to (38) yields

$$
\begin{align*}
0 \rightarrow & \left(j_{1} \circ \tilde{e v}_{1}\right)^{*} \mathcal{O}_{\mathbb{P}}(-2) \rightarrow\left(j_{1} \circ \widetilde{e v}_{1}\right)^{*}\left(\left(j_{2} \circ \pi\right)^{*} T_{X} \otimes \mathcal{O}_{\mathbb{P}}(-1)\right) \\
& \rightarrow\left(j_{2} \circ \pi \circ j_{1} \circ \widetilde{e v}_{1}\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right) \rightarrow 0 . \tag{39}
\end{align*}
$$

By (33), we have $\left(j_{2} \circ \pi \circ j_{1} \circ \widetilde{e v}_{1}\right)^{*}=\left(j_{2} \circ \phi \circ \tilde{f}_{1,0}\right)^{*}=\left(\tilde{f}_{1,0}\right)^{*} \circ\left(j_{2} \circ \phi\right)^{*}$. So rewriting the 3rd term in the exact sequence (39), we obtain

$$
\begin{align*}
0 \rightarrow & \left(j_{1} \circ \widetilde{e v}_{1}\right)^{*} \mathcal{O}_{\mathbb{P}}(-2) \rightarrow\left(j_{1} \circ \widetilde{e v}_{1}\right)^{*}\left(\left(j_{2} \circ \pi\right)^{*} T_{X} \otimes \mathcal{O}_{\mathbb{P}}(-1)\right) \\
& \rightarrow\left(\tilde{f}_{1,0}\right)^{*}\left(\left(j_{2} \circ \phi\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right)\right) \rightarrow 0 . \tag{40}
\end{align*}
$$

Applying $\left(\tilde{f}_{1,0}\right)_{*}$ to the above exact sequence and using part (i), we have

$$
\begin{aligned}
0 & \rightarrow\left(\tilde{f}_{1,0}\right)_{*}\left(\tilde{f}_{1,0}\right)^{*}\left(\left(j_{2} \circ \phi\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right)\right) \rightarrow \mathcal{V} \\
& \rightarrow R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(j_{1} \circ \tilde{e v}_{1}\right)^{*}\left(\left(j_{2} \circ \pi\right)^{*} T_{X} \otimes \mathcal{O}_{\mathbb{P}}(-1)\right) \\
& \rightarrow R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(\tilde{f}_{1,0}\right)^{*}\left(\left(j_{2} \circ \phi\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right)\right)
\end{aligned}
$$

where we have used $\left(\tilde{f}_{1,0}\right)_{*}\left(j_{1} \circ \widetilde{e v}_{1}\right)^{*}\left(\left(j_{2} \circ \pi\right)^{*} T_{X} \otimes \mathcal{O}_{\mathbb{P}}(-1)\right)=0$. Note that $\left(\tilde{f}_{1,0}\right)_{*} \mathcal{O}_{\mathfrak{U}_{1}} \cong$ $\mathcal{O}_{\mathfrak{U}_{0}}$ and $R^{1}\left(\tilde{f}_{1,0}\right)_{*} \mathcal{O}_{\mathfrak{U}_{1}}=0$. So we get

$$
\begin{aligned}
\left(\tilde{f}_{1,0}\right)_{*}\left(\tilde{f}_{1,0}\right)^{*}\left(\left(j_{2} \circ \phi\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right)\right) & \cong\left(j_{2} \circ \phi\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right) \otimes\left(\tilde{f}_{1,0}\right)_{*} \mathcal{O}_{\mathfrak{U}_{1}} \\
& \cong\left(j_{2} \circ \phi\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right)
\end{aligned}
$$

by the projection formula. Similarly, $R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(\tilde{f}_{1,0}\right)^{*}\left(\left(j_{2} \circ \phi\right)^{*} \mathcal{O}_{X}\left(-K_{X}\right)\right)=0$. Therefore, the locally free sheaf \mathcal{V} sits in the exact sequence (35).
Remark 3.1. Fix distinct points x_{2}, \ldots, x_{n} on X. Via the isomorphism $\phi^{-1}\left(2 x_{2}+x_{3}+\right.$ $\left.\ldots+x_{n}\right) \cong \overline{\mathfrak{M}}_{0,0}\left(\mathbb{P}^{1}, d\left[\mathbb{P}^{1}\right]\right)$, the restriction of $R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(j_{1} \circ \widetilde{e v}_{1}\right)^{*}\left(\left(j_{2} \circ \pi\right)^{*} T_{X} \otimes \mathcal{O}_{\mathbb{P}}(-1)\right)$ to $\phi^{-1}\left(2 x_{2}+x_{3}+\ldots+x_{n}\right)$ is isomorphic to

$$
R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)
$$

where by abusing notations, we still use $f_{1,0}$ and $e v_{1}$ to denote the forgetful map and the evaluation map from $\overline{\mathfrak{M}}_{0,1}\left(\mathbb{P}^{1}, d\left[\mathbb{P}^{1}\right]\right)$ to $\overline{\mathfrak{M}}_{0,0}\left(\mathbb{P}^{1}, d\left[\mathbb{P}^{1}\right]\right)$ and \mathbb{P}^{1} respectively.

3.2. The 1-point Gromov-Witten invariants $\langle\alpha\rangle_{0, d \beta_{n}}$

In this subsection, we compute all the 1-point Gromov-Witten invariants $\langle\alpha\rangle_{0, d \beta_{n}}$ for the Hilbert schemes $X^{[n]}$. Recall from (8) and (7) that $|\alpha|=4 n-4$. In view of Lemma 2.3 (ii), we need only to compute $\langle\alpha\rangle_{0, d \beta_{n}}$ when α is the Poincaré duals of $\mathfrak{s}_{n, 1}$, $\mathfrak{s}_{n, 2}, \mathfrak{s}_{n, 3}, \mathfrak{s}_{C_{1}, 1}, \mathfrak{s}_{C_{1}, 2}$, and $\mathfrak{s}_{C_{1}, C_{2}}$ where C_{1} and C_{2} are two smooth real surfaces in X. These six cases will be divided into two lemmas.

Lemma 3.3. Let $d \geq 1$, and C_{1} and C_{2} be smooth real surfaces in X.
(i) If α is the Poincaré dual of $\mathfrak{s}_{n, 1}, \mathfrak{s}_{C_{1}, C_{2}}$, or $\mathfrak{s}_{C_{1}, 1}$, then $\langle\alpha\rangle_{0, d \beta_{n}}=0$.
(ii) If α is the Poincare dual of $\mathfrak{s}_{C_{1}, 2}$, then $\langle\alpha\rangle_{0, d \beta_{n}}=2\left(K_{X} \cdot C_{1}\right) / d^{2}$.

Proof. (i) Suppose that α is Poincaré dual to $\mathfrak{s}_{n, 1}$. Fix distinct points $x_{1}, \ldots, x_{n-1} \in X$ which are not contained in $C_{1} \cup C_{2}$. By $(24), \mathfrak{s}_{n, 1} \sim g_{n}\left(\widetilde{X_{\eta}}\right) \cong \widetilde{X_{\eta}}$ where $\widetilde{X_{\eta}}$ is the blow up of X along $\eta=x_{1}+\ldots+x_{n-1}$. Moreover, the exceptional curves in $g_{n}\left(\widetilde{X_{\eta}}\right)$ are $\rho^{-1}\left(x_{1}+\ldots+x_{i-1}+2 x_{i}+x_{i+1}+\ldots+x_{n-1}\right)$ for $1 \leq i \leq n-1$. Let \mathfrak{M}_{1} be
the subset of $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ consisting of all the stable maps $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$ such that $\mu(p) \in g_{n}\left(\widetilde{X_{\eta}}\right)$. In this case, $\mu(D)$ is one of the exceptional curves in $g_{n}\left(\widetilde{X_{\eta}}\right) \subset$ B_{*}. In particular, the stable maps $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$ are contained in \mathfrak{U}_{1}, and $\mathfrak{M}_{1}=$ $\coprod_{1 \leq i \leq n-1}\left(\tilde{f}_{1,0}\right)^{-1}\left(\phi^{-1}\left(x_{1}+\ldots+x_{i-1}+2 x_{i}+x_{i+1}+\ldots+x_{n-1}\right)\right)$. So as algebraic cycles, we have $\left[\mathfrak{M}_{1}\right]=\sum_{i=1}^{n-1}\left(\tilde{f}_{1,0}\right)^{*} \phi^{*}\left[x_{1}+\ldots+x_{i-1}+2 x_{i}+x_{i+1}+\ldots+x_{n-1}\right]$. By Lemma 3.2 (ii), we get $c_{2 d-1}(\mathcal{V})=-\left(j_{2} \circ \phi\right)^{*} K_{X} \cdot c_{2 d-2}(\mathcal{E})$ where $\mathcal{E}=R^{1}\left(\tilde{f}_{1,0}\right)_{*}\left(j_{1} \circ \widetilde{e v}_{1}\right)^{*}\left(\left(j_{2} \circ \pi\right)^{*} T_{X} \otimes\right.$ $\left.\mathcal{O}_{\mathbb{P}\left(j_{2}^{*} T_{X}^{*}\right)}(-1)\right)$. In view of (9) and (34),

$$
\begin{aligned}
& \langle\alpha\rangle_{0, d \beta_{n}}=\int_{\left[\overline{\mathfrak{M}}_{0,1}(Y, \beta)\right]_{\mathrm{vir}}}\left(e v_{1}\right)^{*} \alpha=\left[\mathfrak{M}_{1}\right] \cdot\left[\overline{\mathfrak{M}}_{0,1}(Y, \beta)\right]^{\mathrm{vir}} \\
= & {\left.\left[\mathfrak{M}_{1}\right] \cdot\left[\overline{\mathfrak{M}}_{0,1}(Y, \beta)\right]^{\mathrm{vir}}\right|_{\mathfrak{M}_{1}}=\left[\mathfrak{M}_{1}\right] \cdot\left(\tilde{f}_{1,0}\right)^{*}\left(c_{2 d-1}(\mathcal{V})\right) } \\
= & -\sum_{i=1}^{n-1}\left(\tilde{f}_{1,0}\right)^{*}\left(\phi^{*}\left(\left[x_{1}+\ldots+2 x_{i}+\ldots+x_{n-1}\right] \cdot j_{2}^{*} K_{X}\right) \cdot c_{2 d-2}(\mathcal{E})\right)=0 .
\end{aligned}
$$

Next let α be the Poincaré dual of $\mathfrak{s}_{C_{1}, C_{2}}$. We may assume that C_{1} and C_{2} intersect transversally at the points y_{1}, \ldots, y_{m}. By $(26), \mathfrak{s}_{C_{1}, C_{2}}$ is the closure of

$$
\left\{x+\tilde{x}+x_{1}+\ldots+x_{n-2} \mid x \in C_{1}, \tilde{x} \in C_{2}, \text { and } x \neq \tilde{x}\right\} \subset X^{[n]}
$$

Let $\mathfrak{M}_{1}^{\prime} \subset \overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ consist of all the stable maps $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$ such that $\mu(p) \in \mathfrak{s}_{C_{1}, C_{2}}$. In this case, $\rho(\mu(D))=2 y_{k}+x_{1}+\ldots+x_{n-2}$ for some k with $1 \leq k \leq m$. Therefore, $\mu(D)=\rho^{-1}\left(2 y_{k}+x_{1}+\ldots+x_{n-2}\right)$. Hence the stable map $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$ is contained in \mathfrak{U}_{1}. So $\mathfrak{M}_{1}^{\prime} \subset \mathfrak{U}_{1}$ is the disjoint union of $\left(\tilde{f}_{1,0}\right)^{-1}\left(\phi^{-1}\left(2 y_{k}+x_{1}+\ldots+x_{n-2}\right)\right)$, $1 \leq k \leq m$, with \pm orientations. By the same computations as in the previous paragraph, we obtain $\langle\alpha\rangle_{0, d \beta_{n}}=0$.

For the case of $\mathfrak{s}_{C_{1}, 1}$, the proof is similar to the cases of $\mathfrak{s}_{n, 1}$ and $\mathfrak{s}_{C_{1}, C_{2}}$.
(ii) Let $\tilde{\eta}=x_{1}+\ldots+x_{n-2}$. By $(21), \mathfrak{s}_{C_{1}, 2} \sim M_{2}\left(C_{1}\right)+\tilde{\eta}=\rho^{-1}\left(2 C_{1}+\tilde{\eta}\right)$. Thus, we have $\alpha=\operatorname{PD}\left(\rho^{-1}\left(2 C_{1}+\tilde{\eta}\right)\right)$ where PD stands for the Poincaré dual. So we see from (34) and Lemma 3.2 (ii) that

$$
\begin{align*}
& \langle\alpha\rangle_{0, d \beta_{n}}=\int_{\left[\bar{M}_{0,1}(Y, \beta)\right]^{\text {vir }}}\left(e v_{1}\right)^{*} \alpha=\int_{-\left(\tilde{f}_{1,0}\right)^{*}\left(j_{2} \circ \phi\right)^{*} K_{X} \cdot\left(\tilde{f}_{1,0}\right)^{*} c_{2 d-2}(\mathcal{E})}\left(e v_{1}\right)^{*} \alpha \\
= & -\int_{\left(\widetilde{e v_{1}}\right)^{*}\left(\rho^{*} j_{2}^{*} K_{X}\right) \cdot\left(\tilde{f}_{1,0}\right)^{*} c_{2 d-2}(\mathcal{E})}\left(e v_{1}\right)^{*} \alpha \\
= & -\int_{\left(\widetilde{e v_{1}}\right)^{*}\left(\rho^{*} j_{2}^{*} K_{X}\right) \cdot\left(\tilde{f}_{1,0}\right)^{*} c_{2 d-2}(\mathcal{E})}\left(\widetilde{e v}_{1}\right)^{*} \operatorname{PD}\left(\rho^{-1}\left(2 C_{1}+\tilde{\eta}\right) \cdot c_{1}\left(\mathcal{O}_{B_{*}}\left(B_{*}\right)\right)\right) \\
= & -\int_{\left(\tilde{f}_{1,0}\right)^{*} c_{2 d-2}(\mathcal{E})}\left(\widetilde{e v}_{1}\right)^{*} \operatorname{PD}\left(\rho^{-1}\left(\left(j_{2}^{*} K_{X}\right) \cdot\left(2 C_{1}+\tilde{\eta}\right)\right) \cdot c_{1}\left(\mathcal{O}_{B_{*}}\left(B_{*}\right)\right)\right) \\
= & 2\left(K_{X} \cdot C_{1}\right) \cdot \int_{\left(\tilde{f}_{1,0}\right)^{*} c_{2 d-2}(\mathcal{E})}\left(\widetilde{e v}_{1}\right)^{*} \operatorname{PD}(\xi) \tag{41}
\end{align*}
$$

LI, QIN

where $\xi \in \rho^{-1}(2 x+\tilde{\eta})=\rho^{-1}\left(2 x+x_{1}+\ldots+x_{n-2}\right)$ is a fixed point for some fixed point $x \in C_{1}$. Also, we have used the isomorphism (32) in the last step.

Let $\mathfrak{M}_{1}^{\prime \prime} \subset \overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ be the subset consisting of all stable maps $[\mu:(D ; p) \rightarrow$ $\left.X^{[n]}\right]$ with $\mu(p)=\xi$. If $\left[\mu:(D ; p) \rightarrow X^{[n]}\right] \in \mathfrak{M}_{1}^{\prime \prime}$, then $\rho(\mu(D))=\rho(\mu(p))=2 x+x_{1}+$ $\ldots+x_{n-2}$. So $\mu(D)=\rho^{-1}\left(2 x+x_{1}+\ldots+x_{n-2}\right)$. Thus the restriction of the forgetful map $\tilde{f}_{1,0}$ to $\mathfrak{M}_{1}^{\prime \prime}$ gives a degree- d morphism from $\mathfrak{M}_{1}^{\prime \prime}$ to $\mathfrak{M}_{0}^{\prime \prime} \stackrel{\text { def }}{=} \phi^{-1}\left(2 x+x_{1}+\ldots+x_{n-2}\right)$. Hence, as algebraic cycles, we have $\left(\tilde{f}_{1,0}\right)_{*}\left[\mathfrak{M}_{1}^{\prime \prime}\right]=d\left[\mathfrak{M}_{0}^{\prime \prime}\right]=d \cdot \phi^{*}\left[2 x+x_{1}+\ldots+x_{n-2}\right]$. By (41), we obtain

$$
\begin{align*}
\langle\alpha\rangle_{0, d \beta_{2}} & =2\left(K_{X} \cdot C_{1}\right) \cdot\left[\mathfrak{M}_{1}^{\prime \prime}\right] \cdot\left(\tilde{f}_{1,0}\right)^{*} c_{2 d-2}(\mathcal{E}) \\
& =2\left(K_{X} \cdot C_{1}\right) \cdot\left(\tilde{f}_{1,0}\right)_{*}\left[\mathfrak{M}_{1}^{\prime \prime}\right] \cdot c_{2 d-2}(\mathcal{E}) \\
& =2 d\left(K_{X} \cdot C_{1}\right) \cdot \phi^{*}\left[2 x+x_{1}+\ldots+x_{n-2}\right] \cdot c_{2 d-2}(\mathcal{E}) \\
& =2 d\left(K_{X} \cdot C_{1}\right) \cdot c_{2 d-2}\left(\left.\mathcal{E}\right|_{\phi^{-1}\left(2 x+x_{1}+\ldots+x_{n-2}\right)}\right) . \tag{42}
\end{align*}
$$

By Remark 3.1, $\left.\mathcal{E}\right|_{\phi^{-1}\left(2 x+x_{1}+\ldots+x_{n-2}\right)} \cong R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)$ where $f_{1,0}$ and $e v_{1}$ denote the forgetful map and the evaluation map from the moduli space $\overline{\mathfrak{M}}_{0,1}\left(\mathbb{P}^{1}, d\left[\mathbb{P}^{1}\right]\right)$ to $\overline{\mathfrak{M}}_{0,0}\left(\mathbb{P}^{1}, d\left[\mathbb{P}^{1}\right]\right)$ and \mathbb{P}^{1} respectively. By the Theorem 9.2.3 in $[\mathrm{C}-\mathrm{K}]$, $c_{2 d-2}\left(R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)\right)=1 / d^{3}$. So we have

$$
c_{2 d-2}\left(\left.\mathcal{E}\right|_{\phi^{-1}\left(2 x+x_{1}+\ldots+x_{n-2}\right)}\right)=c_{2 d-2}\left(R^{1}\left(f_{1,0}\right)_{*}\left(e v_{1}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{1}}(-1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)=1 / d^{3}\right.
$$

Combining this with (42), we conclude that $\langle\alpha\rangle_{0, d \beta_{n}}=2\left(K_{X} \cdot C_{1}\right) / d^{2}$.
Lemma 3.4. Let $d \geq 1$. If α is the Poincaré dual of $\mathfrak{s}_{n, 2}$ or $\mathfrak{s}_{n, 3}$, then $\langle\alpha\rangle_{0, d \beta_{n}}=0$.
Proof. Since similar argument works for $\mathfrak{s}_{n, 2}$, we shall only prove the lemma for $\mathfrak{s}_{n, 3}$. So assume that α is the Poincaré dual of $\mathfrak{s}_{n, 3}$. Let $x_{1}, \ldots, x_{n-2} \in X$ be fixed distinct points on X contained in a small analytic open subset U of X. We may assume that U is independent of the smooth surface X. Let $\mathfrak{U}_{1}^{\prime} \subset \overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ be the analytic open subset consisting of all stable maps $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$ with $\mu(p) \in U^{[n]}$. Since $\mu_{*}(D) \sim$ $d \beta_{n}$, we see that $\operatorname{Supp}(\mu(D))=\operatorname{Supp}(\mu(p))$ for $\left[\mu:(D ; p) \rightarrow X^{[n]}\right] \in \overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$. So $\mu(D) \subset U^{[n]}$, and $\mathfrak{U}_{1}^{\prime}$ is independent of X.

Next, recall from (19) that $\mathfrak{s}_{n, 3}$ is represented by $M_{3}\left(x_{1}\right)+x_{2}+\ldots+x_{n-2}$. Let $\mathfrak{M}_{1} \subset$ $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$ be the closed subset consisting of all stable maps $\left[\mu:(D ; p) \rightarrow X^{[n]}\right]$ with $\mu(p) \in M_{3}\left(x_{1}\right)+x_{2}+\ldots+x_{n-2}$. Then, $\mathfrak{M}_{1} \subset \mathfrak{U}_{1}^{\prime}$ since $M_{3}\left(x_{1}\right)+x_{2}+\ldots+x_{n-2} \subset U^{[n]}$. In addition, since $\operatorname{Supp}(\mu(D))=\operatorname{Supp}(\mu(p))$, we must have $\mu(D) \subset M_{3}\left(x_{1}\right)+x_{2}+\ldots+x_{n-2}$ for every $\left[\mu:(D ; p) \rightarrow X^{[n]}\right] \in \mathfrak{M}_{1}$. So \mathfrak{M}_{1} is independent of X. Thus the pull-back $e v_{1}^{*}(\alpha)$ is also independent of X.

In summary, $\mathfrak{M}_{1} \subset \mathfrak{U}_{1}^{\prime}$, $\mathfrak{U}_{1}^{\prime}$ is analytic open in $\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)$, and \mathfrak{M}_{1} and $\mathfrak{U}_{1}^{\prime}$ are independent of X. It follows from the constructions of the virtual fundamental class (see [LT2, LT3, Ru1]) that the restriction $\left.\left[\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)\right]^{\text {vir }}\right|_{\mathfrak{M}_{1}}$ is independent of the smooth surface X. So the 1-point Gromov-Witten invariant $\langle\alpha\rangle_{0, d \beta_{n}}$, which is defined to be $\left[\overline{\mathfrak{M}}_{0,1}\left(X^{[n]}, d \beta_{n}\right)\right]^{\text {vir }} \cdot e v_{1}^{*}(\alpha)$ with $e v_{1}^{*}(\alpha)$ being independent of X, is independent
of X as well. Since all the Gromov-Witten invariants $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle_{0, \beta}$ with $\beta \neq 0$ for a $K 3$-surface are zero, we conclude that $\langle\alpha\rangle_{0, d \beta_{n}}=0$ for $d \geq 1$.

Summarizing Lemma 3.3 and Lemma 3.4, we obtain our main result.
Theorem 3.5. Let X be a simply-connected smooth projective surface. Let $n \geq 2, d \geq 1$, and C_{1} and C_{2} be two smooth real surfaces in X.
(i) If α is the Poincaré dual of $\mathfrak{s}_{n, 1}, \mathfrak{s}_{C_{1}, C_{2}}, \mathfrak{s}_{C_{1}, 1}, \mathfrak{s}_{n, 2}$ or $\mathfrak{s}_{n, 3}$, then $\langle\alpha\rangle_{0, d \beta_{n}}=0$.
(ii) If α is the Poincare dual of $\mathfrak{s}_{C_{1}, 2}$, then $\langle\alpha\rangle_{0, d \beta_{n}}=2\left(K_{X} \cdot C_{1}\right) / d^{2}$.

Acknowledgments

The authors thank Dan Edidin, Sheldon Katz, Jun Li, Yongbin Ruan, Qi Zhang for stimulating discussions and valuable helps.

References

[Beh] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601-617.
[B-F] K. Behrend, B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45-88.
[C-K] D. Cox, S. Katz, Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs 68, Amer. Math. Soc., Providence, RI (1999).
[E-S] G. Ellingsrud, S.A. Stromme, An intersection number for the punctual Hilbert scheme of a surface, Trans. of A.M.S. 350 (1999) 2547-2552.
[Fo1] J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968) 511-520.
[Fo2] J. Fogarty, Algebraic families on an algebraic surface. II: The Picard scheme of the punctual Hilbert scheme, Amer. J. Math. 95 (1973) 660-687.
[F-P] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology. Algebraic Geometry -Santa Cruz 1995, 45-96, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., Providence, RI (1997).
[Get] E. Getzler, Intersection theory on $\bar{M}_{1,4}$ and elliptic Gromov-Witten invariants, J. AMS 10 (1997) 973-998.
[Got] L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990) 193-207.
[Gro] I. Grojnowski, Instantons and affine algebras I: the Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275-291.
[LiJ] J. Li, Private communication, 2000.
[LQZ] W.-P. Li, Z. Qin, Q. Zhang, On the geometry of the Hilbert schemes of points in the projective plane, preprint, math.AG/0105213.
[LT1] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. A.M.S. 11 (1998) 19-174.
[LT2] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, Topics in symplectic 4-manifolds (Irvine, CA, 1996), First Int. Press Lect. Ser., I, Internat. Press, Cambridge, MA, (1998) 47-83.
[LT3] J. Li, G. Tian, Comparison of the algebraic and symplectic definitions of $G W$ invariants, Asian J. Math. 3 (1999) 689-728.
[Nak] H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math. 145 (1997) 379-388.
[Ru1] Y. Ruan, Virtual neighborhoods and pseudo-holomorphic curves, Proceedings of 6th Gökova Geometry-Topology Conference. Turkish J. Math. 23 (1999) 161-231.
[Ru2] Y. Ruan, Cohomology ring of crepant resolutions of orbifolds, preprint, math.AG/0108195.

Department of Mathematics, HKUSt, Clear Water Bay, Kowloon, Hong Kong
E-mail address: mawpli@ust.hk
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
E-mail address: zq@math.missouri.edu

[^0]: 1991 Mathematics Subject Classification. Primary 14C05, 14N35.
 Key words and phrases. Hilbert schemes, projective surfaces, Gromov-Witten invariants. Partially supported by the grant HKUST6170/99P.
 Partially supported by an NSF grant.

