Turk J Math 26 (2002) , 53 – 68 © TÜBİTAK

On 1-point Gromov-Witten invariants of the Hilbert schemes of points on surfaces

Wei-Ping Li, Zhenbo Qin

Abstract

We compute certain 1-point genus-0 Gromov-Witten invariants of the Hilbert scheme of points on a simply-connected smooth projective surface.

1. Introduction

The Hilbert scheme $X^{[n]}$ of points in a smooth projective surface X is the set of lengthn 0-dimensional closed subschemes of X. On one hand, $X^{[n]}$ is the moduli space of rank-1 torsion free sheaves V on X such that the first and second Chern classes of V are equal to 0 and n respectively. It is the simplest one among the moduli spaces of rank-r stable vector bundles (or sheaves in general) on a projective surface, which are isomorphic to the moduli spaces of anti-self-dual Yang-Mills connections on some principle bundles over X. Mathematicians as well as physicists showed great interest in these moduli spaces. One area of interest is the Gromov-Witten invariants of the Hilbert scheme $X^{[n]}$. On the other hand, the Hilbert scheme $X^{[n]}$ is smooth [Fo1]. Hence it is the desingularization of the n-th symmetric product $X^{(n)}$ of X. In fact, the Hilbert-Chow map

$$\rho \colon X^{[n]} \to X^{(n)}. \tag{1}$$

sending an element in $X^{[n]}$ to its support in $X^{(n)}$ is a crepant resolution of the orbifold $X^{(n)}$. Recently, Ruan [Ru2] formulated some conjecture on the relation between the cohomology rings of crepant resolutions of orbifolds and the orbifold cohomology rings of the orbifolds themselves. It turns out that the Gromov-Witten invariants of the crepant resolutions appear in a very interesting way in Ruan's conjecture. In this paper, we shall compute the 1-point Gromov-Witten invariants of $X^{[n]}$ with respect to some special degree-2 homology cycles on $X^{[n]}$. Our result partially verifies Ruan's conjecture for the crepant resolution $\rho: X^{[n]} \to X^{(n)}$.

Throughout the paper, we assume that X is a simply-connected smooth projective surface. An element in $X^{[n]}$ is represented by a length-*n* 0-dimensional closed subscheme ξ of X. Let $x_1, \ldots, x_{n-1} \in X$ be distinct but fixed points. Let $M_2(x_1) =$

This article was presented at the 8^{th} Gökova Geometry-Topology Conference

¹⁹⁹¹ Mathematics Subject Classification. Primary 14C05, 14N35.

Key words and phrases. Hilbert schemes, projective surfaces, Gromov-Witten invariants.

Partially supported by the grant HKUST6170/99P.

Partially supported by an NSF grant.

 $\{\xi \in X^{[2]} | \operatorname{Supp}(\xi) = \{x_1\}\}$ be the punctual Hilbert scheme parametrizing length-2 0dimensional subschemes supported at x_1 . It is known that $M_2(x_1) \cong \mathbb{P}^1$. Let β_n be the smooth rational curve in $X^{[n]}$ defined by

$$\{\xi + x_2 + \ldots + x_{n-1} \in X^{[n]} | \xi \in M_2(x_1)\}.$$
(2)

Clearly, the curve β_n is mapped to a point by the Hilbert-Chow map ρ .

Let d be a positive integer, and let $\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ be the moduli space of 1-point stable maps $\mu: (D; p) \to X^{[n]}$ from a genus-0 nodal curve D with one marked point p to $X^{[n]}$ such that $\mu_*(D)$ is homologous to $d\beta_n$. A point in $\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ is denoted by $[\mu: (D; p) \to X^{[n]}]$. The expected complex dimension of the moduli space $\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ is given by

$$\mathfrak{d} = -K_{X^{[n]}} \cdot d\beta_n + \dim X^{[n]} - 3 + 1 = 2n - 2.$$
(3)

Here we used the fact that $K_{X^{[n]}} \cdot \beta_n = 0$ since the canonical class $K_{X^{[n]}}$ of $X^{[n]}$ is the pullback of a divisor on $X^{(n)}$ via the Hilbert-Chow map.

Take a cohomology class $\alpha \in H^{4n-4}(X^{[n]}, \mathbb{C})$. Consider the evaluation map

$$ev_1: \overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n) \to X^{[n]}, \quad ev_1([\mu: (D; p) \to X^{[n]}]) = \mu(p)$$

$$\tag{4}$$

Let $[\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)]^{vir}$ be the virtual fundamental class. The main result of the paper is the computation of the 1-point Gromov-Witten invariant

$$\langle \alpha \rangle_{0,d\beta_n} \stackrel{\text{def}}{=} \int_{[\overline{\mathfrak{M}}_{0,1}(X^{[n]},d\beta_n)]^{vir}} ev_1^*(\alpha).$$
(5)

We refer to Theorem 3.5 for the detailed statement of the main result.

Our motivation for computing the 1-point Gromov-Witten invariant (5) comes from the above-mentioned Ruan's conjecture for a crepant resolution $\rho: Y \to Z$ of an orbifold Z. An essential ingredient in Ruan's conjecture is the quantum corrections which are related to the 3-point Gromov-Witten invariants $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,\beta}$ in which $\beta \neq 0$ and $\rho_*(\beta) = 0$. In our case, the symmetric product $X^{(n)}$ is an orbifold, and the Hilbert-Chow map $\rho: X^{[n]} \to X^{(n)}$ is a crepant resolution of $X^{(n)}$. Moreover, if $\beta \neq 0$ and $\rho_*(\beta) = 0$ for some $\beta \in H_2(X^{[n]}; \mathbb{Z})$, then necessarily $\beta = d\beta_n$ for some positive integer d. Even though it remains to be a challenge to compute all the 3-point Gromov-Witten invariants $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_{0,d\beta_n}$ for $X^{[n]}$ at the present time, we are able to perform computations in some special cases. In particular, we are successful in computing all the 1-point Gromov-Witten invariants $\langle \alpha \rangle_{0,d\beta_n}$. Our Theorem 3.5 partially verifies Ruan's conjecture for the crepant resolution $\rho: X^{[n]} \to X^{(n)}$. We remark that when n = 2, all the 3-point Gromov-Witten invariants of $X^{[2]}$ can be reduced to 1-point Gromov-Witten invariants of $X^{[2]}$. Indeed, our result for n = 2 has been used by Ruan [Ru2] to verify his conjecture for the crepant resolution $\rho: X^{[2]} \to X^{(2)}$ of the symmetric product $X^{(2)}$.

The key step in computing the 1-point Gromov-Witten invariants $\langle \alpha \rangle_{0,d\beta_n}$ is to determine the obstruction bundle over the moduli space $\overline{\mathfrak{M}}_{0,1}(X^{[n]},d\beta_n)$. Even though the curves homologous to $d\beta_n$ in $X^{[n]}$ are complicated, when we compute $\langle \alpha \rangle_{0,d\beta_n}$, we only

need to deal with those stable maps $[\mu: (D; p) \to X^{[n]}]$ such that $\mu(D)$ is of the form (2). Using the earlier work [LQZ] concerning rational curves of degree-1 in $X^{[n]}$, we are able to determine the obstruction bundle over a Zariski open subset of $\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$, which is sufficient for us to compute $\langle \alpha \rangle_{0,d\beta_n}$.

Finally, this paper is organized as follows. In section two, we review Gromov-Witten invariants and virtual fundamental classes. In addition, we discuss some basics of the Hilbert scheme $X^{[n]}$, and determine a basis of $H_4(X^{[n]}, \mathbb{C})$ by using the results of Göttsche, Grojnowski, and Nakajima [Got, Gro, Nak]. In section three, we study the obstruction bundle, and prove Theorem 3.5.

2. Preliminaries

In this section, we shall review the notions of stable maps and Gromov-Witten invariants. In addition, we shall recall some basic facts and notations for the Hilbert scheme of points on a smooth projective surface.

2.1. Stable maps and Gromov-Witten invariants

Let Y be a smooth projective variety. An k-point stable map to Y consists of a complete nodal curve D with k distinct ordered smooth points p_1, \ldots, p_k and a morphism $\mu: D \to Y$ such that the data $(\mu, D, p_1, \ldots, p_k)$ has only finitely many automorphisms. In this case, the stable map is denoted by $[\mu: (D; p_1, \ldots, p_k) \to Y]$. For a fixed homology class $\beta \in H_2(Y, \mathbb{Z})$, let $\overline{\mathfrak{M}}_{g,k}(Y, \beta)$ be the coarse moduli space parameterizing all the stable maps $[\mu: (D; p_1, \ldots, p_k) \to Y]$ such that $\mu_*[D] = \beta$ and the arithmetic genus of D is g. Then, we have the evaluation map:

$$ev_k \colon \overline{\mathfrak{M}}_{g,k}(Y,\beta) \to Y^k$$
 (6)

defined by $ev_k([\mu : (D; p_1, \ldots, p_k) \to Y]) = (\mu(p_1), \ldots, \mu(p_k))$. It is known [F-P, LT1, LT2, B-F] that the coarse moduli space $\overline{\mathfrak{M}}_{g,k}(Y,\beta)$ is projective and has a virtual fundamental class $[\overline{\mathfrak{M}}_{g,k}(Y,\beta)]^{\operatorname{vir}} \in A_{\mathfrak{d}}(\overline{\mathfrak{M}}_{g,k}(Y,\beta))$ where

$$\mathfrak{d} = -(K_Y \cdot \beta) + (\dim(Y) - 3)(1 - g) + k \tag{7}$$

is the expected complex dimension of $\overline{\mathfrak{M}}_{g,k}(Y,\beta)$, and $A_{\mathfrak{d}}(\overline{\mathfrak{M}}_{g,k}(Y,\beta))$ is the Chow group of \mathfrak{d} -dimensional cycles in the moduli space $\overline{\mathfrak{M}}_{g,k}(Y,\beta)$.

The Gromov-Witten invariants are defined by using the virtual fundamental class $[\overline{\mathfrak{M}}_{g,k}(Y,\beta)]^{\mathrm{vir}}$. Recall that an element $\alpha \in H^*(Y,\mathbb{C}) \stackrel{\mathrm{def}}{=} \bigoplus_{j=0}^{2 \dim_{\mathbb{C}}(Y)} H^j(Y,\mathbb{C})$ is homogeneous if $\alpha \in H^j(Y,\mathbb{C})$ for some j; in this case, we take $|\alpha| = j$. Let $\alpha_1, \ldots, \alpha_k \in H^*(Y,\mathbb{C})$ such that every α_i is homogeneous and

$$\sum_{i=1}^{k} |\alpha_i| = 2\mathfrak{d}.$$
(8)

_	-
5	5
J	J

Then, we have the k-point Gromov-Witten invariant defined by:

$$\langle \alpha_1, \dots, \alpha_k \rangle_{g,\beta} = \int_{[\overline{\mathfrak{M}}_{g,k}(Y,\beta)]^{\mathrm{vir}}} ev_k^*(\alpha_1 \otimes \dots \otimes \alpha_k).$$
 (9)

Next, we summarize certain properties concerning the virtual fundamental class. To begin with, we recall that the excess dimension is the difference between the dimension of $\overline{\mathfrak{M}}_{g,k}(Y,\beta)$ and the expected dimension \mathfrak{d} in (7). Let T_Y stand for the tangent sheaf of Y. For $0 \le i < k$, we shall use

$$f_{k,i}: \overline{\mathfrak{M}}_{g,k}(Y,\beta) \to \overline{\mathfrak{M}}_{g,i}(Y,\beta)$$
(10)

to stand for the forgetful map obtained by forgetting the last (k-i) marked points and contracting all the unstable components. It is known that $f_{k,i}$ is flat when $\beta \neq 0$ and $0 \le i < k$. The following can be found in [LT1, Beh, Get, C-K, LiJ].

Proposition 2.1. Let $\beta \in H_2(Y,\mathbb{Z})$ and $\beta \neq 0$. Let e be the excess dimension of $\overline{\mathfrak{M}}_{g,k}(Y,\beta)$, and $\mathfrak{M} \subset \mathfrak{M}_{g,k}(Y,\beta)$ be a closed subscheme. Then,

(i) $[\overline{\mathfrak{M}}_{g,k}(Y,\beta)]^{vir} = (f_{k,0})^* [\overline{\mathfrak{M}}_{g,0}(Y,\beta)]^{vir};$ (ii) $[\overline{\mathfrak{M}}_{g,k}(Y,\beta)]^{vir} = c_e(R^1(f_{k+1,k})_*(\underline{ev}_{k+1})^*T_Y) \text{ if } R^1(f_{k+1,k})_*(\underline{ev}_{k+1})^*T_Y \text{ is a rank-e}$ locally free sheaf over the moduli space $\overline{\mathfrak{M}}_{q,k}(Y,\beta)$;

(iii) $[\overline{\mathfrak{M}}_{g,k}(Y,\beta)]^{vir}|_{\mathfrak{M}} = c_e((R^1(f_{k+1,k})_*(ev_{k+1})^*T_Y)|_{\mathfrak{M}}))$ if there exists an open subset \mathfrak{U} of $\overline{\mathfrak{M}}_{q,k}(Y,\beta)$ such that $\mathfrak{M} \subset \mathfrak{U}$ (i.e, \mathfrak{U} is an open neighborhood of \mathfrak{M}) and the restriction $(R^1(f_{k+1,k})_*(ev_{k+1})^*T_Y)|_{\mathfrak{U}}$ is a rank-e locally free sheaf over \mathfrak{U} .

2.2. Basic facts on the Hilbert scheme of points on a surface

Let X be a simply-connected smooth projective surface, and $X^{[n]}$ be the Hilbert scheme of points in X. An element in $X^{[n]}$ is represented by a length-n 0-dimensional closed subscheme ξ of X. For $\xi \in X^{[n]}$, let I_{ξ} be the corresponding sheaf of ideals. In $X^{[n]} \times X$, we have the universal codimension-2 subscheme:

$$\mathcal{Z}_n = \{(\xi, x) \subset X^{[n]} \times X \mid x \in \operatorname{Supp}(\xi)\} \subset X^{[n]} \times X.$$
(11)

In $X^{[n-1]} \times X^{[n]}$, we have the 2*n*-dimensional smooth incidence subscheme:

$$X^{[n-1,n]} = \{ (\xi,\eta) \in X^{[n-1]} \times X^{[n]} \mid I_{\xi} \supset I_{\eta} \}.$$
(12)

For a subset $Y \subset X$, we define the subset $M_n(Y)$ in the Hilbert scheme $X^{[n]}$:

$$M_n(Y) = \{\xi \in X^{[n]} | \operatorname{Supp}(\xi) \text{ is a point in } Y\} \subset X^{[n]}.$$
(13)

In particular, for a fixed point $x \in X$, $M_n(x)$ is just the punctual Hilbert scheme of points on X at x. It is known that the punctual Hilbert schemes $M_n(x)$ are isomorphic for all the surfaces X and all the points $x \in X$.

The definitions and properties of the maps listed below can be found in [E-S].

Notation. There exist various morphisms:

$$\begin{aligned} f_n &: X^{[n-1,n]} \to X^{[n-1]} \text{ with } f_n(\xi,\eta) = \xi, \\ g_n &: X^{[n-1,n]} \to X^{[n]} \text{ with } g_n(\xi,\eta) = \eta, \\ \psi_n &: X^{[n-1,n]} \to \mathcal{Z}_n \text{ with } \psi_n(\xi,\eta) = (\eta, \text{Supp}(I_{\xi}/I_{\eta})), \\ q &: X^{[n-1,n]} \to X \text{ with } q(\xi,\eta) = \text{Supp}(I_{\xi}/I_{\eta}). \end{aligned}$$

Convention: Let V be an n-dimensional vector space. We use $\mathbb{P}(V)$ to denote the set of 1-dimensional quotients of the vector space V.

Theorem 2.2. (see [E-S]) Adopt the above notations.

(i) The morphism $\psi_n \colon X^{[n-1,n]} \to \mathcal{Z}_n$ is canonically isomorphic to the projectification $\mathbb{P}(\omega_{\mathcal{Z}_n}) \to \mathcal{Z}_n$ where $\omega_{\mathcal{Z}_n}$ is the dualizing sheaf of \mathcal{Z}_n ; (ii) The morphism $(f_n, q) \colon X^{[n-1,n]} \to X^{[n-1]} \times X$ is canonically isomorphic to the

(ii) The morphism $(f_n, q): X^{[n-1,n]} \to X^{[n-1]} \times X$ is canonically isomorphic to the blowing-up of $X^{[n-1]} \times X$ along \mathcal{Z}_{n-1} . The exceptional locus is

$$E_n = \{ (\xi, \eta) \in X^{[n-1,n]} \mid \operatorname{Supp}(\xi) = \operatorname{Supp}(\eta) \text{ and } \xi \subset \eta \};$$
(14)

Let $\xi \in X^{[n-k]}$ and $\eta \in X^{[k]}$. If $\operatorname{Supp}(\xi) \cap \operatorname{Supp}(\eta) = \emptyset$, then we use $\xi + \eta$ to represent the closed subscheme $\xi \cup \eta$ in $X^{[n]}$. Similarly, given a subvariety Y of $X^{[n-k]}$ and a point $\eta \in X^{[k]}$ such that $\left(\bigcup_{\xi \in Y} \operatorname{Supp}(\xi)\right) \cap \operatorname{Supp}(\eta) = \emptyset$, we use $Y + \eta$ to represent the subvariety

in $X^{[n]}$ consisting of all the points $\xi + \eta$ with $\xi \in Y$.

Next, we review some results on homology groups of the Hilbert scheme $X^{[n]}$ due to Göttsche [Got], Grojnowski [Gro], and Nakajima [Nak]. Their results say that the space $\mathbb{H} \stackrel{\text{def}}{=} \bigoplus_{n=0}^{\infty} \bigoplus_{k=0}^{4n} H_k(X^{[n]}, \mathbb{C})$ is an irreducible highest weight representation of the Heisenberg

algebra generated by
$$\mathfrak{a}_{-n}(\alpha), n \in \mathbb{Z}, \alpha \in H_*(X, \mathbb{C}) \stackrel{\text{def}}{=} \bigoplus_{k=0}^4 H_k(X, \mathbb{C}).$$
 Moreover, $|0\rangle \stackrel{\text{def}}{=} 1 \in$

 $H_0(X^{[0]}, \mathbb{C}) = \mathbb{C}$ is a highest weight vector. It follows that the space \mathbb{H} is a linear span of elements of the form $\mathfrak{a}_{-n_1}(\alpha_1) \dots \mathfrak{a}_{-n_k}(\alpha_k)|0\rangle$ where $k \geq 0, n_1, \dots, n_k > 0$, and $\alpha_1, \dots, \alpha_k \in H_*(X, \mathbb{C})$. The geometric interpretation of $\mathfrak{a}_{-n_1}(\alpha_1) \dots \mathfrak{a}_{-n_k}(\alpha_k)|0\rangle$ for homogeneous classes $\alpha_1, \dots, \alpha_k \in H_*(X, \mathbb{C})$ can be understood as follows. For $i = 1, \dots, k$, let $\alpha_i \in H_{|\alpha_i|}(X, \mathbb{C})$ be represented by a cycle A_i such that A_1, \dots, A_k are in general position. Then,

$$\mathfrak{a}_{-n_1}(\alpha_1)\dots\mathfrak{a}_{-n_k}(\alpha_k)|0\rangle \in H_m(X^{[n]},\mathbb{C})$$
(15)

where $n = \sum_{i=1}^{k} n_i$ and $m = \sum_{i=1}^{k} (2n_i - 2 + |\alpha_i|)$. In addition, up to a scalar, $\mathfrak{a}_{-n_1}(\alpha_1) \dots \mathfrak{a}_{-n_k}(\alpha_k) |0\rangle$

is represented by the closure of the real- $\sum_{i=1}^{k} (2n_i - 2 + |\alpha_i|)$ -dimensional subset:

$$\{\xi_1 + \ldots + \xi_k \in X^{[n]} | \xi_i \in M_{n_i}(A_i), \operatorname{Supp}(\xi_i) \cap \operatorname{Supp}(\xi_j) = \emptyset \text{ for } i \neq j\}$$
(16)

where $M_{n_i}(A_i)$ is the subset of $X^{[n_i]}$ defined by (13).

We shall write down the bases of the homology groups $H_2(X^{[n]}, \mathbb{C})$ and $H_4(X^{[n]}, \mathbb{C})$ in terms of the Heisenberg operators. The following definition introduces some special homology classes in $H_2(X^{[n]}, \mathbb{C})$ and $H_4(X^{[n]}, \mathbb{C})$.

Definition 2.1. Let $x \in X$, and C and \widetilde{C} be real-2-dimensional submanifolds of X. Then, we define the following homology classes:

$$\begin{split} \beta_{C} &= \mathfrak{a}_{-1}(C)\mathfrak{a}_{-1}(x)^{n-1}|0\rangle \\ \beta_{n} &= \mathfrak{a}_{-2}(x)\mathfrak{a}_{-1}(x)^{n-2}|0\rangle \\ \mathfrak{s}_{n,1} &= \mathfrak{a}_{-1}(X)\mathfrak{a}_{-1}(x)^{n-1}|0\rangle \\ \mathfrak{s}_{n,2} &= \mathfrak{a}_{-2}(x)\mathfrak{a}_{-2}(x)\mathfrak{a}_{-1}(x)^{n-4}|0\rangle \\ \mathfrak{s}_{n,3} &= \mathfrak{a}_{-3}(x)\mathfrak{a}_{-1}(x)^{n-3}|0\rangle \\ \mathfrak{s}_{C,1} &= \mathfrak{a}_{-1}(C)\mathfrak{a}_{-2}(x)\mathfrak{a}_{-1}(x)^{n-3}|0\rangle \\ \mathfrak{s}_{C,2} &= \mathfrak{a}_{-2}(C)\mathfrak{a}_{-1}(x)^{n-2}|0\rangle \\ \mathfrak{s}_{C,\tilde{C}} &= \mathfrak{a}_{-1}(C)\mathfrak{a}_{-1}(\tilde{C})\mathfrak{a}_{-1}(x)^{n-2}|0\rangle \end{split}$$

Next, we discuss geometric representations of the above homology classes. First of all, we note from (15) that $\beta_C, \beta_n \in H_2(X^{[n]}, \mathbb{C})$ and $\mathfrak{s}_{n,1}, \mathfrak{s}_{n,2}, \mathfrak{s}_{n,3}, \mathfrak{s}_{C,1}, \mathfrak{s}_{C,2}, \mathfrak{s}_{C,\tilde{C}} \in H_4(X^{[n]}, \mathbb{C})$. For $\eta \in X^{[n-1]}$ with $\operatorname{Supp}(\eta) \cap C = \emptyset$, we see from (16) that

$$\beta_C \sim C + \eta$$

where the symbol " $A_1 \sim A_2$ " means that A_1 and A_2 are homologous as homology classes. Similarly, for $x \in X$ and $\eta \in X^{[n-2]}$ with $x \notin \text{Supp}(\eta)$, we have

$$\beta_n \sim M_2(x) + \eta. \tag{17}$$

For $x_1, x_2 \in X$ and $\eta \in X^{[n-4]}$ satisfying $x_1 \neq x_2$ and $x_1, x_2 \notin \text{Supp}(\eta)$,

$$\mathfrak{s}_{n,2} \sim M_2(x_1) + M_2(x_2) + \eta.$$
 (18)

For $x \in X$ and $\eta \in X^{[n-3]}$ with $x \notin C \cup \text{Supp}(\eta)$ and $\text{Supp}(\eta) \cap C = \emptyset$, we get

$$\mathfrak{s}_{n,3} \sim M_3(x) + \eta, \tag{19}$$

$$\mathfrak{s}_{C,1} \sim C + M_2(x) + \eta. \tag{20}$$

For a fixed $\eta \in X^{[n-2]}$ satisfying $\operatorname{Supp}(\eta) \cap C = \emptyset$, we have

$$\mathfrak{s}_{C,2} \sim M_2(C) + \eta. \tag{21}$$

For $\eta = x_1 + \ldots + x_{n-1} \in X^{[n-1]}$ where x_1, \ldots, x_{n-1} are distinct, we obtain

$$\mathfrak{s}_{n,1} \sim$$
 "the closure of $(X \setminus \operatorname{Supp}(\eta)) + \eta$ in $X^{[n]}$ ". (22)

Alternatively, consider the following commutative diagram:

$$\begin{array}{rcl}
\widetilde{X}_{\eta} & \subset & X^{[n-1,n]} & \xrightarrow{g_{n}} & X^{[n]} \\
\downarrow & & \downarrow(f_{n},q) & & \\
\eta \times X & \subset & X^{[n-1]} \times X
\end{array}$$
(23)

where \widetilde{X}_{η} stands for the strict transform of $\eta \times X$. By Theorem 2.2 (ii), (f_n, q) is the blowup of $X^{[n-1]} \times X$ along \mathcal{Z}_{n-1} . So \widetilde{X}_{η} is isomorphic to the blowup of X at the (n-1)distinct points x_1, \ldots, x_{n-1} . Moreover, $g_n|_{\widetilde{X}_{\eta}} : \widetilde{X}_{\eta} \to g_n(\widetilde{X}_{\eta})$ is an isomorphism and $g_n(\widetilde{X}_{\eta})$ is precisely the closure of $(X \setminus \text{Supp}(\eta)) + \eta$ in the Hilbert scheme $X^{[n]}$. So in view of (22), we conclude that

$$\mathfrak{s}_{n,1} \sim g_n(X_\eta). \tag{24}$$

Note that the (n-1) exceptional curves in the surface $g_n(\widetilde{X}_\eta)$ are

$$M_2(x_i) + (\eta \setminus \{x_i\}), \qquad i = 1, \dots, n-1.$$
 (25)

Finally, choose $\eta \in X^{[n-2]}$ such that $\operatorname{Supp}(\eta) \cap (C \cup \widetilde{C}) = \emptyset$. Then according to (16), when C and \widetilde{C} are in general position, $\mathfrak{s}_{C,\widetilde{C}}$ is the closure of the subset

$$\{x + \tilde{x} + \eta | \ x \in C, \tilde{x} \in \widetilde{C}, \text{ and } x \neq \tilde{x}\} \subset X^{[n]}.$$
(26)

Lemma 2.3. Assume that $n \ge 2$ and X is simply-connected. Let $\{\alpha_1, \ldots, \alpha_s\}$ be a basis of $H_2(X, \mathbb{C})$ represented by real surfaces $\{C_1, \ldots, C_s\}$ respectively. Then,

(i) a basis of $H_2(X^{[n]}, \mathbb{C})$ consists of the homology classes $\beta_n, \beta_{C_1}, \ldots, \beta_{C_s}$;

(ii) a basis of $H_4(X^{[n]}, \mathbb{C})$ consists of the homology classes $\mathfrak{s}_{n,1}, \mathfrak{s}_{n,2}, \mathfrak{s}_{n,3}, \mathfrak{s}_{C_i,1}$ $(i = 1, \ldots, s), \mathfrak{s}_{C_i,2}$ $(i = 1, \ldots, s), and \mathfrak{s}_{C_i,C_j}$ $(i, j = 1, \ldots, s).$

Proof. We shall only prove (ii) since similar argument works for (i).

Fix a point $x \in X$. Expand the basis $\{\alpha_1, \ldots, \alpha_s\}$ of $H_2(X, \mathbb{C})$ to the basis $\{\alpha_0 = x, \alpha_1, \ldots, \alpha_s, \alpha_{s+1} = X\}$ of $H_*(X, \mathbb{C}) = H_0(X, \mathbb{C}) \oplus H_2(X, \mathbb{C}) \oplus H_4(X, \mathbb{C})$. By (15), a basis of $H_4(X^{[n]}, \mathbb{C})$ consists of

$$\mathfrak{a}_{-n_1}(\alpha_{m_1})\dots\mathfrak{a}_{-n_k}(\alpha_{m_k})|0\rangle \tag{27}$$

satisfying $n_i \ge 1$, $\sum_{i=1}^k n_i = n$, and $\sum_{i=1}^k (2n_i - 2 + |\alpha_{m_i}|) = 4$. Note that since X is simplyconnected, $|\alpha_{m_i}| \in \{0, 2, 4\}$ for every *i*. Also, $n_i \le 3$ for every *i*.

First of all, suppose that $n_i = 3$ for some *i*. From $\sum_{i=1}^{k} (2n_i - 2 + |\alpha_{m_i}|) = 4$, we see that such an *i* is unique and $n_j = 1$ for $j \neq i$. Moreover, $|\alpha_{m_j}| = 0$ for every *j*, i.e., $\alpha_{m_j} = \alpha_0 = x$ for every *j*. Since $\sum_{i=1}^{k} n_i = n$, we have k = (n-2). So in view of Definition 2.1, the homology class (27) is $\mathfrak{s}_{n,3}$.

In the following, we assume that $n_i \leq 2$ for every *i*. Then, $n_i = 2$ for at most two *i*'s. Suppose $n_i = 2$ for two *i*'s, say, $n_1 = n_2 = 2$. Then, $n_j = 1$ for $j \neq 1, 2, k = (n-2)$, and $|\alpha_{m_j}| = 0$ for every *j*. So the homology class (27) is $\mathfrak{s}_{n,2}$.

Next, suppose $n_i = 2$ for exactly one i (and $n_j = 1$ for $j \neq i$), say, $n_1 = 2$ (and $n_j = 1$ for $j \neq 1$). Then, $|\alpha_{m_{i_0}}| = 2$ for some i_0 and $|\alpha_{m_j}| = 0$ for $j \neq i_0$. Thus, the homology class (27) is $\mathfrak{s}_{C_{m_1},2}$ if $i_0 = 1$, and $\mathfrak{s}_{C_{m_1},1}$ if $i_0 > 1$.

Finally, assume $n_i = 1$ for every *i*. Then, k = n and $\sum_{i=1}^k |\alpha_{m_i}| = 4$. If $|\alpha_{m_{i_0}}| = 4$ for some i_0 and $|\alpha_{m_j}| = 0$ for $j \neq i_0$, then the homology class (27) is $\mathfrak{s}_{n,1}$. The remaining case is when $|\alpha_{m_{i_0}}| = |\alpha_{m_{i_1}}| = 2$ for some i_0 and i_1 with $i_0 \neq i_1$, and $|\alpha_{m_j}| = 0$ for $j \neq i_0, i_1$. In this case, the homology class (27) is $\mathfrak{s}_{C_{m_{i_0}}, C_{m_{i_1}}}$.

Next, we recall certain results proved in section 4 of [LQZ].

Theorem 2.4. (see [LQZ]) Let $n \ge 2$, and X be simply-connected.

(i) A curve γ in $X^{[n]}$ is homologous to β_n if and only if $\gamma = f_{n+1}(C)$ where C is a line in the projective space $(\psi_{n+1})^{-1}(\eta, x)$ for some $(\eta, x) \in \mathbb{Z}_{n+1}$. Moreover, in this case, the point (η, x) and the line C are uniquely determined by γ ;

(ii) Let $\mathfrak{M}(\beta_n)$ be the moduli space of all the curves in the Hilbert scheme $X^{[n]}$ homologous to β_n . Then, $\mathfrak{M}(\beta_n)$ has dimension (2n-2), and its top stratum consists of all the points corresponding to curves of the form (2);

(iii) Let γ be the curve of the form (2). Then, its normal bundle in $X^{[n]}$ is

$$N_{\gamma \subset X^{[n]}} \cong \mathcal{O}_{\gamma}^{\oplus (2n-2)} \oplus \mathcal{O}_{\gamma}(-2).$$
⁽²⁸⁾

3. The 1-point Gromov-Witten invariants $\langle \alpha \rangle_{0,d\beta_n}$ of $X^{[n]}$

In this section, we shall compute all the 1-point Gromov-Witten invariants $\langle \alpha \rangle_{0,d\beta_n}$ of $X^{[n]}$ for $n \geq 2$ and $d \geq 1$. One of the key steps is to determine the obstruction bundle over a Zariski open subset of the moduli space $\overline{\mathfrak{M}}_{0,0}(X^{[n]}, d\beta_n)$.

3.1. The obstruction bundle

We start with some notations. Let S_n be the symmetric group of n letters, and $|\operatorname{Supp}(\xi)|$ be the number of points in $\operatorname{Supp}(\xi)$. Recall from (1) the Hilbert-Chow map $\rho: X^{[n]} \to X^{(n)} = X^n/S_n$, where X^n is the Cartesian product of n copies of X. Let $\sigma: X^n \to X^{(n)}$ be the natural quotient map.

Notation. Put $X_*^{[n]} = \{\xi \in X^{[n]} \mid |\operatorname{Supp}(\xi)| \ge n-1\}$ and $X_*^{(n)} = \rho(X_*^{[n]}),$ $X_*^n = \sigma^{-1}(X_*^{(n)}),$ $B = \{\xi \in X^{[n]} \mid |\operatorname{Supp}(\xi)| < n\},$ $B_* = \{\xi \in X^{[n]} \mid |\operatorname{Supp}(\xi)| = n-1\},$ $X_{s*}^{(n)} = \rho(B_*),$ $\Delta_{n*} = \sigma^{-1}(\rho(B)) \cap X_*^n = \coprod_{1 \le i < j \le n} \Delta_{n*}^{i,j}$

where $\Delta_{n*}^{i,j} = \{(x_1, \dots, x_i, \dots, x_j, \dots, x_n) \in X_*^n \mid x_i = x_j\}$ for $1 \le i < j \le n$.

When we compute the 1-point Gromov-Witten invariants $\langle \alpha \rangle_{0,d\beta_n}$, only $X_*^{[n]}$ is involved in most of the cases. Even though $X^{[n]}$ is very complicated, the open subset $X_*^{[n]}$ has a very simple description given below (see [Fo2]). Let $\widetilde{X_*^n}$ be the blow up of X_*^n along the big diagonal Δ_{n*} . The action of S_n on X_*^n lifts to an action on $\widetilde{X_*^n}$ and $X_*^{[n]} = \widetilde{X_*^n}/S_n$. Let $\tilde{\sigma} \colon \widetilde{X_*^n} \to X_*^{[n]}$ be the quotient map. Let $E_*^{i,j} \subset \widetilde{X_*^n}$ be the exceptional locus over $\Delta_{n*}^{i,j}$. Consider the following morphisms:

$$p_{1,2} : \Delta_{n*}^{1,2} \longrightarrow X, \quad (x, x, x_3, \dots, x_n) \to x, \tag{29}$$

$$j_2 : X_{s*}^{(n)} \longrightarrow X, \quad 2x + x_3 + \ldots + x_n \to x.$$
 (30)

Since the normal bundle of $\Delta_{n*}^{1,2}$ in X_*^n is isomorphic to $p_{1,2}^*T_X$, we have $E_*^{1,2} \cong \mathbb{P}(p_{1,2}^*T_X^*)$. The subgroup $S_2 \times S_{n-2} \subset S_n$ acts on $\Delta_{n*}^{1,2}$ with the S_2 -factor acting trivially on $\Delta_{n*}^{1,2}$. The action of $S_2 \times S_{n-2}$ on $\Delta_{n*}^{1,2}$ lifts to an action on $E_*^{1,2}$. It is easy to see that $X_{s*}^{(n)} = \Delta_{n*}^{1,2}/(S_2 \times S_{n-2})$ and $B_* = E_*^{1,2}/(S_2 \times S_{n-2})$. Regard $p_{1,2} \colon \Delta_{n*}^{1,2} \to X$ as an $S_2 \times S_{n-2}$ -equivariant morphism where $S_2 \times S_{n-2}$ acts on X trivially. Then, $S_2 \times S_{n-2}$ acts on $p_{1,2}^*T_X^*$, and the isomorphism $E_*^{1,2} \cong \mathbb{P}(p_{1,2}^*T_X^*)$ is $S_2 \times S_{n-2}$ -equivariant. So we get an isomorphism

$$j_1: B_* = E_*^{1,2} / (S_2 \times S_{n-2}) \cong \mathbb{P}(p_{1,2}^* T_X^*) / (S_2 \times S_{n-2}) \cong \mathbb{P}(j_2^* T_X^*)$$

where the last isomorphism is due to the fact that the S_2 -factor acts trivially on $p_{1,2}^*T_X$ and the S_{n-2} -factor commutes with the morphism $p_{1,2}$.

Next, we study $\mathcal{O}_{B_*}(B_*)$. Since $\tilde{\sigma}^*\mathcal{O}_{X_*^{[n]}}(B_*) \cong \mathcal{O}_{\widetilde{X_*}}(2\sum_{1 \leq i < j \leq n} E_*^{i,j})$ and $E_*^{i,j} \cap E_*^{1,2} \neq \emptyset$ if and only i = 1 and j = 2, we conclude that

$$(\tilde{\sigma}|_{E_*^{1,2}})^* \mathcal{O}_{B_*}(B_*) \cong \tilde{\sigma}^* \mathcal{O}_{X_*^{[n]}}(B_*)|_{E_*^{1,2}} \cong \mathcal{O}_{E_*^{1,2}}(2E_*^{1,2}) \cong \mathcal{O}_{\mathbb{P}(p_{1,2}^*T_X^*)}(-2)$$
(31)

where we have used the fact that $\mathcal{O}_{E_*^{1,2}}(E_*^{1,2}) \cong \mathcal{O}_{\mathbb{P}(p_{1,2}^*T_X^*)}(-1)$ via the isomorphism $E_*^{1,2} \cong \mathbb{P}(p_{1,2}^*T_X^*)$. Note that $\mathcal{O}_{\mathbb{P}(p_{1,2}^*T_X^*)}(-2) = \tau^* \left(\mathcal{O}_{\mathbb{P}(j_2^*T_X^*)}(-2) \right)$ where $\tau : \mathbb{P}(p_{1,2}^*T_X^*) \to \mathbb{P}(j_2^*T_X^*)$ is the natural morphism. Moreover, $j_1 \circ (\tilde{\sigma}|_{E_*^{1,2}}) = \tau$ via the isomorphism $E_*^{1,2} \cong$

 $\mathbb{P}(p_{1,2}^*T_X^*). \text{ Combining with (31), we obtain } (\tilde{\sigma}|_{E_*^{1,2}})^*\mathcal{O}_{B_*}(B_*) \cong (\tilde{\sigma}|_{E_*^{1,2}})^* \left(j_1^*\mathcal{O}_{\mathbb{P}(j_2^*T_X^*)}(-2)\right).$ Since $Pic(B_*)$ has no torsion, we have

$$\mathcal{O}_{B_*}(B_*) \cong j_1^* \mathcal{O}_{\mathbb{P}(j_2^* T_X^*)}(-2).$$
 (32)

Consider the open subset \mathfrak{U}_0 of $\overline{\mathfrak{M}}_{0,0}(X^{[n]}, d\beta_n)$ consisting of stable maps $[\mu \colon D \to X^{[n]}]$ such that $\mu(D) \subset X_*^{[n]}$. Similarly, take the open subset \mathfrak{U}_1 of $\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ consisting of stable maps $[\mu: (D; p) \to X^{[n]}]$ such that $\mu(D) \subset X^{[n]}_*$. Clearly $\mathfrak{U}_1 = f_{1,0}^{-1}(\mathfrak{U}_0)$. Let $[\mu: (D; p) \to X^{[n]}] \in \mathfrak{U}_1$. Since $\mu_*(D) \sim d\beta_n$, we must have $\mu(D) = M_2(x_2) + x_3 + \ldots + x_n$ for some distinct points $x_2, \ldots, x_n \in X$. Hence $\mu(D) \subset B_*$. Moreover, the composite $\rho \circ ev_1$ sends the stable map $[\mu: (D; p) \to X^{[n]}]$ to the point $2x_2 + x_3 + \ldots + x_n$, which is independent of the marked point p on D. Hence ev_1 induces a morphism ϕ from \mathfrak{U}_0 to $\rho(B_*)$. Putting $\tilde{ev}_1 = ev_1|_{\mathfrak{U}_1}$ and $\tilde{f}_{1,0} = f_{1,0}|_{\mathfrak{U}_1}$, we have the following commutative diagram:

$$\begin{aligned}
\mathfrak{U}_{1} & \stackrel{\widetilde{ev}_{1}}{\to} & B_{*} & \stackrel{j_{1}}{\cong} & \mathbb{P}(j_{2}^{*}T_{X}^{*}) \\
\downarrow^{\tilde{f}_{1,0}} & \downarrow^{\rho} & \downarrow^{\pi} \\
\mathfrak{U}_{0} & \stackrel{\phi}{\to} & \rho(B_{*}) & = & X_{s*}^{(n)} & \stackrel{j_{2}}{\to} & X
\end{aligned}$$
(33)

where $\pi: \mathbb{P}(j_2^*T_X^*) \to X_{s*}^{(n)}$ is the natural projection of the \mathbb{P}^1 -bundle. Note that the fiber $\phi^{-1}(2x_2+x_3+\ldots+x_n)$ over a fixed point $2x_2+x_3+\ldots+x_n \in \rho(B_*)$ is simply $\overline{\mathfrak{M}}_{0,0}(M_2(x_2) + x_3 + \ldots + x_n, d[M_2(x_2) + x_3 + \ldots + x_n])$ which is isomorphic to the moduli space $\overline{\mathfrak{M}}_{0,0}(\mathbb{P}^1, d[\mathbb{P}^1])$ via the isomorphism $M_2(x_2) + x_3 + \ldots + x_n \cong \mathbb{P}^1$. Hence the complex dimension of \mathfrak{U}_0 is equal to

$$\dim \overline{\mathfrak{M}}_{0,0}(\mathbb{P}^1, d[\mathbb{P}^1]) + 2(n-1) = 2n - 3 + 2d - 1.$$

The expected dimension of $\mathfrak{M}_{0,0}(X^{[n]}, d\beta_n)$ is 2n-3 according to the formula (7) where we used $K_{X^{[n]}} \cdot d\beta_n = 0$. Hence the excess dimension of \mathfrak{U}_0 is e = (2d - 1).

Lemma 3.1. With notations as above, the restriction of $R^1(f_{1,0})_*(ev_1^*T_{X^{[n]}})$ to \mathfrak{U}_0 is a locally free sheaf of rank (2d-1).

Proof. Take a stable map $u = [\mu \colon D \to X^{[n]}]$ in \mathfrak{U}_0 , and consider

$$H^{1}(f_{1,0}^{-1}(u), (ev_{1}^{*}T_{X^{[n]}})|_{f_{1,0}^{-1}(u)}) \cong H^{1}(D, \mu^{*}T_{X^{[n]}}).$$

Since $\mu(D) = M_2(x_2) + x_3 + \ldots + x_n \cong \mathbb{P}^1$ for some distinct points x_2, \ldots, x_n , we have $T_{X^{[n]}}|_{\mu(D)} = \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(-2) \oplus \mathcal{O}_{\mathbb{P}^1}^{(2n-2)}$ by Theorem 2.4 (iii). Thus

$$H^1(D, \mu^* T_{X^{[n]}}) \cong H^1(D, \mu^* \mathcal{O}_{\mathbb{P}^1}(-2))$$

which has dimension equal to the excess dimension e = (2d - 1). Hence the direct image sheaf $R^1(f_{1,0})_*(ev_1^*T_{X^{[n]}})$ over \mathfrak{U}_0 is locally free of rank (2d-1). П

Suppose that \mathfrak{M}_1 is a closed subset of $\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ contained in \mathfrak{U}_1 and $\mathfrak{M}_0 = f_{1,0}(\mathfrak{M}_1) \subset \mathfrak{U}_0 \subset \overline{\mathfrak{M}}_{0,0}(X^{[n]}, d\beta_n)$. By Proposition 2.1 (i) and (iii), we have

$$[\overline{\mathfrak{M}}_{0,1}(Y,\beta)]^{\mathrm{vir}}|_{\mathfrak{M}_1} = (\tilde{f}_{1,0})^* c_{2d-1} \big((R^1(f_{1,0})_* (ev_1)^* T_{X^{[n]}})|_{\mathfrak{M}_0} \big).$$
(34)

Hence it is crucial to determine the sheaf $R^1(f_{1,0})_*(ev_1)^*T_{X^{[n]}}$ over \mathfrak{U}_0 .

Lemma 3.2. Let \mathcal{V} denote the restriction of $R^1(f_{1,0})_*(ev_1)^*T_{X^{[n]}}$ to \mathfrak{U}_0 . Then,

- (i) $\mathcal{V} \cong R^1(\tilde{f}_{1,0})_*(\tilde{ev}_1)^*\mathcal{O}_{B_*}(B_*) \cong R^1(\tilde{f}_{1,0})_*(j_1 \circ \tilde{ev}_1)^*\mathcal{O}_{\mathbb{P}(j_2^*T_X^*)}(-2).$
 - (ii) the locally free sheaf $\mathcal V$ sits in the exact sequence

$$0 \rightarrow (j_2 \circ \phi)^* \mathcal{O}_X(-K_X) \rightarrow \mathcal{V} \rightarrow R^1(\tilde{f}_{1,0})_* (j_1 \circ \tilde{ev}_1)^* ((j_2 \circ \pi)^* T_X \otimes \mathcal{O}_{\mathbb{P}(j_2^* T_X^*)}(-1)) \rightarrow 0.$$
(35)

Proof. (i) Since $ev_1(\mathfrak{U}_1) \subset B_*$, we have $((ev_1)^*T_{X^{[n]}})|_{\mathfrak{U}_1} = (\tilde{ev}_1)^*(T_{X^{[n]}_*}|_{B_*})$ and $\mathcal{V} = (R^1(f_{1,0})_*(ev_1)^*T_{X^{[n]}})|_{\mathfrak{U}_0} = R^1(\tilde{f}_{1,0})_*(((ev_1)^*T_{X^{[n]}})|_{\mathfrak{U}_1}) = R^1(\tilde{f}_{1,0})_*(\tilde{ev}_1)^*(T_{X^{[n]}_*}|_{B_*})$. Since B_* is a smooth codimension-1 subvariety of $X^{[n]}$, we obtain the exact sequence

$$0 \to T_{B_*} \to T_{X^{[n]}}|_{B_*} \to \mathcal{O}_{B_*}(B_*) \to 0.$$
(36)

Applying $(\tilde{ev}_1)^*$ and $(\tilde{f}_{1,0})_*$ to the exact sequence (36), we get

$$R^1(\tilde{f}_{1,0})_*(\tilde{ev}_1)^*T_{B_*} \to \mathcal{V} \to R^1(\tilde{f}_{1,0})_*(\tilde{ev}_1)^*\mathcal{O}_{B_*}(B_*) \to 0$$

where we have used $R^2(\tilde{f}_{1,0})_*(\tilde{ev}_1)^*T_{B_*} = 0$ since $\tilde{f}_{1,0}$ is of relative dimension 1.

If $[\mu: D \to X^{[n]}]$ is a stable map in \mathfrak{U}_0 , then $\mu(D) = M_2(x_2) + x_3 + \ldots + x_n$. Hence the normal bundle of $\mu(D)$ in B_* is trivial since $\mu(D)$ is a fiber of the \mathbb{P}^1 -bundle $\mathbb{P}(j_2^*T_X^*)$ over $X_{s*}^{(n)}$. Thus $T_{B_*}|_{\mu(D)} \cong \mathcal{O}_{\mu(D)}(2) \oplus \mathcal{O}_{\mu(D)}^{\oplus (2n-2)}$. Therefore, $H^1(D, \mu^*T_{B_*}) \cong$ $H^1(D, \mu^*(\mathcal{O}_{\mu(D)}(2) \oplus \mathcal{O}_{\mu(D)}^{\oplus (2n-2)})) = 0$, and $R^1(\tilde{f}_{1,0})_*(\tilde{ev}_1)^*T_{B_*} = 0$. So in view of (32), we have

$$\mathcal{V} \cong R^{1}(\tilde{f}_{1,0})_{*}(\tilde{ev}_{1})^{*}\mathcal{O}_{B_{*}}(B_{*}) \cong R^{1}(\tilde{f}_{1,0})_{*}(j_{1} \circ \tilde{ev}_{1})^{*}\mathcal{O}_{\mathbb{P}}(j_{2}^{*}T_{x}^{*})(-2).$$

(ii) For simplicity, we denote $\mathbb{P}(j_2^*T_X^*)$ by \mathbb{P} . Consider the natural surjection $\pi^*(j_2^*T_X^*) \to \mathcal{O}_{\mathbb{P}}(1) \to 0$. The kernel of this surjection is a line bundle. By comparing the first Chern classes, we get the following exact sequence:

$$0 \to \pi^* \mathcal{O}_{X^{(n)}_{s*}}(j_2^* K_X) \otimes \mathcal{O}_{\mathbb{P}}(-1) \to \pi^*(j_2^* T_X^*) \to \mathcal{O}_{\mathbb{P}}(1) \to 0.$$
(37)

Tensoring (37) with $\pi^* \mathcal{O}_{X_{ss}^{(n)}}(-j_2^* K_X) \otimes \mathcal{O}_{\mathbb{P}}(-1)$, we get

0

$$0 \rightarrow \mathcal{O}_{\mathbb{P}}(-2) \rightarrow (j_2 \circ \pi)^* (T_X^* \otimes \mathcal{O}_X(-K_X)) \otimes \mathcal{O}_{\mathbb{P}}(-1) \rightarrow (j_2 \circ \pi)^* \mathcal{O}_X(-K_X) \rightarrow 0.$$
(38)

Note that $T_X^* \otimes \mathcal{O}_X(-K_X) \cong T_X$. Applying $(j_1 \circ \tilde{ev}_1)^*$ to (38) yields

$$\rightarrow (j_1 \circ \tilde{ev}_1)^* \mathcal{O}_{\mathbb{P}}(-2) \rightarrow (j_1 \circ \tilde{ev}_1)^* ((j_2 \circ \pi)^* T_X \otimes \mathcal{O}_{\mathbb{P}}(-1)) \rightarrow (j_2 \circ \pi \circ j_1 \circ \tilde{ev}_1)^* \mathcal{O}_X(-K_X) \rightarrow 0.$$

$$(39)$$

1	•	6	2
C)	¢	j

By (33), we have $(j_2 \circ \pi \circ j_1 \circ \tilde{ev}_1)^* = (j_2 \circ \phi \circ \tilde{f}_{1,0})^* = (\tilde{f}_{1,0})^* \circ (j_2 \circ \phi)^*$. So rewriting the 3rd term in the exact sequence (39), we obtain

$$0 \rightarrow (j_1 \circ \tilde{ev}_1)^* \mathcal{O}_{\mathbb{P}}(-2) \rightarrow (j_1 \circ \tilde{ev}_1)^* ((j_2 \circ \pi)^* T_X \otimes \mathcal{O}_{\mathbb{P}}(-1)) \rightarrow (\tilde{f}_{1,0})^* ((j_2 \circ \phi)^* \mathcal{O}_X(-K_X)) \rightarrow 0.$$

$$(40)$$

Applying $(f_{1,0})_*$ to the above exact sequence and using part (i), we have

$$\begin{array}{rcl} 0 & \to & (\hat{f}_{1,0})_*(\hat{f}_{1,0})^*((j_2 \circ \phi)^*\mathcal{O}_X(-K_X)) \to \mathcal{V} \\ & \to & R^1(\tilde{f}_{1,0})_*(j_1 \circ \widetilde{ev}_1)^*((j_2 \circ \pi)^*T_X \otimes \mathcal{O}_{\mathbb{P}}(-1)) \\ & \to & R^1(\tilde{f}_{1,0})_*(\tilde{f}_{1,0})^*((j_2 \circ \phi)^*\mathcal{O}_X(-K_X)). \end{array}$$

where we have used $(\tilde{f}_{1,0})_*(j_1 \circ \tilde{ev}_1)^*((j_2 \circ \pi)^*T_X \otimes \mathcal{O}_{\mathbb{P}}(-1)) = 0$. Note that $(\tilde{f}_{1,0})_*\mathcal{O}_{\mathfrak{U}_1} \cong \mathcal{O}_{\mathfrak{U}_0}$ and $R^1(\tilde{f}_{1,0})_*\mathcal{O}_{\mathfrak{U}_1} = 0$. So we get

$$(\tilde{f}_{1,0})_*(\tilde{f}_{1,0})^*((j_2 \circ \phi)^* \mathcal{O}_X(-K_X)) \cong (j_2 \circ \phi)^* \mathcal{O}_X(-K_X) \otimes (\tilde{f}_{1,0})_* \mathcal{O}_{\mathfrak{U}_1}$$
$$\cong (j_2 \circ \phi)^* \mathcal{O}_X(-K_X)$$

by the projection formula. Similarly, $R^1(\tilde{f}_{1,0})_*(\tilde{f}_{1,0})^*((j_2 \circ \phi)^* \mathcal{O}_X(-K_X)) = 0$. Therefore, the locally free sheaf \mathcal{V} sits in the exact sequence (35).

Remark 3.1. Fix distinct points x_2, \ldots, x_n on X. Via the isomorphism $\phi^{-1}(2x_2 + x_3 + \ldots + x_n) \cong \overline{\mathfrak{M}}_{0,0}(\mathbb{P}^1, d[\mathbb{P}^1])$, the restriction of $R^1(\tilde{f}_{1,0})_*(j_1 \circ \tilde{ev}_1)^*((j_2 \circ \pi)^*T_X \otimes \mathcal{O}_{\mathbb{P}}(-1))$ to $\phi^{-1}(2x_2 + x_3 + \ldots + x_n)$ is isomorphic to

$$R^{1}(f_{1,0})_{*}(ev_{1})^{*}(\mathcal{O}_{\mathbb{P}^{1}}(-1)\oplus\mathcal{O}_{\mathbb{P}^{1}}(-1))$$

where by abusing notations, we still use $f_{1,0}$ and ev_1 to denote the forgetful map and the evaluation map from $\overline{\mathfrak{M}}_{0,1}(\mathbb{P}^1, d[\mathbb{P}^1])$ to $\overline{\mathfrak{M}}_{0,0}(\mathbb{P}^1, d[\mathbb{P}^1])$ and \mathbb{P}^1 respectively.

3.2. The 1-point Gromov-Witten invariants $\langle \alpha \rangle_{0,d\beta_n}$

In this subsection, we compute all the 1-point Gromov-Witten invariants $\langle \alpha \rangle_{0,d\beta_n}$ for the Hilbert schemes $X^{[n]}$. Recall from (8) and (7) that $|\alpha| = 4n - 4$. In view of Lemma 2.3 (ii), we need only to compute $\langle \alpha \rangle_{0,d\beta_n}$ when α is the Poincaré duals of $\mathfrak{s}_{n,1}$, $\mathfrak{s}_{n,2}, \mathfrak{s}_{n,3}, \mathfrak{s}_{C_1,1}, \mathfrak{s}_{C_1,2}$, and \mathfrak{s}_{C_1,C_2} where C_1 and C_2 are two smooth real surfaces in X. These six cases will be divided into two lemmas.

Lemma 3.3. Let $d \ge 1$, and C_1 and C_2 be smooth real surfaces in X.

- (i) If α is the Poincaré dual of $\mathfrak{s}_{n,1}$, \mathfrak{s}_{C_1,C_2} , or $\mathfrak{s}_{C_1,1}$, then $\langle \alpha \rangle_{0,d\beta_n} = 0$.
- (ii) If α is the Poincaré dual of $\mathfrak{s}_{C_1,2}$, then $\langle \alpha \rangle_{0,d\beta_n} = 2(K_X \cdot C_1)/d^2$.

Proof. (i) Suppose that α is Poincaré dual to $\mathfrak{s}_{n,1}$. Fix distinct points $x_1, \ldots, x_{n-1} \in X$ which are not contained in $C_1 \cup C_2$. By (24), $\mathfrak{s}_{n,1} \sim g_n(\widetilde{X}_\eta) \cong \widetilde{X}_\eta$ where \widetilde{X}_η is the blow up of X along $\eta = x_1 + \ldots + x_{n-1}$. Moreover, the exceptional curves in $g_n(\widetilde{X}_\eta)$ are $\rho^{-1}(x_1 + \ldots + x_{i-1} + 2x_i + x_{i+1} + \ldots + x_{n-1})$ for $1 \leq i \leq n-1$. Let \mathfrak{M}_1 be

the subset of $\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ consisting of all the stable maps $[\mu \colon (D; p) \to X^{[n]}]$ such that $\mu(p) \in g_n(\widetilde{X}_\eta)$. In this case, $\mu(D)$ is one of the exceptional curves in $g_n(\widetilde{X}_\eta) \subset B_*$. In particular, the stable maps $[\mu \colon (D; p) \to X^{[n]}]$ are contained in \mathfrak{U}_1 , and $\mathfrak{M}_1 = \prod_{1 \leq i \leq n-1} (\widetilde{f}_{1,0})^{-1} (\phi^{-1}(x_1 + \ldots + x_{i-1} + 2x_i + x_{i+1} + \ldots + x_{n-1}))$. So as algebraic cycles, we have $[\mathfrak{M}_1] = \sum_{i=1}^{n-1} (\widetilde{f}_{1,0})^* \phi^*[x_1 + \ldots + x_{i-1} + 2x_i + x_{i+1} + \ldots + x_{n-1}]$. By Lemma 3.2 (ii), we get $c_{2d-1}(\mathcal{V}) = -(j_2 \circ \phi)^* K_X \cdot c_{2d-2}(\mathcal{E})$ where $\mathcal{E} = R^1 (\widetilde{f}_{1,0})_* (j_1 \circ \widetilde{ev}_1)^* ((j_2 \circ \pi)^* T_X \otimes \mathcal{O}_{\mathbb{P}}(j_2^* T_X^*)(-1))$. In view of (9) and (34),

$$\langle \alpha \rangle_{0,d\beta_n} = \int_{[\overline{\mathfrak{M}}_{0,1}(Y,\beta)]^{\operatorname{vir}}} (ev_1)^* \alpha = [\mathfrak{M}_1] \cdot [\overline{\mathfrak{M}}_{0,1}(Y,\beta)]^{\operatorname{vir}}$$

$$= [\mathfrak{M}_1] \cdot [\overline{\mathfrak{M}}_{0,1}(Y,\beta)]^{\operatorname{vir}}|_{\mathfrak{M}_1} = [\mathfrak{M}_1] \cdot (\tilde{f}_{1,0})^* (c_{2d-1}(\mathcal{V}))$$

$$= -\sum_{i=1}^{n-1} (\tilde{f}_{1,0})^* \left(\phi^* ([x_1 + \ldots + 2x_i + \ldots + x_{n-1}] \cdot j_2^* K_X) \cdot c_{2d-2}(\mathcal{E}) \right) = 0.$$

Next let α be the Poincaré dual of \mathfrak{s}_{C_1,C_2} . We may assume that C_1 and C_2 intersect transversally at the points y_1, \ldots, y_m . By (26), \mathfrak{s}_{C_1,C_2} is the closure of

$$\{x + \tilde{x} + x_1 + \ldots + x_{n-2} | x \in C_1, \tilde{x} \in C_2, \text{ and } x \neq \tilde{x}\} \subset X^{[n]}$$

Let $\mathfrak{M}'_1 \subset \overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ consist of all the stable maps $[\mu \colon (D; p) \to X^{[n]}]$ such that $\mu(p) \in \mathfrak{s}_{C_1,C_2}$. In this case, $\rho(\mu(D)) = 2y_k + x_1 + \ldots + x_{n-2}$ for some k with $1 \leq k \leq m$. Therefore, $\mu(D) = \rho^{-1}(2y_k + x_1 + \ldots + x_{n-2})$. Hence the stable map $[\mu \colon (D; p) \to X^{[n]}]$ is contained in \mathfrak{U}_1 . So $\mathfrak{M}'_1 \subset \mathfrak{U}_1$ is the disjoint union of $(\tilde{f}_{1,0})^{-1}(\phi^{-1}(2y_k + x_1 + \ldots + x_{n-2}))$, $1 \leq k \leq m$, with \pm orientations. By the same computations as in the previous paragraph, we obtain $\langle \alpha \rangle_{0,d\beta_n} = 0$.

For the case of $\mathfrak{s}_{C_1,1}$, the proof is similar to the cases of $\mathfrak{s}_{n,1}$ and \mathfrak{s}_{C_1,C_2} .

(ii) Let $\tilde{\eta} = x_1 + \ldots + x_{n-2}$. By (21), $\mathfrak{s}_{C_{1,2}} \sim M_2(C_1) + \tilde{\eta} = \rho^{-1}(2C_1 + \tilde{\eta})$. Thus, we have $\alpha = \text{PD}(\rho^{-1}(2C_1 + \tilde{\eta}))$ where PD stands for the Poincaré dual. So we see from (34) and Lemma 3.2 (ii) that

$$\langle \alpha \rangle_{0,d\beta_{n}} = \int_{[\overline{\mathfrak{M}}_{0,1}(Y,\beta)]^{\operatorname{vir}}} (ev_{1})^{*} \alpha = \int_{-(\tilde{f}_{1,0})^{*}(j_{2}\circ\phi)^{*}K_{X}\cdot(\tilde{f}_{1,0})^{*}c_{2d-2}(\mathcal{E})} (ev_{1})^{*} \alpha$$

$$= -\int_{(\tilde{e}\tilde{v}_{1})^{*}(\rho^{*}j_{2}^{*}K_{X})\cdot(\tilde{f}_{1,0})^{*}c_{2d-2}(\mathcal{E})} (ev_{1})^{*} \operatorname{PD}(\rho^{-1}(2C_{1}+\tilde{\eta})\cdot c_{1}(\mathcal{O}_{B_{*}}(B_{*})))$$

$$= -\int_{(\tilde{f}_{1,0})^{*}c_{2d-2}(\mathcal{E})} (\tilde{e}\tilde{v}_{1})^{*} \operatorname{PD}(\rho^{-1}((j_{2}^{*}K_{X})\cdot(2C_{1}+\tilde{\eta}))\cdot c_{1}(\mathcal{O}_{B_{*}}(B_{*})))$$

$$= 2(K_{X}\cdot C_{1})\cdot\int_{(\tilde{f}_{1,0})^{*}c_{2d-2}(\mathcal{E})} (\tilde{e}\tilde{v}_{1})^{*} \operatorname{PD}(\xi)$$

$$(41)$$

0	F
n	h
•••	
~	\sim

where $\xi \in \rho^{-1}(2x + \tilde{\eta}) = \rho^{-1}(2x + x_1 + \ldots + x_{n-2})$ is a fixed point for some fixed point $x \in C_1$. Also, we have used the isomorphism (32) in the last step.

Let $\mathfrak{M}_1'' \subset \overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ be the subset consisting of all stable maps $[\mu \colon (D; p) \to X^{[n]}]$ with $\mu(p) = \xi$. If $[\mu \colon (D; p) \to X^{[n]}] \in \mathfrak{M}_1''$, then $\rho(\mu(D)) = \rho(\mu(p)) = 2x + x_1 + \dots + x_{n-2}$. So $\mu(D) = \rho^{-1}(2x + x_1 + \dots + x_{n-2})$. Thus the restriction of the forgetful map $\tilde{f}_{1,0}$ to \mathfrak{M}_1'' gives a degree-*d* morphism from \mathfrak{M}_1'' to $\mathfrak{M}_0'' \stackrel{\text{def}}{=} \phi^{-1}(2x + x_1 + \dots + x_{n-2})$. Hence, as algebraic cycles, we have $(\tilde{f}_{1,0})_*[\mathfrak{M}_1''] = d[\mathfrak{M}_0''] = d \cdot \phi^*[2x + x_1 + \dots + x_{n-2}]$. By (41), we obtain

$$\langle \alpha \rangle_{0,d\beta_{2}} = 2(K_{X} \cdot C_{1}) \cdot [\mathfrak{M}_{1}''] \cdot (f_{1,0})^{*} c_{2d-2}(\mathcal{E}) = 2(K_{X} \cdot C_{1}) \cdot (\tilde{f}_{1,0})_{*} [\mathfrak{M}_{1}''] \cdot c_{2d-2}(\mathcal{E}) = 2d(K_{X} \cdot C_{1}) \cdot \phi^{*} [2x + x_{1} + \ldots + x_{n-2}] \cdot c_{2d-2}(\mathcal{E}) = 2d(K_{X} \cdot C_{1}) \cdot c_{2d-2}(\mathcal{E}|_{\phi^{-1}(2x + x_{1} + \ldots + x_{n-2})}).$$

$$(42)$$

By Remark 3.1, $\mathcal{E}|_{\phi^{-1}(2x+x_1+\ldots+x_{n-2})} \cong R^1(f_{1,0})_*(\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1))$ where $f_{1,0}$ and ev_1 denote the forgetful map and the evaluation map from the moduli space $\overline{\mathfrak{M}}_{0,1}(\mathbb{P}^1, d[\mathbb{P}^1])$ to $\overline{\mathfrak{M}}_{0,0}(\mathbb{P}^1, d[\mathbb{P}^1])$ and \mathbb{P}^1 respectively. By the Theorem 9.2.3 in [C-K], $c_{2d-2}(R^1(f_{1,0})_*(ev_1)^*(\mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1))) = 1/d^3$. So we have

$$c_{2d-2}(\mathcal{E}|_{\phi^{-1}(2x+x_1+\ldots+x_{n-2})}) = c_{2d-2}(R^1(f_{1,0})_*(ev_1)^*(\mathcal{O}_{\mathbb{P}^1}(-1)\oplus\mathcal{O}_{\mathbb{P}^1}(-1))) = 1/d^3.$$

Combining this with (42), we conclude that $\langle \alpha \rangle_{0,d\beta_n} = 2(K_X \cdot C_1)/d^2$.

Lemma 3.4. Let $d \ge 1$. If α is the Poincaré dual of $\mathfrak{s}_{n,2}$ or $\mathfrak{s}_{n,3}$, then $\langle \alpha \rangle_{0,d\beta_n} = 0$.

Proof. Since similar argument works for $\mathfrak{s}_{n,2}$, we shall only prove the lemma for $\mathfrak{s}_{n,3}$. So assume that α is the Poincaré dual of $\mathfrak{s}_{n,3}$. Let $x_1, \ldots, x_{n-2} \in X$ be fixed distinct points on X contained in a small analytic open subset U of X. We may assume that U is independent of the smooth surface X. Let $\mathfrak{U}'_1 \subset \overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ be the analytic open subset consisting of all stable maps $[\mu: (D; p) \to X^{[n]}]$ with $\mu(p) \in U^{[n]}$. Since $\mu_*(D) \sim$ $d\beta_n$, we see that $\operatorname{Supp}(\mu(D)) = \operatorname{Supp}(\mu(p))$ for $[\mu: (D; p) \to X^{[n]}] \in \overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$. So $\mu(D) \subset U^{[n]}$, and \mathfrak{U}'_1 is independent of X.

Next, recall from (19) that $\mathfrak{s}_{n,3}$ is represented by $M_3(x_1) + x_2 + \ldots + x_{n-2}$. Let $\mathfrak{M}_1 \subset \overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$ be the closed subset consisting of all stable maps $[\mu \colon (D; p) \to X^{[n]}]$ with $\mu(p) \in M_3(x_1) + x_2 + \ldots + x_{n-2}$. Then, $\mathfrak{M}_1 \subset \mathfrak{U}'_1$ since $M_3(x_1) + x_2 + \ldots + x_{n-2} \subset U^{[n]}$. In addition, since $\operatorname{Supp}(\mu(D)) = \operatorname{Supp}(\mu(p))$, we must have $\mu(D) \subset M_3(x_1) + x_2 + \ldots + x_{n-2}$ for every $[\mu \colon (D; p) \to X^{[n]}] \in \mathfrak{M}_1$. So \mathfrak{M}_1 is independent of X. Thus the pull-back $ev_1^*(\alpha)$ is also independent of X.

In summary, $\mathfrak{M}_1 \subset \mathfrak{U}'_1$, \mathfrak{U}'_1 is analytic open in $\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)$, and \mathfrak{M}_1 and \mathfrak{U}'_1 are independent of X. It follows from the constructions of the virtual fundamental class (see [LT2, LT3, Ru1]) that the restriction $[\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)]^{\mathrm{vir}}|_{\mathfrak{M}_1}$ is independent of the smooth surface X. So the 1-point Gromov-Witten invariant $\langle \alpha \rangle_{0,d\beta_n}$, which is defined to be $[\overline{\mathfrak{M}}_{0,1}(X^{[n]}, d\beta_n)]^{\mathrm{vir}} \cdot ev_1^*(\alpha)$ with $ev_1^*(\alpha)$ being independent of X, is independent

of X as well. Since all the Gromov-Witten invariants $\langle \alpha_1, \ldots, \alpha_k \rangle_{0,\beta}$ with $\beta \neq 0$ for a K3-surface are zero, we conclude that $\langle \alpha \rangle_{0,d\beta_n} = 0$ for $d \ge 1$. П

Summarizing Lemma 3.3 and Lemma 3.4, we obtain our main result.

Theorem 3.5. Let X be a simply-connected smooth projective surface. Let $n \ge 2$, $d \ge 1$, and C_1 and C_2 be two smooth real surfaces in X.

- (i) If α is the Poincaré dual of $\mathfrak{s}_{n,1}$, \mathfrak{s}_{C_1,C_2} , $\mathfrak{s}_{C_1,1}$, $\mathfrak{s}_{n,2}$ or $\mathfrak{s}_{n,3}$, then $\langle \alpha \rangle_{0,d\beta_n} = 0$.
- (ii) If α is the Poincaré dual of $\mathfrak{s}_{C_1,2}$, then $\langle \alpha \rangle_{0,d\beta_n} = 2(K_X \cdot C_1)/d^2$.

Acknowledgments

The authors thank Dan Edidin, Sheldon Katz, Jun Li, Yongbin Ruan, Qi Zhang for stimulating discussions and valuable helps.

References

- [Beh] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601-617.
- [B-F]K. Behrend, B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45-88.
- [C-K] D. Cox, S. Katz, Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs 68, Amer. Math. Soc., Providence, RI (1999).
- [E-S]G. Ellingsrud, S.A. Stromme, An intersection number for the punctual Hilbert scheme of a surface, Trans. of A.M.S. **350** (1999) 2547-2552.
- J. Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968) 511-520. [Fo1]
- J. Fogarty, Algebraic families on an algebraic surface. II: The Picard scheme of the [Fo2] punctual Hilbert scheme, Amer. J. Math. 95 (1973) 660-687.
- [F-P]W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology. Algebraic Geometry-Santa Cruz 1995, 45-96, Proc. Sympos. Pure Math. 62, Amer. Math. Soc., Providence, RI (1997).
- E. Getzler, Intersection theory on $\overline{M}_{1,4}$ and elliptic Gromov-Witten invariants, J. AMS [Get] **10** (1997) 973-998.
- [Got] L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990) 193-207.
- [Gro] I. Grojnowski, Instantons and affine algebras I: the Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275–291.
- [LiJ] J. Li, Private communication, 2000.
- W.-P. Li, Z. Qin, Q. Zhang, On the geometry of the Hilbert schemes of points in the [LQZ] projective plane, preprint, math.AG/0105213.
- [LT1] J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. A.M.S. 11 (1998) 19-174.
- [LT2]J. Li, G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds, Topics in symplectic 4-manifolds (Irvine, CA, 1996), First Int. Press Lect. Ser., I, Internat. Press, Cambridge, MA, (1998) 47-83.
- [LT3] J. Li, G. Tian, Comparison of the algebraic and symplectic definitions of GW invariants, Asian J. Math. 3 (1999) 689–728.
- [Nak] H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math. 145 (1997) 379-388.

- [Ru1] Y. Ruan, Virtual neighborhoods and pseudo-holomorphic curves, Proceedings of 6th Gökova Geometry-Topology Conference. Turkish J. Math. 23 (1999) 161–231.
- [Ru2] Y. Ruan, Cohomology ring of crepant resolutions of orbifolds, preprint, math.AG/0108195.

Department of Mathematics, HKUST, Clear Water Bay, Kowloon, Hong Kong $E\text{-}mail \ address: \texttt{mawpliQust.hk}$

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MO 65211, USA *E-mail address:* zq@math.missouri.edu