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Evidence for a conjecture of Pandharipande

Jim Bryan

Abstract

In his paper “Hodge integrals and degenerate contributions”, Pandharipande
studied the relationship between the enumerative geometry of certain 3-folds
and the Gromov-Witten invariants. In some good cases, enumerative invari-
ants (which are manifestly integers) can be expressed as a rational combination
of Gromov-Witten invariants. Pandharipande speculated that the same com-
bination of invariants should yield integers even when they do not have any
enumerative significance on the 3-fold. In the case when the 3-fold is the prod-
uct of a complex surface and an elliptic curve, Pandharipande has computed
this combination of invariants on the 3-fold in terms of the Gromov-Witten
invariants of the surface. This computation yields surprising conjectural pre-
dictions about the genus 0 and genus 1 Gromov-Witten invariants of com-
plex surfaces. The conjecture states that certain rational combinations of the
genus 0 and genus 1 Gromov-Witten invariants are always integers. Since the
Gromov-Witten invariants for surfaces are often enumerative (as oppose to 3-
folds), this conjecture can often also be interpreted as giving certain congruence
relations among the various enumerative invariants of a surface.

In this note, we state Pandharipande’s conjecture and we prove it for an
infinite series of classes in the case of CP? blown-up at 9 points. In this case,
we find generating functions for the numbers appearing in the conjecture in
terms of quasi-modular forms. We then prove the integrality of the numbers by
proving a certain a congruence property of modular forms that is reminiscent
of Ramanujan’s mod 5 congruences of the partition function.

1. The conjecture

Let X be a smooth complex projective surface (or more generally, a symplectic 4-
manifold), let K be its canonical class, and let x(X) be its Euler characteristic. Let
B € Hy(X,Z) and let g(3) be defined by 2¢g(8) —2 = 3- (K + ). Define ¢(5) to be —3- K
and assume that ¢(3) > 0. Let N"(3) be the genus r Gromov-Witten invariant of X in
the class 3 where we have imposed ¢(3) +r — 1 point constraints. By convention we will
say N"(0) = 0.
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Conjecture 1.1 (Pandharipande). Define a(3) by

(5) =~ 5 HN(9)
and define b(8) by
(5) = 5oz (120(5)7 + 9(3)e(B) — 249(3)) N(5)
+ s (XON'(9)
+ 51 3y (W)@ e N )

Then a(B) and b(3) are integers.

Remark 1.1. This conjecture is related to the proposal of Gopakumar and Vafa that
relates the Gromov-Witten invariants of Calabi-Yau 3-folds to conjecturally integer valued
invariants (“BPS state counts”, or “BPS invariants”). Pandharipande has generalized
the Gopakumar-Vafa formula to Fano classes in non-Calabi-Yau 3-folds (see [3]). In
this formulation, the numbers a(3) and b(j3) are respectively genus 1 and genus 2 “BPS
invariants” for the surface cross an elliptic curve. The reason that these are expressible
in terms of ordinary Gromov-Witten invariants of the surface is that the Hodge class in
Mg (which appears in the computation of the virtual class) is readily expressible in terms
of boundary classes for g = 1 and g = 2. For arbitrary g there will also be predictions for
the invariants of the surface, but they will involve gravitational descendants in general.

2. The case of CP? blown-up at 9 points

Let X be CP? blown up at nine points. Let F' = —K be the anti-canonical class and
let S be the exceptional divisor of one of the blow-ups (so if X is elliptically fibered, then
F is the fiber and S is a section). Let 3, = S +nF. Then N"(f,) was computed in [1].
We will find a nice generating functions for the numbers a(53,) and b(3) and will prove
that they are integers thus verifying Pandharipande’s conjecture for X for this infinite
series of classes.

Note that ¢(3,) = 1, g(3,) = n, and x(X) = 12. Since for N°(3") to be non-zero, we
need ¢(f”) = 1, the sum must have ¢(8”) = 1 and ¢(8') = 0. It follows that 5" and 5’
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are of the form S + kF and (n — k)F respectively. Thus we have

a(Ba) = = 75nN°(5)

b(Bn) = 28%(12712 —23n)NY(3,)

L

n—1

1 1
+ 210 k:O(n —k)(2k — 1)NY((n — k)F)N°(B).
Define
Alg) =) a(Ba)g",
n=0
B(q) = Z b(ﬁn)q"
n=0

We will find an expression for A(g) and B(q) in terms of quasi-modular forms.

o(k) = > 4, d and let p(k) be the number of partitions of k. Define

= (1 - qm) 1)
Pa(q) = (P(q)”,
D= qdiq'

Let

Note that G and P are closely related to well known (quasi-) modular forms: G — 1/24

is the Eisenstein series G and ql/ 24P, is the Dedekind 7 function.
With this notation, the results of [1] (Theorem 1.2) give

Z N°(Bn)q" = Pis
n=0

> N'(Ba)q" = P12DG.
n=1
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Furthermore, one can show that
1
NY(IF) = 7o)

(when the blow-up points are generic, this comes from the multiple covers of the unique
elliptic curve in the class F'). We thus have

1
Alq) = ——DP12
1

B(q) = 12D? — 23D)P P DG
(Q) 2880( )P1o + 20 12

+24OZZ (2k — 1)o(n — k)N°(By)g" "

n>1k=0

1 23
= D?Pjy— ——DP P DG
240 127 5880 12 T g2

+2—ZZ2k—1 m)N(Br)q"q

m>1k>0

1 23
=_—D?Piy— —DP P DG —G 2DPyy — P
240 12 2330 12 + 20 12 + 210 ( 12 12)

Now, by a standard calculation, G = P_1DP and so DP;5 = 12P;5G. Substituting
and simplifying we arrive at:

Theorem 2.1. The following equations holds:
Alg) = —Pi2- G
B(q) = 11—0P12 {7G* - G + DG} .
This theorem immediately shows that the coefficients of A are integers. On the other
hand, the integrality of the coefficients of B requires the following theorem:
Theorem 2.2. The following equation holds:
7G* -G+ DG =0 (mod 10).
Proor: By a simple calculation mod 5, we have:
7G? — G+ DG = 3P_5(D* — D)P, (mod 5)

and so to prove that the above expression is 0 mod 5, it suffices to prove that (D?—D)P, =

0 (mod 5). Using the Jacobi triple product formula and the Euler inversion formula, it
is easy to show that the kth coefficient of P, = P_3P5 is divisible by 5 unless k is 0 or 1
mod 5 (see [2]). In other words:

Py(q) =7(¢°) + ¢s(¢°) (mod 5).
It follows that DP; = ¢s(¢”) (mod 5) and so D*P, = DP; (mod 5) as desired.
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On the other hand, it is easy to compute that
7G* — G+ DG = P_1(D* + D)P (mod 2).
This expression is 0 mod 2 since the kth coefficient of (D? + D)P is k(k + 1)p(k).

Thus we have established that 7G? — G+ DG is 0 mod 2 and mod 5 and so the theorem
is proved. O
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