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Abstract

In this survey paper, we give a complete list of known results on the first and
the second homology groups of surface mapping class groups.

Some known results on higher (co)homology are also mentioned.

1. Introduction

Let Σng,r be a connected orientable surface of genus g with r boundary components
and n punctures. The mapping class group of Σng,r may be defined in different ways. For
our purpose, it is defined as the group of the isotopy classes of orientation-preserving
diffeomorphisms Σng,r → Σng,r. The diffeomorphisms and the isotopies are assumed to fix
each puncture and the points on the boundary. We denote the mapping class group of
Σng,r by Γng,r . Here, we see the punctures on the surface as distinguished points. If r
and/or n is zero, then we omit it from the notation. We write Σ for the surface Σng,r when
we do not want to emphasize g, r, n.

The theory of mapping class groups plays a central role in low-dimensional topology.
When r = 0 and 2g+n ≥ 3, the mapping class group Γng acts properly discontinuously on
the Teichmüller space which is homeomorphic to some Euclidean space and the stabilizer
of each point is finite. The quotient of the Teichmüller space by the action of the mapping
class group is the moduli space of complex curves.

Recent developments in low-dimensional topology made the algebraic structure of the
mapping class group more important. The examples of such developments are the theory
of Lefschetz fibrations and the Stein fillability of contact 3-manifolds. Questions about
the structure of these can be stated purely as an algebraic problem in the mapping class
group, but in this paper we do not address such problems.

The purpose of this survey paper is to give a list of complete known results on the
homology groups of the mapping class groups in dimensions one and two. There is no
new result in the paper, but there are some new proofs. For example, although the first
homology group of the mapping class group in genus one case is known, it seems that it
does not appear in the literature. Another example is that we give another proof of the
fact that Dehn twists about nonseparating simple closed curves are not enough to generate
the mapping class group of a surface of genus one with r ≥ 2 boundary components (cf.
Corollary 5.2 below), as opposed to the higher genus case.
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We shall mainly be interested in orientable surfaces. The first and the second homology
groups of the mapping class group have been known for more than twenty years. We will
give the complete list of the first homologies and we calculate them. An elementary proof
of the second homology of the mapping class group was recently given by the author
and Stipsicz in [30]. This proof is based on the presentation of the mapping class group
and is sketched in Section 6. We then outline some known results for higher dimensional
(co)homology. Finally, in the last section, we give the first homology groups of the
mapping class groups of nonorientable surfaces.

2. Dehn twists and relations among them

Let Σ be an oriented surface and let a be a simple closed curve on it. We always assume
that the curves are unoriented. Cutting the surface Σ along a, twisting one of the sides by
360 degrees to the right and gluing back gives a self-diffeomorphism of the surface Σ (cf.
Fig. 1 (a)). Let us denote this diffeomorphism by ta. In general, a diffeomorphism and
its isotopy class will be denoted by the same letter, so that ta also represents an element
of Γng,r. Accordingly, a simple closed curve and its isotopy class are denoted by the same
letter. It can easily be seen that the mapping class ta depends only on the isotopy class
of a. The mapping class ta is called the (right) Dehn twist about a.

From the definition of a Dehn twist it is easy to see that if f : Σ→ Σ is a diffeomorphism
and a a simple closed curve on Σ, then there is the equality

ftaf
−1 = tf(a). (1)

We note that we use the functional notation for the composition of functions, so that
(fg)(x) = f(g(x)).

2.1. The braid relations

Suppose that a and b are two disjoint simple closed curves on a surface Σ. Since the
support of the Dehn twist ta can be chosen to be disjoint from b, we have ta(b) = b. Thus
by (1), we get

tatb = tatbt
−1
a ta = tta(b)ta = tbta. (2)

(a) (b)

a ta tb
b

a

(a) tb(a)ta b

Figure 1. The Dehn twist ta, and the proof of tatb(a) = b.

102



KORKMAZ

Suppose that two simple closed curves a and b intersect transversely at only one point.
It can easily be shown that tatb(a) = b (cf. Fig. 1 (b)). Hence,

tatbta = tatbtat
−1
b t−1

a tatb = ttatb(a)tatb = tbtatb. (3)

2.2. The two-holed torus relation

Suppose that a, b, c are three nonseparating simple closed curves on a surface Σ such
that a is disjoint from c, and b intersects a and c transversely at one point (cf. Fig. 2 (a)).
A regular neighborhood of a ∪ b∪ c is a torus with two boundary components, say d and
e. Then the Dehn twists about these simple closed curves satisfy the relation

(tatbtc)4 = tdte. (4)

For a proof of this, see [25], Lemma 2.8. We call it the two-holed torus relation. In fact,
it follows from the braid relations that the three Dehn twists ta, tb, tc on the left hand
side of this relation can be taken in any order.

d2

a

(b)(a)

b
c

d

e
d1 d3

d12 d23

d13

d0

Figure 2. The circles of the two-holed torus and the lantern relations.

2.3. The lantern relation

Consider a sphere X with four holes embedded in a surface Σ in such a way that the
boundary circles of X are the simple closed curves d0, d1, d2 and d3 on Σ (cf. Fig. 2 (b)).
There are three circles d12, d13 and d23 on X such that there is the relation

td0td1 td2 td3 = td12 td13 td23 . (5)

This relation is called the lantern relation. It was first discovered by Dehn [10] and
rediscovered and made popular by Johnson [24].

The two-holed torus and the lantern relations can be proved easily: Choose a set of
arcs dividing the supporting subsurface into a disc and show that the actions on this set
of arcs of the diffeomorphisms on the two sides are equal up to homotopy.
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3. Generating the mapping class group

The search of the algebraic structures of the mapping class group was initiated by the
work of Dehn [10]. He proved that that the mapping class group of a closed orientable
surface is generated by finitely many (Dehn) twists about nonseparating simple closed
curves.

In [31, 33], Lickorish reproduced this result; he proved that the mapping class group
Γg can be generated by 3g − 1 Dehn twists, all of which are about nonseparating simple
closed curves. In [19], Humphries reduced this number to 2g + 1: The mapping class
group Γg of a closed orientable surface Σg of genus g is generated by Dehn twists about
2g + 1 simple closed curves a0, a1, . . . , a2g of Fig. 3. In the figure, we glue a disc to the
boundary component of the surface to get the closed surface Σg . Humphries also showed
that the number 2g+1 is minimal; the mapping class group of a closed orientable surface
of genus g ≥ 2 cannot be generated by 2g (or less) Dehn twists. For any generating set
the situation is different of course; Γg is generated by two elements. This result is due to
Wajnryb [45]. This is the least number of generators, because Γg is not commutative.

2 4 6

1 3 5

0

2g–1
2g

Figure 3. The label n represents the circle an.

Let Σng be an orientable surface of genus g with n punctures. Let n ≥ 1 and let us fix
a puncture x. By forgetting the puncture x, every diffeomorphism Σng → Σng induces a
diffeomorphism Σn−1

g → Σn−1
g . This gives an epimorphism Γng → Γn−1

g whose kernel is
isomorphic to the fundamental group of Σn−1

g at the base point x (cf. [2]). Therefore, we
have a short exact sequence

1→ π1(Σn−1
g )→ Γng → Γn−1

g → 1. (6)

Now let Σng,r be an orientable surface of genus g with r boundary components and n
punctures. Assume that r ≥ 1. Let P be one of the boundary components. By gluing
a disc D with one puncture along P , we get a surface Σn+1

g,r−1 of genus g with r − 1
boundary components and n + 1 punctures. A diffeomorphism Σng,r → Σng,r extends to a
diffeomorphism Σn+1

g,r−1 → Σn+1
g,r−1 by defining the extension to be the identity on D. This

way we get an epimorphism Γng,r → Γn+1
g,r−1. Note that a Dehn twist on Σng,r along a simple

closed curve parallel to P gives a diffeomorphism Σn+1
g,r−1 → Σn+1

g,r−1 isotopic to the identity.
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Essentially, this is the only vanishing mapping class under the map Γng,r → Γn+1
g,r−1. More

precisely, we have the short exact sequence

1→ Z→ Γng,r → Γn+1
g,r−1 → 1, (7)

where Z is the subgroup of Γng,r generated by the Dehn twist along a simple closed curve
parallel to P .

It follows from the description of the homomorphisms in the short exact sequences (6)
and (7), and the fact that the mapping class group Γg is generated by Dehn twists about
finitely many nonseparating simple closed curves, the group Γng,r is generated by Dehn
twists along finitely many nonseparating simple closed curves and the Dehn twist along
a simple closed curve parallel to each boundary component.

Suppose that the genus of the surface Σng,r is at least 2. The four-holed sphere X
of the lantern relation can be embedded in the surface Σng,r in such a way that one of
the boundary components of X is a given boundary component of Σng,r and all other six
curves of the lantern relation are nonseparating on Σng,r. We conclude from this that

Theorem 3.1. If g ≥ 2 then the mapping class group Γng,r is generated by Dehn twists
about finitely many nonseparating simple closed curves.

We note that this theorem does not hold for g = 1 and r ≥ 2. See Corollary 5.2 in
Section 5 below. Dehn twists about boundary parallel simple closed curves are needed in
this case. In the case that g = 0, there is no nonseparating simple closed curve.

4. Presenting the mapping class groups Γg and Γg,1

The mapping class groups are finitely presented. The presentation of Γ2 was first ob-
tained by Birman and Hilden [5]. For g ≥ 3, this fact was first proved by McCool [35]
using combinatorial group theory without giving an actual presentation. A geometric
proof of this was given by Hatcher and Thurston [18], again without an explicit presen-
tation. Their proof used the connectedness and the simple connectedness of a certain
complex formed by so called cut systems. Harer [14] modified the Hatcher-Thurston com-
plex of cut systems in order to calculate the second homology groups of mapping class
groups of orientable surfaces of genus g ≥ 5. Using this modified complex, simple presen-
tations of the mapping class groups Γg,1 and Γg were finally obtained by Wajnryb [44].
Minor errors in [44] were corrected in [6]. The proof of Hatcher and Thurston is very
complicated. In [46], Wajnryb gave an elementary proof of the presentations of Γg,1 and
Γg. This proof does not use the results of Hatcher-Thurston and Harer. It turns out that
all the relations needed to present the mapping class groups are those given in Section 2,
which were obtained by Dehn [10].

We now give the Wajnryb presentations of Γg,1 and Γg . So suppose that n = 0 and
r ≤ 1. As a model for Σg,r , consider the surface in Fig. 3. On the surface Σg,r, consider
the simple closed curves a0, a1, . . . , a2g illustrated in Fig. 3.

Let F be the nonabelian free group freely generated by x0, x1, . . . , x2g. For x, y ∈ F ,
let [x, y] denote the commutator xyx−1y−1. In the group F , we define some words as
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follows. Let
Aij = [xi, xj]

if the curve ai is disjoint from the curve aj in Fig. 3, and let

B0 = x0x4x0x
−1
4 x−1

0 x−1
4 ,

Bi = xixi+1xix
−1
i+1x

−1
i x−1

i+1

for i = 1, 2, . . . , 2g− 1. Let us also define the words

C = (x1x2x3)4x−1
0 (x4x3x2x

2
1x2x3x4)x−1

0 (x4x3x2x
2
1x2x3x4)−1

and
D = x1x3x5wx0w

−1x−1
0 t−1

2 x−1
0 t2(t2t1)−1x−1

0 (t2t1),
where

t1 = x2x1x3x2, t2 = x4x3x5x4,

and
w = x6x5x4x3x2(t2x6x5)−1x0(t2x6x5)(x4x3x2x1)−1.

In the group F , we define one more element E to be

E = [x2g+1, x2gx2g−1 · · ·x3x2x
2
1x2x3 · · ·x2g−1x2g],

where

x2g+1 = (ug−1ug−2 · · ·u1)x1(ug−1ug−2 · · ·u1)−1,

u1 = (x1x2x3x4)−1v1x4x3x2,

ui = (x2i−1x2ix2i+1x2i+2)−1vix2i+2x2i+1x2i for i = 2, . . . , g − 1,
v1 = (x4x3x2x

2
1x2x3x4)x0(x4x3x2x

2
1x2x3x4)−1,

vi = (wiwi−1)−1vi−1(wiwi−1) for i = 2, . . . , g− 1,
wi = x2ix2i+1x2i−1x2i for i = 1, 2, . . . , g − 1.

We would like to note that if we define a homomorphism from F to Γg or Γg,1 by
xi 7→ tai , then the relation C maps to a two-holed torus relation and D maps to a lantern
relation such that all seven simple closed curves in the relation are nonseparating. Aij
and Bi map to the braid relations.

Let us denote by R1 the normal subgroup of F normally generated by the elements
Aij, B0, B1, . . . , B2g−1, C and D, and let R0 denote the normal subgroup of F normally
generated by R1 and E. The Wajnryb presentation of the mapping class groups Γg and
Γg,1 can be summarized as the next theorem.

Theorem 4.1 ([46], Theorems 1′ and 2). Let g ≥ 2. Then there are two short exact
sequences

1 −→ R1 −→ F
φ1−→ Γg,1 −→ 1 (8)

and

1 −→ R0 −→ F
φ0−→ Γg −→ 1, (9)
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where φi(xj) is the Dehn twist taj about the curve aj.

Remark 4.1. If g = 2 then the relation D is not supported in the surface. In this case,
one should omit the element D from the definition of R0 and R1.

Notice that the presentation of Γ2,1 in Theorem 2 in [46] is slightly different but equiv-
alent to the presentation above.

A finite presentation of the mapping class group Γg,r is obtained by Gervais in [13].

5. The first homology

Recall that for a discrete group G, the first homology group H1(G;Z) of G with integral
coefficients is isomorphic to the derived quotient G/[G,G], where [G,G] is the subgroup
of G generated by all commutators [x, y] for x, y ∈ G. Here, [x, y] = xyx−1y−1.

From the presentation of the mapping class group Γg given in Theorem 4.1, the group
H1(Γg;Z) can be computed easily; it is isomorphic to Z10 if g = 2 and 0 if g ≥ 3.
The fact that H1(Γ2;Z) is isomorphic to Z10 was first proved by Mumford [40] and that
H1(Γg;Z) = 0 for g ≥ 3 by Powell [42]. We prove this result for g ≥ 3 without appealing
to the presentation. We also determine the first homology groups for arbitrary r and n,
which is well known.

If a and b are two nonseparating simple closed curves on a surface Σng,r, then by the
classification of surfaces there is a diffeomorphism f : Σng,r → Σng,r such that f(a) = b.
Thus, by (1), we have that tb = ftaf

−1. This can also be written as tb = [f, ta]ta.
Therefore, ta and tb represent the same class τ in H1(Γng,r ;Z). Since the mapping class
group Γng,r is generated by Dehn twists about nonseparating simple closed curves for
g ≥ 2, it follows that the group H1(Γng,r;Z) is cyclic and is generated by τ .

Suppose that g ≥ 3. The four-holed sphere X of the lantern relation can be embedded
in Σng,r such that all seven curves involved in the lantern relation become nonseparating
on Σng,r (cf. Fig. 4). This gives us the relation 4τ = 3τ in H1(Γng,r ;Z). Hence, H1(Γng,r ;Z)
is trivial.

Suppose now that g = 2. The two-holed torus of the two-holed torus relation can be
embedded in Σn2,r so that all five curves in the relation becomes nonseparating on Σn2,r.
This gives us 12τ = 2τ , i.e. 10τ = 0. On the other hand, since there is an epimorphism
Γn2,r → Γ2, it follows that H1(Γn2,r) = Z10.

d2d1

d12d0

d23

d13d3

Figure 4. An embedding of the lantern with all curves nonseparating.
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Although we usually deal with the surfaces of genus at least two, we would like to
mention the first homology groups in the genus one case as well.

Consider a torus Σn1,r with n punctures and r boundary components, P1, P2, . . . , Pr.
For each i = 1, 2, . . . , r, let ∂i be a simple closed curve parallel to Pi. The mapping
class group Γ1 is generated by the Dehn twists about two (automatically nonseparating)
simple closed curves intersecting transversely at one point. It can be proved by the exact
sequences (6) and (7) that the mapping class group Σn1,r is generated by Dehn twists about
finitely many nonseparating simple closed curves and r Dehn twists about ∂1, ∂2, . . . , ∂r.
By the use of the lantern relation, it can be shown that we may omit any one of ∂i, say
∂n. It will follow from the following computation of the first homology of Γn1,r that in fact
no more ∂i may be omitted.

By the argument in the case of higher genus, any two Dehn twists about nonseparating
simple closed curves are conjugate. Hence, they represent the same class τ in H1(Γn1,r;Z).

Assume first that r = 0. The group Γ1 is isomorphic to SL(2,Z). Hence, H1(Γ1;Z)
is isomorphic to Z12 and is generated by τ . Since Γn1 is generated by Dehn twists about
nonseparating simple closed curves, the homology group H1(Γn1 ;Z) is cyclic and gener-
ated by τ . It was shown in Theorem 3.4 in [28] that 12τ = 0. On the other hand, the
surjective homomorphism Γn1 → Γ1 obtained by forgetting the punctures induces a sur-
jective homomorphism between the first homology groups, mapping τ to the generator of
H1(Γ1;Z). It follows that H1(Γn1 ;Z) is isomorphic to Z12.

The group Γ1
1 is also isomorphic to SL(2,Z). Let a and b be two simple closed curve

on Σ1,1 intersecting each other transversely at one point. By examining the short exact
sequence

1→ Z→ Γ1,1 → Γ1
1 → 1

it can be shown easily that Γ1,1 has a presentation with generator ta, tb and with a unique
relation tatbta = tbtatb. That is, Γ1,1 is isomorphic to the braid group on three strings.
Hence, by abelianizing this presentation, we see that H1(Γ1,1;Z) is isomorphic to Z.

Assume now that r ≥ 1. Since Γn1,r is generated by Dehn twists about nonseparating
simple closed curves and the curves ∂1, ∂2, . . . , ∂r−1, the group H1(Γn1,r;Z) is generated
by τ, δ1 , δ2, . . . , δr−1, where δi is the class in H1(Γn1,r;Z) of the Dehn twist about ∂i.

We prove that τ, δ1, δ2, . . . , δr−1 are linearly independent. Let n0τ + n1δ1 + n2δ2 +
. . .+ nr−1δr−1 = 0 with ni ∈ Z. Gluing a disc to each Pi for i ≤ r − 1 and forgetting
the punctures gives rise to an epimorphism H1(Γn1,r;Z)→ H1(Γ1,1;Z). Under this map,
τ is mapped to the generator of H1(Γ1,1;Z) and all δi to zero. Hence, n0 = 0. Similarly,
gluing a disc to each boundary component but Pi and forgetting the punctures induces an
epimorphism H1(Γn1,r;Z)→ H1(Γ1,1;Z) mapping δi to 12τ and each δj , j 6= i, to 0, where
τ is the generator of H1(Γ1,1;Z). This shows that ni = 0 for each i = 1, 2, . . . , r− 1. We
conclude that H1(Γn1,r;Z) is isomorphic to Zr.

We collect the results of this section in the next theorem.
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Theorem 5.1. Let g ≥ 1. The first homology group H1(Γng,r;Z) of the mapping class
group is isomorphic to Z12 if (g, r) = (1, 0), Zr if g = 1, r ≥ 1, Z10 if g = 2 and 0 if
g ≥ 3.

Corollary 5.2. Let r ≥ 2. The mapping class group Γn1,r cannot be generated by Dehn
twists about nonseparating simple closed curves.

We note that this corollary was proved by Gervais in [12] by a different argument.

6. The second homology

The second homology group of the mapping class group Γng,r for g ≥ 5 was first com-
puted by Harer in [14]. His proof relies on the simple connectedness of a complex obtained
by modifying the Hatcher-Thurston complex [18]. But this proof is extremely complicated
to understand. The computation of H2(Γg ;Z) in [14] was incorrect. It was corrected later.
See, for example, [15] or [38].

In [41], Pitsch gave a simple proof of H2(Γg,1;Z) = Z for g ≥ 4. His method used the
presentation of the mapping class group Γg,1 and the following theorem of Hopf (cf. [7]):
Given a short exact sequence of groups

1→ R → F → G→ 1,

where F is free, then

H2(G;Z) =
R ∩ [F, F ]

[R, F ]
. (10)

In [30], Stipsicz and the author extended Pitsch’s proof to H2(Γg;Z) = Z for g ≥ 4.
Then the homology stabilization theorem of Harer [15] and a use of the Hochschild-Serre
spectral sequence for group extensions enabled us to give a new proof of Harer’s theorem
on the second homology of mapping class groups, by extending it to the g = 4 case.

We now outline the proof of H2(Γg ;Z) = Z for g ≥ 4.
Consider the short exact sequence (9). Recall that F in (9) is the free group generated

freely by x0, x1, . . . , x2g and R0 is the normal subgroup of F normally generated by the
elements Aij, B0, B1, . . . , B2g−1, C,D and E. By Hopf’s theorem, we have

H2(Γg ;Z) =
R0 ∩ [F, F ]

[R0, F ]
.

Hence, every element in H2(Γg ;Z) has a representative of the form

ABn0
0 Bn1

1 · · ·B
n2g−1
2g−1 C

nCDnDEnE , (11)

where A is a product of Aij .
Note that each Aij and E represent elements of H2(Γg;Z) since they are contained in

R0 ∩ [F, F ].
It was shown in [41] by the use of the lantern relation that each Aij represents the trivial

class in H2(Γg,1;Z) = (R1∩ [F, F ])/[R1, F ]. The same proof applies to show that the class
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of each Aij in H2(Γg;Z) is zero. The main reason for this is that since g ≥ 4, for any
nonseparating simple closed curve a on Σg , the four-holed sphere of the lantern relation
can be embedded in Σg − a such that all seven curves of the relation are nonseparating
on Σg − a.

The main improvement in [30] after [41] is to show that E represents the zero element
in H2(Γg;Z). The proof of this uses the braid relations and the two-holed torus relation.
Therefore, we may delete A and E in (11).

Note that an element of F is in the derived subgroup [F, F ] of F if and only if the
sum of the exponents of each generator xi is zero. Since the expression (11) must be in
[F, F ], by looking at the sum of the exponents of the generators x2g, x2g−1, . . . , x6, one
can see easily that n2g−1, n2g−2, . . . , n5 must be zero. Then, by looking at the sums of
the exponents of the other generators, it can be concluded that there must be an integer
k such that n0 = −18k, n1 = 6k, n2 = 2k, n3 = 8k, n4 = −10k, nC = k and nD = −10k.
This says that H2(Γg;Z) is cyclic and is generated by the class of the element

B−18
0 B6

1B
2
2B

8
3B
−10
4 CD−10. (12)

On the other hand, for every g ≥ 3, the existence of a genus-g surface bundle with
nonzero signature guarantees thatH2(Γg ;Z) contains an infinite cyclic subgroup (cf. [36]);
the signature cocycle is of infinite order. The universal coefficient theorem implies that
H2(Γg;Z) contains an element of infinite order. This shows that H2(Γg;Z) = Z for g ≥ 4.

By omittingE from the above proof, the same argument also proves that H2(Γg,1;Z) =
Z for g ≥ 4.

A special case of Harer’s homology stability theorem in [15] says that for g ≥ 4 and
r ≥ 1 the inclusion mapping Σg,r → Σg,r+1 obtained by gluing a disc with two bound-
ary components to Σg,r along one of the boundary components induces an isomorphism
H2(Γg,r;Z) → H2(Γg,r+1 ;Z). Also, an application of the Hochschild-Serre spectral se-
quence to (7) shows that H2(Γng,r;Z) = H2(Γn−1

g,r+1 ;Z)⊕ Z for g ≥ 3.
We can summarize the results mentioned above as follows. The details of the proof

may be found in [30].

Theorem 6.1. If g ≥ 4 then H2(Γng,r;Z) is isomorphic to Zn+1.

The same method above also proves that H2(Γ2;Z) = H2(Γ2,1;Z) is isomorphic to
either 0 or Z2, and the groups H2(Γ3;Z) and H2(Γ3,1;Z) are isomorphic to either Z or
Z⊕Z2. By the work of Benson-Cohen [1], H2(Γ2;Z2) is isomorphic to Z2⊕Z2. It follows
now from the universal coefficient theorem that H2(Γ2;Z) is not trivial, hence Z2. To the
best knowledge of the author, the computations of H2(Γn2,r;Z) in the remaining cases and
H2(Γn3,r;Z) are still open.

7. Higher (co)homologies

Here we will mention a few known results on the (co)homology group of the mapping
class group. In Section 6, we appealed to a special case of the homology stability theorem
of Harer. The original theorem asserts that in a given dimension the homology group
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of the mapping class group of a surface of with boundary components does not depend
on the genus if the genus of the surface is sufficiently high. This result was improved by
Ivanov in [20, 21]. In [21], Ivanov also proved a stabilization theorem for the homology
with twisted coefficients of the mapping class groups of closed surfaces.

The third homology group of Γg,r with rational coefficients was computed by Harer
in [16]. It turns out that H3(Γg,r ;Q) = 0 for g ≥ 6.

Let Q[z2, z4, z6, . . . ] denote the polynomial algebra of generators z2n in dimensions 2n
for each positive integer n. Then there are classes y2, y4, y6, . . . with y2n ∈ H2n(Γg;Q)
such that the homomorphism of algebras

Q[z2, z4, z6, . . . ]→ H∗(Γg ;Q)

given by z2n 7→ y2n is an injection in dimensions less than g/3. This result was proved
by Miller [37].

The entire mod-2 cohomology of Γ2 is also known. Benson and Cohen [1] computed
the Poincaré series for mod-2 cohomology to be

(1 + t2 + 2t3 + t4 + t5)/(1− t)(1− t4) = 1 + t + 2t2 + 4t3 + 6t4 + 7t5 + · · · .

8. Nonorientable surfaces

In this last section, we outline the known results about the generators and the ho-
mology groups of the mapping class groups of nonorientable surfaces. So let Sng denote
a nonorientable surface of genus g with n punctures. Recall that the genus of a closed
nonorientable surface is defined as the number of real projective planes in a connected
sum decomposition. Let us define the mapping class group Γng as in the orientable case;
diffeomorphisms and isotopies are required to fix each puncture.

The mapping class group Γ1 of the real projective plane is trivial and the group Γ2

is isomorphic to Z2 ⊕ Z2 (cf. [32]). Lickorish [32, 34] and Chillingworth [8] proved that
if g ≥ 3 then Γg is generated by a finite set consisting of Dehn twists about two-sided
nonseparating simple closed curves and a crosscap slide (or Y-homeomorphism). See
also [4]. Using this result the author [25] computed H1(Γg ;Z). This result was extended
to the punctured cases in [27]. We note that the group Γng of this section is called the
pure mapping class group in [27] and denoted by PMg,n. The first homology group of
Γng with integer coefficients is as follows.

Theorem 8.1 ([27]). Let g ≥ 7. Then the first homology group H1(Γng ;Z) of Γng is
isomorphic to Zn+1

2 .

If we define Mn
g as the group of the diffeomorphisms Sng → Sng modulo the diffeo-

morphisms which are isotopic to the identity by an isotopy fixing each puncture, then
more is known. Let N+ and N denote the set of positive integers and the set of nonneg-
ative integers, respectively. Define a function k : N+ × N → N by declaring k(1, 0) = 0,
k(4, 0) = 3, k(g, 0) = 2 if g = 2, 3, 5, 6, k(g, 0) = 1 if g ≥ 7, k(g, 1) = k(g, 0) + 1 and
k(g, n) = k(g, 0) + 2 if n ≥ 2.
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Theorem 8.2 ([27]). The first homology group H1(Mn
g ;Z) of the mapping class group

Mn
g of a nonorientable surface of genus g with n punctures is isomorphic to the direct

sum of k(g, n) copies of Z2.

It is easy to see that the groups Γng and Mn
g fit into a short exact sequence

1 −→ Γng −→Mn
g −→ Sym(n) −→ 1,

where Sym(n) is the symmetric group on n letters.
No higher homology groups of Γng or Mn

g are known.
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