Turk J Math 26 (2002) , 131 – 147. © TÜBİTAK

On Summand Sum and Summand Intersection Property of Modules

Mustafa Alkan and Abdullah Harmancı

Abstract

R will be an associative ring with identity and modules M will be unital left R-modules. In this work, extending modules and lifting modules with the SSP (or SIP) are studied. A necessary and sufficient condition for a module M to have the SSP is that for every decomposition $M = A \oplus B$ and $f \in \text{Hom}(A, B)$, Im(f) is a direct summand of B. Among others it is shown also that a (C_3) module with the SIP has the SSP, and a (D_3) module with SSP has the SIP.

Key Words: SIP modules, SSP modules, extending modules, lifting modules.

Throughout this work all rings will be associative with identity and modules will be unital left modules. Let R be a ring and M a module. $N \leq M$ will mean N is submodule of M. A submodule N of a module M is called *small* in M, denoted by $N \ll M$, whenever for some submodule L of M, N + L = M implies L = M. A module M is said to be *small* if M is small in its injective hull E(M). $0 \neq N \leq M$ is said to be an *essential* submodule of M, denoted by $N \leq_{ess} M$, if for every $0 \neq L \leq M$, $N \cap L \neq 0$. We write $N \leq_d M$ to abbreviate N is a (direct) summand of M.

We recall some definitions and properties as follows

(SSP) A module M has the summand sum property (SSP) if the sum of two direct summands is a direct summand of M;

¹⁹⁹¹ AMS subject classification. 16D10,16D99.

 (C_1) Every submodule of M is essential in a summand of M;

 (C_2) If a submodule A of M is isomorphic to a summand of M, then A is summand of M; and

 (C_3) If M_1 and M_2 are summands of M such that $M_1 \cap M_2 = 0$ then $M_1 \oplus M_2$ is a summand of M.

A submodule N of M is said to be *closed* in M if there is no proper essential extension of N in M and denoted by $N \leq_c M$. Modules with C_1 are called **extending** (or **CS**)modules. A module M is an extending module if and only if every closed submodule in M is direct summand of M. A module M is called **quasi-continuous** if M has (C_1) and (C_3) , and **continuous** if M has (C_1) and (C_2) . We then have

 $(C_2) \Rightarrow (C_3), SSP \Rightarrow (C_3)$ and continuous \Rightarrow quasi-continuous.

(SIP) An R-module M has the summand intersection property (SIP) if the intersection of two summands is again a summand, and M has the strong summand intersection property (SSIP) if the intersection of any number of summands is again a summand.

Now recall the conditions (D_i) dual of the conditions (C_i)

respectively:

 (D_1) For every submodule A of a module M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq A$ and $A \cap M_2 \ll M_2$.

 (D_2) If $A \leq M$ such that M/A is isomorphic to a summand of M, then A is a summand of M.

 (D_3) If A and B are summands of M with A + B = M, then $A \cap B$ is summand of M.

Modules with (D_1) are called **lifting** and modules with (D_1) and (D_2) are called **discrete**, and modules with (D_1) and (D_3) are called **quasi-discrete** modules.

We have the implications $(D_2) \Rightarrow (D_3)$, SIP $\Rightarrow (D_3)$, Discrete \Rightarrow Quasi-discrete.

Modules having the SSP and the SIP were motivated by the works of Kaplansky and Fuchs. Kaplansky proves in his book [6] that if M is a free module over a principal ideal domain R, then M has the SIP. And Fuchs suggested the following problem in his book Infinite Abelian Groups.

Problem 9 Characterize the abelian groups in which the intersection of two direct summands is again a summand.

So arose naturally the problem of modules having SSP and their endomorphism rings if they have the SSP or the SIP. Garcia studied this problem in [4] while Wilson studied modules having SIP over Noetherian domains in [11].

In this note we study D_i -modules (i = 1, 2, 3) with SIP and C_i -modules (i = 1, 2, 3) with the SSP. We start with Example 1 below.

There exist modules with D_2 but have neither the SIP nor the SSP.

Example 1 Let F be a field and let R denote the following ring:

$$R = \left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ y & b & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & x & a \end{pmatrix} : a, b, x, y \in F \right\}$$

We consider R as a left R-module. Then R satisfies (D_2) since every projective module satisfies (D_2) . We show that R does not have neither the SIP nor the SSP. Let

$$N = \left\{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ b & b & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & x & 0 \end{pmatrix} : b, x \in F \right\} and K = \left\{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & x & 0 \end{pmatrix} : b, x \in F \right\} be left ideals$$

 $x \in F$ is nilpotent the left ideal, $N \cap K$ is not a direct summand of R. It is easy to

check that the left ideal
$$N + K = \{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ u & v & 0 & 0 \\ 0 & 0 & v & 0 \\ 0 & 0 & z & 0 \end{pmatrix} : u, v, z \in F \}$$
 is a proper essential

left ideal of R and so not a direct summand of R. Then R does not have the SSP.

We state and prove Lemma 2 for an easy reference.

Lemma 2 [7] Let M_1 be a simple module and M_2 an uniserial module with composition series $0 \subset U \subset M_2$. Then $M = M_1 \oplus M_2$ is a lifting module.

Proof. Let L be a non-zero submodule of M. We show that there exists a submodule K of M such that $M = K \oplus K'$, $K \leq L$ and $L \cap K'$ is small in K' for some submodule K' of M. If $M_1 \cap (L_1 + M_2) = 0$ then $L \leq M_2$. Hence L is a small submodule or direct summand of M. Suppose that $M_1 \cap (L+M_2) \neq 0$. Then $M_1 \leq L+M_2$ and $M = L+M_2$. If $L \cap M_2 = M_2$ or $L \cap M_2 = 0$ or $L \cap M_2 = U$ and $L \cap M_1 = M_1$ we are done. Assume $L \cap M_2 = U$ and $L \cap M_1 = 0$. Then $U \leq L$. Hence $M = L \oplus M_1$. Thus M has (D_1) . \Box

There are modules having the SSP and (D_1) but not the SIP.

Example 3 Let F be a field and $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ be the ring of upper triangular matrices over F, $N = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$ and $L = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$ left ideals of R and M = R/L. Let $U = N \oplus M$. Then by [4, Remark on page 81] and Lemma 2, U has the SSP and (D_1) but has not the SIP as left R-module.

There are modules having the SIP but not the SSP.

Example 4 Let F be a field and $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ be the ring of upper triangular matrices over F, $N = \begin{pmatrix} 0 & F \\ 0 & F \end{pmatrix}$ and $L = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$ left ideals of R and M = R/L. Let $U = N \oplus M$. Then by [4, Remark on page 81] the ring S = End U has the SIP on each

 $U = N \oplus M$. Then by [4, Remark on page 81] the ring S = End U has the SIP on each side but does not have the SSP on the left.

Example 5 Let M denote the \mathbb{Z} -module $\mathbb{Z} \oplus \mathbb{Z}$. Let N be a submodule of M. It is easy to check that N is a direct summand of M if and only if N has the form $N = \mathbb{Z}(a, b)$ for some integers a, b with the property that the greatest common divisor of a and b is 1. Consider the submodules $\mathbb{Z}(2,3)$ and $\mathbb{Z}(3,2)$ of M. Then they are direct summands of M and $[\mathbb{Z}(2,3)] \cap [\mathbb{Z}(3,2)] = 0$, and it is clear that $\mathbb{Z}(2,3) \oplus \mathbb{Z}(3,2)$ is not a direct summand

of M. Hence M has not the SSP. Also, for any two distinct direct summands K and N of M their intersection $K \cap N$ is always zero. It follows that M has the SIP.

As an easy reference we record the following properties of modules with the SIP and the SSP from [4, 11]

Proposition 6 (i) M has the SIP (resp. the SSP) if and only if for every pair of summand S and T with $\pi : M \to S$ the projection map, the kernel of the restricted map $\pi_{|T|}$ (resp. the image of the restricted map $\pi_{|T|}$) is summand.

(ii) If M has the SIP (resp. the SSP) and $S \oplus T$ is summand of M, then the kernel of any homomorphism from S to T (resp. the image of any homomorphism from S to T) is a summand.

Proposition 7 [3] The *R*-module *M* has the summand intersection property if and only if for every decomposition $M = A \oplus B$ and every homomorphism *f* from *A* to *B*, the kernel of *f* is a direct summand.

One way of the following Theorem is given as an exercise 39.17 (3) (i) in [12] on page 339 and it is proved in [4]. We prove the other way.

Theorem 8 The *R*-module *M* has the summand sum property if and only if for every decomposition $M = A \oplus B$ and every homomorphism *f* from *A* to *B*, the image of *f* is a direct summand of *B*.

Proof. The necessity is proved in [4]. For the sufficiency assume that for every decomposition $M = A \oplus B$ and every homomorphism f from A to B, the image of f is a direct summand of B. Let N and K be direct summands of M and $M = N \oplus N'$ and $M = K \oplus K'$ for some $N' \leq M$ and $K' \leq M$. We prove N + K is direct summand. Let π_K and $\pi_{N'}$ denote the projections of M onto K and N', respectively. Let A denote $\pi_{N'}(\pi_K(N))$. Then $A = (N+K') \cap (N+K) \cap N'$ and, by assumption, A is a direct summand and $M = A \oplus L$ for some $L \leq M$. Hence $N' = A \oplus (N' \cap L)$. Then $(N+K) \cap [(N+K') \cap (N' \cap L)] = [(N+K) \cap (N+K') \cap N'] \cap (N' \cap L) = A \cap (N' \cap L) = 0$. To show that N + K is direct summand, it is enough to prove that $M = (N+K) + [(N+K') \cap (N' \cap L)]$. Since $A \leq N+K$ and $A \leq N+K'$, the modular law and $M = N \oplus N' = (N \oplus A) \oplus [(N+K') \cap (N' \cap L)]$ and $N + K' = (N \oplus A) \oplus [(N+K') \cap (N' \cap L)]$.

Hence $M = N + K' + K = (N \oplus A) + [(N + K) \cap (N' \cap L)] + [(N + K') \cap (N' \cap L)] \subseteq (N + K) + [(N + K') \cap (N' \cap L)]$. Thus N + K is direct summand and so M has the SSP \Box

We use Theorem 8 to prove the following Theorem 9 and 10 which are Exercises 39.17 (3)(ii) and (iii) in the book [12] on Page 339.

Theorem 9 Let R be a ring. The following are equivalent for R:

- 1. R is semisimple
- 2. Every R-module has the SSP
- 3. Every projective R-module has the SSP.

Proof. (1) \implies (2) \implies (3) is trivial. Assume that (3) holds. We show that R is semisimple. Let K be a submodule of R. Choose a free module F and an epimorphism τ from F onto K. By assumption, the projective module $F \oplus R$ has the SSP. Let ι denote the injection map from K to R and $f = \iota \tau$ the homomorphism from F to R. Then $\operatorname{Im} f = K$ is a direct summand of R by Theorem 8. Hence R is semisimple ring.

Theorem 10 A ring R is left hereditary if and only if every injective R-module has the SSP.

Proof. Suppose that R is a left hereditary ring. The every factor module of every injective R-module is injective. Let M be an injective module which has a decomposition $M = A \oplus B$. Let f be a homomorphism from A to B. Then A is injective. By assumption, $\operatorname{Im} f \cong A/\operatorname{Ker} f$ is injective. Hence $\operatorname{Im} f$ is direct summand of B. Thus it follows from Theorem 8 that M has the SSP. To prove the converse assume that every injective R-module has the SSP. Let M be an injective module and N a submodule of M. By assumption the injective hull E(M/N) of M/N and the injective module $M \oplus E(M/N)$ have the SSP. Let ϕ denote the canonical mapping from M onto M/N and ι the injection of M/N is direct summand of E(M/N). Hence M/N is injective. Thus R is a left hereditary ring. \Box

Let $N \leq M$. Whenever $N \leq_{ess} K \leq M$ implies N = K, N is called (essentially) closed in M and we denote by $N \leq_c M$. A module M is said to be a *polyform* module if for every $K \leq M$ and $f \in \text{Hom}(K, M)$ Ker $f \leq_c K$ (see [2, 12]).

Lemma 11 Let M be an extending polyform module. Then M has the SIP.

Proof. Let M be an extending polyform module, and let $M = A \oplus B$ be a decomposition of M and $f \in \text{Hom}(A, B)$. Being M polyform, Ker(f) is closed in K. Then Ker(f) is direct summand as a closed submodule of an extending module M. Hence M has the SIP.

A module M is said to be *copolyform* if for $B \le A \le M$ and $A/B \ll M/B$ implies $\operatorname{Hom}(M/B, A/Y) = 0$ for $B \le Y \le A$ (see [5]).

Lemma 12 Let M be a lifting coplyform module. Then M has the SSP.

Proof. Let M be lifting coplyform module, and let A and B be direct summands of M and π projection from M onto A. Let K denote the image $\pi_{|B}(B)$ of the restriction of π to B. Since A is lifting module as a direct summand of M, there exists a decomposition $A = K_1 \oplus K_2$ such that $K_1 \leq K$ and $K \cap K_2 \ll K_2$. Then $K \cap K_2$ is also small in A and M and $K = K_1 \oplus (K \cap K_2)$. Hence we have a mapping from M onto $K \cap K_2$. Since M is coplyform, $K \cap K_2 = 0$ and so $K = K_1$ is direct summand of A. \Box

We consider the following conditions for a module M.

If $M_1 \leq_d M$, $M_2 \leq_d M$ with $M_1 + M_2 \leq_{ess} M$, then $M_1 + M_2 = M$ (*) If $M_1 \leq_d M$, $M_2 \leq_d M$ with $M_1 \cap M_2 << M$, then $M_1 \cap M_2 = 0$ (**)

Lemma 13 Let M be a module. If M satisfies (*) (or (**)) then each direct summand of M satisfies (*) (or (**)).

Proof. Assume that the module M satisfies (*). Let A be a direct summand such that $M = A \oplus B$ for some $B \leq M$ and A_1 and A_2 summands of A with $A_1 + A_2 \leq_{ess} A$. Then $A_2 + B$ and A_1 are direct summands of M and $A_1 + (A_2 + B) \leq_{ess} M$. Hence $A_1 + (A_2 + B) = M$ and so $A_1 + A_2 = A$. The remaining is proved dually.

Proposition 14 Let M be an extending module.

- 1. M has the SSP.
- 2. M satisfies (*).
- 3. For any two direct summands M_1 and M_2 of M and for each homomorphism ffrom M_1 to M_2 with $Imf \leq_{ess} M_2$, $Imf = M_2$.

Then $(1) \iff (2)$ and $(3) \implies (1)$.

Proof. $(1) \Longrightarrow (2)$ Clear.

(2) \implies (1). Assume that M satisfies (*) and let M_1 and M_2 be direct summands of M. We prove that $M_1 + M_2$ is direct summand. Being M extending module there exists a direct summand A of M such that $M_1 + M_2$ is essential in A and $M = A \oplus B$ for some submodule B in M. By Lemma 13 $A = M_1 + M_2$.

(3) \implies (1). Assume that $M = A \oplus B$ is a decomposition with a homomorphism f from A to B. We show that f(A) is a direct summand of B. f(A) is either summand of B or contained essentially in a closed submodule C.

If f(A) is a direct summand of B, there is nothing to prove in this case. Assume that f(A) is contained essentially in a closed submodule C of B. By hypothesis C is direct summand of M and so is that of B, and then $B = C \oplus C'$ for some $C' \leq B$. Define the homomorphism $f \oplus 1$ from $A \oplus C'$ to B by $(f \oplus 1)(a + c') = f(a) + c'$ where $a \in A$ and $c' \in C'$. Then $Im(f \oplus 1) = f(A) \oplus C'$ is essential in $C \oplus C'$. By (3) $f \oplus 1$ is epimorphism and so f(A) = C. Therefore, (A) is direct summand.

Note that in Proposition 14 (1) \implies (3) is not true in general. In fact let M denote the \mathbb{Z} -module \mathbb{Z} and $M_1 = M_2 = M$. It is known that M is an extending module and has the SSP. Consider f as the map defined by f(n) = 2n for $n \in M_1$. Then $\text{Im} f = \mathbb{Z}2 \leq_{ess} M_2$ and $\text{Im} f \neq M_2$.

Proposition 15 Let M be a lifting module. Then

- 1. M has the SIP.
- 2. M satisfies (**).

3. For any two direct summands M_1 and M_2 of M and for each homomorphism f from M_1 to M_2 with $Ker(f) \ll M_1$, Ker(f) = 0.

Then $(1) \iff (2)$ and $(3) \implies (1)$.

Proof. $(1) \Longrightarrow (2)$. It is trivial.

(2) \implies (1). Assume that M satisfies (**). Let M_1 and M_2 be direct summands of M. We prove $M_1 \cap M_2$ is also a direct summand. We separate two cases:

If $M_1 \cap M_2$ is small in M then by (**) $M_1 \cap M_2 = 0$.

Suppose that $M_1 \cap M_2$ is not small in M. Being M lifting module there exists a direct summand A of M such that $A \leq M_1 \cap M_2$, $M = A \oplus B$ and $(M_1 \cap M_2) \cap B \ll B$ for some $B \leq M$. Then $(M_1 \cap M_2) \cap B \ll M$, $M_1 \cap B \leq_d B$, $M_2 \cap B \leq_d B$ and $(M_1 \cap B) \cap (M_2 \cap B) \ll B$. By Lemma 13, $(M_1 \cap B) \cap (M_2 \cap B) = 0$. Hence $M_1 \cap M_2 = A$.

 $(3) \Longrightarrow (1)$. To prove M has the SIP we use Proposition 7 and assume that M has the decomposition $M = A \oplus B$ and a homomorphism f from A to B. We show that Ker(f) is a direct summand. Now we have two cases:

(i) If $\operatorname{Ker}(f) \ll A$, then by hypothesis we have $\operatorname{Ker}(f) = 0$.

(ii) Assume that $\operatorname{Ker}(f)$ is not small in A. Being M lifting module there exists $C \leq \operatorname{Ker}(f)$ such that $A = C \oplus C'$ and $C' \cap \operatorname{Ker}(f) << A$. Now we define the homomorphism $1 \oplus f : A = C \oplus C' \to C \oplus B$ by $(1 \oplus f)(c+c') = c + f(c')$ where $c \in C$ and $c' \in C'$. Then $\operatorname{Ker}(1 \oplus f) = C' \cap \operatorname{Ker}(f)$. Since $\operatorname{Ker}(1 \oplus f) << A$, we have $\operatorname{Ker}(1 \oplus f) = 0$. On the other hand, $\operatorname{Ker}(f) = C \oplus (C' \cap \operatorname{Ker}(f)) = C$ is a summand of A. This gives that M has the SIP.

Note that the implication $(1) \Longrightarrow (3)$ in Proposition 15 is not valid in general. Let M denote the \mathbb{Z} -module $\mathbb{Z}_{p^{\infty}}$ and $M_1 = M_2 = M$. It is known that M is a lifting module and has the SIP. Let K be a proper submodule of M. Then $M/K \cong M$. Consider π as the canonical map from M onto M/K defined by $\pi(m) = m + K$ for $m \in M_1$. Let g denote the isomorphism $M/K \cong M$ and set $f = g\pi$. Then Ker(f) is small in M and non-zero submodule of M_1 .

Let M be a module. It is well known that for any submodule N of M there exists a closed submodule K such that $N \leq_{ess} K$ and K is called a *closure* of N in M. The module M is called *UC*-module in case every submodule of M has a unique closure (see

[7]). For $B \leq A \leq M$, B is said to be *coessential* submodule of A or A is *coessential* extension of B if $A/B \ll M/B$. A is said to be *coclosed* in M if A has no coessential submodule in M. Let $B \leq A \leq M$. Then B is called a *coclosure* of A in M if B is coclosed in M and B is coessential in A. Suppose that every submodule A of M has a coessential submodule A^{sc} which is contained in every coessential submodule of A in M. We call M a *unique coclosure module* or UCC-module. Recall that a submodule A of M is said to *lie over a direct summand* B if M has a decomposition $M = B \oplus C$, such that $B \leq A$ and $A/B \ll M/B$. It is known that a module M is a UCC-module if and only if every submodule of M lies over a unique direct summand. In this direction Lemma 16 is proved in [4].

Lemma 16 [4] Let M be a lifting module. Then M has SSP if and only if M is UCC-module.

We state Lemma 17 as a dual to Lemma 16 and a generalization of an exercise mentioned in Anderson-Fuller's book (page 214, exercise 7). Note that Lemma 17 is also generalizes Proposition 4 of [11].

Lemma 17 Let M be an extending module. Then the following are equivalent:

- 1. M is UC-module.
- 2. M has the SIP.
- 3. M has the SSIP.

Proof. (1) \Longrightarrow (2) Let M be a UC-module. Let N and K be direct summands of M. Then $N \cap K$ is closed in M by Lemma 6 in [10]. By hypothesis $N \cap K \leq_d M$.

(2) \Longrightarrow (1) Assume that M has the SIP. Let $N \leq M$. Suppose that there are $K \leq M$ and $L \leq M$ such that $N \leq_e K \leq_c M$ and $N \leq_e L \leq_c M$. We prove K = L. By hypothesis $K \leq_d M$ and $L \leq_d M$ and by (2) $(K \cap L) \oplus T = M$ for some $T \leq M$. Hence $K = (K \cap L) \oplus (K \cap T)$. Since $N \leq_e K$ and $N \cap (K \cap T) = 0$, $K \cap T = 0$. Hence $K = K \cap L$. Similarly, it is shown that $L = K \cap L$. Therefore $K = K \cap L = L$.

 $(3) \Longrightarrow (2)$. Clear.

 $(1) \Longrightarrow (3)$. Assume that M is UC-module and let $K_i (i \in I)$ be direct summands of M. Then every K_i for $i \in I$ is closed, and so by assumption and Lemma 8 (9) in [10]

 $\bigcap_{i \in I} K_i$ is closed in M. By hypothesis $\bigcap_{i \in I} K_i$ is a direct summand. It completes the proof. \Box

Proposition 18 Let M be a quasi-continuous module. The following are equivalent:

- 1. M has the SSIP.
- 2. M has the SIP.
- 3. E(M) has the SIP.
- 4. E(M) has the SSIP.

Proof. $(1) \Leftrightarrow (2)$ and $(3) \Leftrightarrow (4)$ clear from Lemma 17.

 $(3) \Rightarrow (2)$ Suppose E(M) has the SIP. Let A and B be direct summands of M. Then there exist A' and B' such that $M = A \oplus A'$ and $M = B \oplus B'$. Then we have that $E(M) = E(A) \oplus L$ and $E(M) = E(B) \oplus L'$ for some submodules L and L' of E(M). Since E(M) has the SIP, $E(M) = [E(A) \cap E(B)] \oplus K$ for some $K \leq E(M)$. Therefore, $M = [(E(A) \cap E(B)) \cap M] \oplus (K \cap M)$ by [8, Theorem 2.8]. Now $A \leq_e E(A)$ and $B \leq_e E(B)$ imply $A \leq_e E(A) \cap M$ and $B \leq_e E(B) \cap M$, and since $E(A) \cap M = A \oplus (E(A) \cap M) \cap A'$ and $E(B) \cap M = B \oplus (E(B) \cap M) \cap B'$ it follows that $A = E(A) \cap M$ and $B = E(B) \cap M$. Hence $A \cap B = E(A) \cap E(B) \cap M$ is a direct summand of M.

(2) \Rightarrow (3) Assume M has the SIP and let A and B be direct summands of E(M)and $E(M) = A \oplus A'$ and $E(M) = B \oplus B'$ for some $A' \leq E(M)$ and $B' \leq E(M)$ and A = E(A) and B = E(B). By [8, Theorem 2.8] $A \cap M$ and $B \cap M$ are direct summands of M. By assumption $A \cap B \cap M$ is direct summand of M, and so $(A \cap B \cap M) \oplus L = M$ for some $L \leq M$. Since $A \cap M \leq_e A$ and $B \cap M \leq_e B A \cap B \cap M \leq_e A \cap B$. Hence $E(M) = E(A \cap B \cap M) \oplus E(L) = E(A \cap B) \oplus E(L)$. Therefore, $A = E(A \cap B) \oplus (E(L) \cap A)$ and $B = E(A \cap B) \oplus (E(L) \cap B)$. Then $E(A \cap B) \leq A \cap B \leq E(A \cap B)$ implies $A \cap B = E(A \cap B)$ is a direct summand of E(M).

It is proved in [4] that a quasi-injective (resp. quasi-projective) module with the SIP (resp. the SSP) has the SSP (resp. the SIP). In this direction, we prove the following Lemma.

Lemma 19 Let M be a module.

1. Let M be a (C_3) module. If M has the SIP then M has the SSP.

2. Let M be a (D_3) module. If M has the SSP then M has the SIP.

Proof. (1). Let M be a (C_3) module. Assume M has the SIP. Let N and T be a direct summands of M. We show that N + T is direct summand of M. Since Mhas the SIP then there exists $L \leq M$ such that $(N \cap T) \oplus L = M$. By modularity law, we get that $N = (N \cap T) \oplus (L \cap N)$ and $T = (N \cap T) \oplus (L \cap T)$. Then we have $N+T = (N \cap T) + [(L \cap N) \oplus (L \cap T)]$. Next we prove that $(N \cap T) \cap [(L \cap N) \oplus (L \cap T)] = 0$. For if, $x \in (N \cap T) \cap [(L \cap N \oplus (L \cap T)]]$, then $x = n_1 + n_2$ where $n_1 \in L \cap N$ and $n_2 \in L \cap T$. We have $n_2 = x - n_1 \in [(N \cap T) + (L \cap N)] \cap (L \cap T) \leq N \cap (L \cap T) = 0$. Hence $n_2 = 0$ and $x = n_1$. Now $x = n_1 \in (N \cap T) \cap (L \cap N) = N \cap T \cap L = 0$. Thus $N + T = (N \cap T) \oplus (L \cap N) \oplus (L \cap T) = T \oplus (L \cap N)$. Since M has the SIP and L, N are direct summands then $L \cap N$ is a direct summand and so by (C_3) it follows that $N + T = T \oplus (L \cap N)$ is a direct summand of M. Thus M has the SSP.

(2). Let M be a (D_3) module. Assume M has the SSP. Let X and Y be direct summands of M. We prove that $X \cap Y$ is a direct summand of M. Since M has the SSP then X + Y is a direct summand, and so there exists $Z \leq M$ such that $M = (X + Y) \oplus Z$. Since X, Y and Z are direct summands and M has the SSP then X + Z and Y + Z are direct summands, and since M is (D_3) and M = (X + Z) + (Y + Z) then $(X + Z) \cap (Y + Z)$ is direct summand, and so there exists $U \leq M$ such that $M = [(X + Z) \cap (Y + Z)] \oplus U$. Now $(X + Z) \cap (Y + Z) = [X \cap (Y + Z)] + Z$ and $X \cap (Y + Z) \leq X \cap Y$ and $M = [(X + Z) \cap (Y + Z)] \oplus U$ imply $M = (X \cap Y) \oplus Z \oplus U$. \Box

Corollary 20 Let M be a module having the SIP. Then M is (C_3) module if and only if M has the SSP.

Proof. Let M be a module having the SIP. Assume that M is (C_3) module. Then by Lemma 19 M has the SSP. The converse is clear since every module having the SSP is a (C_3) module.

Note that the converse statements (1) and (2) in Lemma 19 need not be true in general. There are (C_3) modules with the SSP but not the SIP. Namely the module in Example 3 is a module having the SSP and therefore (C_3) but does not have the SIP.

There are (D_3) modules having the SIP but not the SSP.

Example 21 Let K be a field and M denote the left R-module
$$R = \begin{pmatrix} K & 0 & K \\ 0 & K & 0 \\ 0 & 0 & K \end{pmatrix}$$
.

Let e_{ij} denote the matrix units in R. Then it is easy to check that $A = R(e_{11} + e_{13})$, $B = Re_{22}, A \oplus B, C = R(e_{11} + e_{22}), D = R(e_{13} + e_{22} + e_{33}), E = R(e_{13} + e_{33}), F = Re_{11}$ and $G = R(e_{11} + e_{33})$ are only direct summands of M and their intersections are also direct summands and $A \oplus B \oplus F$ is an essential submodule of M. Then M has the SIP. Also M has (D_3) as a projective module over R. Now $A \cap C = 0$ and $A \oplus C = A \oplus B \oplus F$ is not a direct summand. Hence M does not have the SSP.

It is proved in [4] that for any ring R and any module M, M has the SSP and the SIP if and only if S = EndM has the SSP. Now we prove Theorem 22 that also generalizes Corollary 2.4 in [4].

Theorem 22 Let M be a module. Then

1. If M has (D_3) then M has the SSP if and only if S = EndM has the SSP.

2. If M has (C_3) then M has the SIP if and only if S = EndM has the SSP.

Proof. (i) Assume S has the SSP. Then M has the SSP and SIP.

Assume M has the SSP. Since M has (D_3) then by lemma 19, M has the SIP. Then S has the SSP.

(ii)Assume M has the SIP. Then by lemma 19, M has the SSP and so M has the SIP and SSP implies S has the SSP.

Assume S has the SSP. Then M has the SSP and SIP by [4,Theorem 2.3]. \Box

Let M be a module. The submodule $Z(M) = \{m \in M : l(m) \leq_{ess} M\}$ is called singular submodule of M. In case Z(M) = 0, M is called nonsingular module.

Corollary 23 Assume M is nonsingular quasi-continuous module with S = End(M). Then S has the SSP as a right S-module.

Proof. Let M be a nonsingular quasi-continuous module with a decomposition $M = A \oplus B$ and $f \in \text{Hom}(A, B)$. Since Z(M) = 0 it is easy to prove that Ker(f) is closed in M. Hence Ker(f) is direct summand of M since M is an extending module. By Proposition 7 M has the SIP, and by Lemma 19, M has the SSP. Then from [4, Theorem 2.3], S has the SSP as a right S-module.

Let M be a module. Let $N \ll M$. Then N is a small module, that is N is small submodule of E(N) and also E(M). In the subsequent $Z^*(M)$ will denote the submodule $\{m \in M : Rm \ll E(M)\}$ of M(see [9]).

Corollary 24 Let M be a quasi-discrete module with $Z^*(M) = 0$ and S = End(M). Then S has the SIP as a right S-module.

Proof. Let M be a quasi-discrete module and assume $Z^*(M) = 0$ and A a submodule of M. Then there exists a direct summand B such that $M = B \oplus B'$ with $B \leq A$ and $A \cap B'$ is small in M, and hence $A \cap B' \leq Z^*(M) = 0$. It follows that A = B and Ais direct summand. Thus M is semisimple module and so M has the SIP and the SSP. By [12, 37.7] S is regular ring in the sense of von Neumann. Let I = eS and I' = fS be right ideals of S that are direct summands of S for some idempotents e and f of S. Then $eM \cap fM$ is direct summand of M as M has the SIP. If α is the orthogonal projection of M on $eM \cap fM$ then it is easy to check that $\alpha S = eS \cap fS$. Thus $eS \cap fS$ is a direct summand of S.

Lemma 25 Let R be a commutative Noetherian ring and $M = M_1 \oplus M_2$ with indecomposable submodules M_1 and M_2 . Assume that M has the (C_3) and the SIP, then

- 1. $Hom(M_1, M_2) = 0$ or
- 2. M_1 is isomorphic to M_2 and there is some prime ideal $A \leq R$ with ann(x) = A for every nonzero $x \in M_1$.

Proof. Take $0 \neq f \in \text{Hom}(M_1, M_2)$. Since Ker(f) is a direct summand of M_1 we have Ker(f) = 0. Similarly Im f is direct summand of M_2 since $M_1 \oplus M_2$ has the SSP. Hence f is onto and so M_1 is isomorphic to M_2 .

It remains to show the conditions on annihilators. Let $x, y \in M_1$ be nonzero and assume that there is a in $\operatorname{ann}(x)$ but a is not in $\operatorname{ann}(y)$. Define $g: M_1 \to M_2$ by g(m) = f(am)for $m \in M_1$. Then $x \in \operatorname{Ker}(g)$ and y is not in $\operatorname{Ker}(g)$. Hence $\operatorname{Ker}(g) \neq 0$ and $g \neq 0$. This is a contradiction. Hence $a \in \operatorname{ann}(x)$ implies $a \in \operatorname{ann}(y)$ or $\operatorname{ann}(x) = \operatorname{ann}(y)$. Then $\operatorname{ann}(x)$ is prime follows from [6, Theorem 6]. \Box

Theorem 26 Let M have a decomposition $M = M_1 \oplus M_2$ with M_1 local module and M_2 simple module.

- 1. Assume $Hom(M_1, M_2) \neq 0$. Then M has not the SIP.
- 2. Assume $Hom(M_2, M_1) \neq 0$. Then M has not the SSP.

Proof. (1). Assume that $M = M_1 \oplus M_2$ has the SIP. Let $f \in \text{Hom}(M_1, M_2)$ be a nonzero homomorphism. Then $\text{Ker}(f) \neq 0$. Since M has the SIP, by Proposition 7 Ker(f) is a direct summand of M_1 . This gives a contradiction. Therefore, M have not the SIP.

(2). Suppose that $M = M_1 \oplus M_2$ has the SSP. Let $f \in \text{Hom}(M_2, M_1)$ be a nonzero homomorphism. Then $\text{Im} f \neq M_1$. Since M has the SSP, by Theorem 8 Imf is a direct summand of M_1 . This is not possible. It follows that M has not the SSP.

Corollary 27 Let M have a decomposition $M = M_1 \oplus M_2$ with M_1 uniserial module and M_2 simple module.

- 1. Assume $Hom(M_1, M_2) \neq 0$. Then M has not the SIP.
- 2. Assume $Hom(M_2, M_1) \neq 0$. Then M has not the SSP.

Proof. Clear.

The following example is known. We study here as an illustration of Theorem 26.

145

Example 28 Let p be a prime integer. Let $M_1 = \mathbb{Z}/\mathbb{Z}p^2$ and $M_2 = \mathbb{Z}/\mathbb{Z}p$ be \mathbb{Z} -modules and $M = M_1 \oplus M_2$. Then M has neither the SIP nor the SSP.

Proof. Let $f: M_1 \to M_2$ be defined by $f(x + \mathbb{Z}p^2) = y + \mathbb{Z}p$ where $x + \mathbb{Z}p^2 \in M_1$ and $y + \mathbb{Z}p \in M_2$ and y is the remainder when x is divided by p. Then $\text{Ker}(f) = M_1p$ which is not a direct summand of M_1 . Hence M has not the SIP. Let $f: M_2 \to M_1$ be defined by $f(x + \mathbb{Z}p) = px + \mathbb{Z}p^2$ where $x + \mathbb{Z}p \in M_2$. Then $\text{Im}(f) = M_1p$ which is not a direct summand. Hence M has not the SSP.

Theorem 29 Let M be a module with S = End(M).

1. If M is (C_2) -module then $M \oplus M$ has the SIP if and only if S is regular ring.

2. If M is (D_2) -module then $M \oplus M$ has the SSP if and only if S is regular ring.

Proof. (1). Let M be (C_2) -module. Necessity: Assume that the module $M \oplus M$ has the SIP. Let $f \in S$. Then f is a homomorphism from a direct summand of $M \oplus M$ to a direct summand of $M \oplus M$. By assumption and Proposition 7, Ker(f) is direct summand of M. Then Im(f) is isomorphic to a direct summand of M. By (C_2) , Im(f) is direct summand of M. Thus S is a regular ring from [12, 37.7]. Sufficiency: Suppose that S = End(M) is a regular ring. By [12, 37.9 (c)], End $(M \oplus M)$ is also regular ring as a 2×2 matrix ring over the regular ring S, and so Ker(f) of every $f \in \text{End}(M \oplus M)$ is a direct summand of $M \oplus M$. Hence $M \oplus M$ has the SIP by Proposition 7. Thus M has the SIP as a direct summand of $M \oplus M$.

(2). Let the module M has (D_2) . Necessity: Assume now that $M \oplus M$ has the SSP. Let $f \in S$. By assumption and by Propsition 8, Im(f) is a direct summand of M. Since $\text{Im}(f) \cong M/\text{Ker}(f)$ and M has the (D_2) , Ker(f) is a direct summand of M. By [12, 37.7] S is a regular ring. The proof of sufficiency of (2) is proved in the same way as the sufficiency of (1). This completes the proof. \Box

References

 F. W. Anderson and K.R. Fuller *Rings and Categories of Modules* Springer-Verlag, New York (1974).

- [2] N. V. Dung, D. V. Huyn, P. F. Smith and R. Wisbauer *Extending Modules* Pitmann Research Notes in Math. Series, Longman Harlow, (1994)
- [3] J. Hausen, 'Modules with the Summand intersection Property' Comm. Algebra, 17(1), (1989),135-148.
- [4] J. L. Garcia, 'Properties of direct summands of modules', Comm. Algebra, 17 (1), (1989), 73-92.
- [5] G. Güngöroğlu and A. Harmanci, 'On Some Classes of Modules', *Czhec. Math. Journ.* 50(126),(2000), 839-846.
- [6] I. Kaplasky, 'Commutative Rings', Univ. of Chicago Press, Chicago (1974).
- [7] D. Keskin 'Finite Direct Sums of (D_1) Modules', Turkish. J. Math., 22 (1998) 85-91.
- [8] S. H. Mohamed, B.J. Mller, Continuous and Discrete Modules, Cambridge University Press (New York 1990).
- [9] A. Ç. Özcan and A.Harmanci, 'Characterization of Rings by Functor Z^{*}(.)', Turkish J. Math., 21(3),(1997) 325-331.
- [10] P. F. Smith 'Modules for which Every Submodule has a Unique Closure', Ring Theory (S. K. Jain and S. T. Rizvi,eds.), New Jersey, World Scientific, (1993), pp.302-313.
- [11] G. V. Wilson, 'Modules with on the direct Summand Intersection Property', Communications In Algebra, (1986)
- [12] R. Wisbauer, 'Foundations of Module and Ring Theory, Gordon and Breach, Reading(1991).

Mustafa ALKAN, Abdullah HARMANCI Hacettepe University, Department of Mathematics, Beytepe, Ankara-TURKEY e-mail: alkan@hacettepe.edu.tr

147

Received 21.02.2001