θ-Euclidean L-fuzzy Ideals of Rings

Ayten Koç, Erol Balkanay

Abstract

The concept of fuzzy ideals is extended by introducing θ-Euclidean L-fuzzy ideals in rings. In particular, some structural theorems for a θ-Euclidean L-fuzzy ideal of R are proved.

Key Words: Fuzzy quotient ring; isomorphism of rings; θ-Euclidean L-fuzzy ideal.

1. Introduction

In this paper we define a θ-Euclidean L-fuzzy ideal on a commutative ring with identity. Then we examine θ-Euclidean L-fuzzy ideals of the ring. In particular, we give some structural theorems for a θ-Euclidean L-fuzzy ideal. We also give a theorem similar to the Factorization of Homomorphisms Theorem.

2. Preliminaries

Throughout this paper, R denotes a commutative ring with identity and ring homomorphisms preserve identities. L denotes a lattice with the least element 0 and the greatest element 1. Unless stated otherwise, L is complete and completely distributive in the sense that it satisfies the following law:

$$
\bigvee\left\{a_{i} \mid i \in I\right\} \wedge \bigvee\left\{b_{j} \mid j \in J\right\}=\bigvee\left\{a_{i} \wedge b_{j} \mid i \in I, j \in J\right\}[4]
$$

for all $a_{i}, b_{j} \in L$.

Definition 2.1 [4] An L-fuzzy ideal is a function $J: R \rightarrow L$ satisfying the following axioms for all $x, y \in R$,
(i) $J(x+y) \geq J(\mathrm{x}) \wedge J(\mathrm{y})$,
(ii) $J(-x)=J(\mathrm{x})$,
(iii) $J(\mathrm{xy}) \geq J(\mathrm{x}) \vee J(\mathrm{y})$.

Since we are considering L-fuzzy ideals over a fixed lattice L, we shall call them fuzzy ideals only.

Definition 2.2 [3]. Let $J: R \rightarrow L$ be a fuzzy ideal. The fuzzy subset $x+J: R \rightarrow L$ defined by $(x+J)(y)=J(y-x)$ is called a coset of the fuzzy ideal J.

The set of all cosets of a fuzzy ideal J forms a ring under the binary operations ' + ' and '.' defined as

$$
(x+J)+(y+J)=(x+y)+J \text { and }(x+J) \cdot(y+J)=x y+J
$$

We shall denote this ring by R / J.
Let $R_{J}=\{x \in R \mid J(x)=J(0)\}$. This is a $J(0)$-level cut of J and hence is an ideal of R offering us the factor ring $R / R_{J}[2]$.

Theorem 2.3 [3] The ring R / J is isomorphic to the ring R / R_{J}. The isomorphic correspondence is given by $x+J \leftrightarrow x+R_{J}$.

Definition 2.4 [7]. Let $f: R \rightarrow R^{\prime}$ be a homomorphism. For the fuzzy point 0_{1} of R^{\prime}, set Ker $f=f^{-1}\left(0_{1}\right)$ and call $\operatorname{Ker} f$ the fuzzy kernel of f.

Proposition 2.5 [3] If $f: R \rightarrow R^{\prime}$ is a homomorphism and $J: R \rightarrow L$ and $J^{\prime}: R^{\prime} \rightarrow L$ are fuzzy ideals, then
(i) $f^{-1}\left(J^{\prime}\right)$ is a fuzzy ideal which is constant on $\operatorname{Ker} f$,
(ii) $f^{-1}\left(R_{J^{\prime}}^{\prime}\right)=R_{f^{-1}\left(J^{\prime}\right)}$,
(iii) If f is an epimorphism, then $f f^{-1}\left(J^{\prime}\right)=J^{\prime}$.
(iv) If J is constant on $\operatorname{Ker} f$, then $f^{-1} f(J)=J$.

It may be noted that in Proposition 2.5, neither L is assumed to be complete distributive, nor $f(J)$ is claimed to be a fuzzy ideal [3].

This assumption is made in the following [3]:

Proposition 2.6 [3] If L is a complete distributive lattice and $f: R \rightarrow R^{\prime}$ is an epimorphism, then $f(J)$ is a fuzzy ideal.

We will define now a θ-Euclidean L-fuzzy ideal on a commutative ring with identity. Strictly speaking we add an extra condition to the definition of the fuzzy ideal as follows:

Definition 2.7 Let $\theta: R \rightarrow L$ be a non-constant fuzzy subset of R. A function $\varphi: R \rightarrow L$ is called a θ-Euclidean L-fuzzy ideal if φ satisfies the following axioms.
(i) $\varphi(x+y) \geq \min \{\varphi(x), \varphi(y)\}$ for all x, y in R,
(ii) $\varphi(-x)=\varphi(x)$,
(iii) $\varphi(x y) \geq \max \{\varphi(x), \varphi(y)\}$,
(iv) For any $x, y \in R$, with $y \neq 0$, there exist elements $q, r \in R$ such that $x=y q+r$ where either $r=0$ or else $\max \{\varphi(r), \theta(r)\} \geq \max \{\varphi(y), \theta(y)\}$.

Example. Let Z be the ring of integers and $\varphi: Z \rightarrow[0,1]$ be a fuzzy subset defined by

$$
\varphi(a)= \begin{cases}1 & \text { if } a=0 \\ 1 / 3 & \text { if } a \in(2)-0 \\ 0 & \text { if } a \in Z-(2) .\end{cases}
$$

Let $\theta: Z \rightarrow[0,1]$ be a fuzzy subset defined by

$$
\theta(a)= \begin{cases}0 & \text { if } a=0 \\ 1 / 3 & \text { if } a= \pm 3, \pm 5, \pm 7, \pm 9, \ldots \\ 1 /|a| & \text { otherwise }\end{cases}
$$

So φ is a $[0,1]$-fuzzy ideal of Z. Also φ is a θ-Euclidean $[0,1]$-fuzzy ideal of Z.
Example. Let Z be the ring of integers and $\varphi: Z \rightarrow[0,1]$ be a fuzzy set defined by

$$
\varphi(a)= \begin{cases}1 & \text { if } a=0 \\ 1 / 3 & \text { if } a \in(2)-0 \\ 0 & \text { if } a \in Z-(2)\end{cases}
$$

Let $\theta_{1}: Z \rightarrow[0,1]$ be a fuzzy subset defined by

$$
\theta_{1}(a)= \begin{cases}0 & \text { if } \mathrm{a}=0 \\ 1 /|a| & \text { otherwise }\end{cases}
$$

So φ is a $[0,1]$-fuzzy ideal of Z. But φ is not a θ_{1}-Euclidean [0,1$]$-fuzzy ideal of Z.

Theorem 2.8 Let $f: R \rightarrow R^{\prime}$ be an isomorphism of the rings and $\varphi^{\prime}: R^{\prime} \rightarrow L$ be a θ^{\prime}-Euclidean L-fuzzy ideal of R^{\prime}. Then $\varphi^{\prime} \circ f: R \rightarrow L$ is a $\theta^{\prime} \circ f$-Euclidean L-fuzzy ideal of R. Here, we mean that $\left(\varphi^{\prime} \circ f\right)(x)=\varphi^{\prime}(f(x))$

Proof. Let $\varphi=\varphi^{\prime} \circ f, \theta=\theta^{\prime} \circ f$ and also $a, b \in R$. Then

Because of Proposition 2.5 [3], $\varphi: R \rightarrow L$ is an L-fuzzy ideal of R. So it must be shown that (iv) is satisfied.
(iv) Let $a, b \in R$. Then $f(a), f(b) \in R^{\prime}$. Since φ^{\prime} is a θ^{\prime}-Euclidean L-fuzzy ideal of R^{\prime}, there exist elements $f(r), f(q) \in R^{\prime}$ such that $f(a)=f(b) f(q)+f(r)$ where either $f(r)=0$ or else $\max \left\{\varphi^{\prime}(f(r)), \theta^{\prime}(f(r))\right\} \geq \max \left\{\varphi^{\prime}(f(b)), \theta^{\prime}(f(b))\right\}$. Since f is an isomorphism, we can write

$$
f(a)=f(b q)+f(r)
$$

and

$$
f(a)=f(b q+r)
$$

thus (using one-to-oneness)

$$
\Rightarrow a=b q+r
$$

First, if $f(r)=0$, then $r=0$, since f is one-to-one.
Otherwise if $\max \left\{\varphi^{\prime}(f(r)), \theta^{\prime}(f(r))\right\} \geq \max \left\{\varphi^{\prime}(f(b)), \theta^{\prime}(f(b))\right\}$, then $\max \left\{\left(\varphi^{\prime} \circ f\right)(r),\left(\theta^{\prime} \circ\right.\right.$ $f)(r)\} \geq \max \left\{\left(\varphi^{\prime} \circ f\right)(b),\left(\theta^{\prime} \circ f\right)(b)\right\}$.

So we get

$$
\max \{\varphi(r), \theta(r)\} \geq \max \{\varphi(b), \theta(b)\}
$$

Therefore $\varphi: R \rightarrow L$ is a θ-Euclidean L-fuzzy ideal of R.

Theorem 2.9 Let $f: R \rightarrow R^{\prime}$ be an onto homomorphism of the rings and $\varphi: R \rightarrow L$ be a θ-Euclidean L-fuzzy ideal which is constant on $\operatorname{Ker} f$. Also suppose that $\theta(a)=\theta(b)$ when $a-b \in \operatorname{Ker} f$. Then $f(\varphi): R^{\prime} \rightarrow L$ is an $f(\theta)$-Euclidean L-fuzzy ideal of R^{\prime}.

Proof.

Let $x^{\prime} \in R^{\prime}$. Then there exist elements $x_{0} \in R$ such that $x^{\prime}=f\left(x_{0}\right)$. Since φ is constant on Ker f, we get $\varphi(z)=\varphi\left(x_{0}\right)$ for all $z \in f^{-1}\left(x^{\prime}\right)$. Suppose $f(z)=x^{\prime}$ and
$f\left(x_{0}\right)=x^{\prime}$ for a moment. Then $f\left(z-x_{0}\right)=0$ and so we obtain $z-x_{0} \in \operatorname{Ker} f$. That is to say,

$$
\varphi\left(z-x_{0}\right)=\varphi(0) \Rightarrow \varphi(z)=\varphi\left(x_{0}\right)
$$

So

$$
f(\varphi)\left(x^{\prime}\right)=\bigvee\left\{\varphi(z) \mid z \in f^{-1}\left(x^{\prime}\right)\right\}=\varphi\left(x_{0}\right)
$$

and we get $f(\varphi)\left(y^{\prime}\right)=\varphi\left(y_{0}\right)$ in a similar way.

Is $f(\varphi)$ an $f(\theta)$-Euclidean L-fuzzy ideal of R^{\prime} ?
Because of Proposition 2.6.[3], $f(\varphi)$ is an L-fuzzy ideal of R^{\prime}. So it must be shown that (iv) is satisfied.
(iv) Let $x^{\prime}, y^{\prime} \in R^{\prime}$, then there exist elements $x_{0}, y_{0} \in R$ such that $f\left(x_{0}\right)=x^{\prime}, f\left(y_{0}\right)=$ y^{\prime}. Since φ is a θ-Euclidean L-fuzzy ideal of R, there exist elements $q_{0}, r_{0} \in R$ such that $x_{0}=y_{0} q_{0}+r_{0}$, where either $r_{0}=0$ or else $\max \left\{\varphi\left(r_{0}\right), \theta\left(r_{0}\right)\right\} \geq \max \left\{\varphi\left(y_{0}\right), \theta\left(y_{0}\right)\right\}$. So $f\left(x_{0}\right)=f\left(y_{0} q_{0}+r_{0}\right)$. Therefore we get $f\left(x_{0}\right)=f\left(y_{0}\right) f\left(q_{0}\right)+f\left(r_{0}\right)$. So there exist $x^{\prime}, y^{\prime}, q^{\prime}, r^{\prime} \in R^{\prime}$, such that $f\left(x_{0}\right)=x^{\prime}, f\left(y_{0}\right)=y^{\prime}, f\left(q_{0}\right)=q^{\prime}, f\left(r_{0}\right)=r^{\prime}$.

Let $r_{0}=0$.Then $f\left(r_{0}\right)=f(0)=0$.
Since $\theta(a)=\theta(b)$ in case $a-b \in \operatorname{Ker} f$, we obtain

$$
f(\theta)\left(r^{\prime}\right)=\bigvee\left\{\theta(z) \mid z \in f^{-1}\left(r^{\prime}\right)\right\}=\theta\left(r_{0}\right)
$$

If $\max \left\{\varphi\left(r_{0}\right), \theta\left(r_{0}\right)\right\} \geq \max \left\{\varphi\left(y_{0}\right), \theta\left(y_{0}\right)\right\}$ then $\max \left\{f(\varphi)\left(r^{\prime}\right)=\varphi\left(r_{0}\right), f(\theta)\left(r^{\prime}\right)=\right.$ $\left.\theta\left(r_{0}\right)\right\} \geq \max \left\{\varphi\left(y_{0}\right)=f(\varphi)\left(y^{\prime}\right), \theta\left(y_{0}\right)=f(\theta)\left(y^{\prime}\right)\right\}$. That is $\max \left\{f(\varphi)\left(r^{\prime}\right), f(\theta)\left(r^{\prime}\right)\right\} \geq$ $\max \left\{f(\varphi)\left(y^{\prime}\right), f(\theta)\left(y^{\prime}\right)\right\}$.

So $f(\varphi)$ is an $f(\theta)$-Euclidean L-fuzzy ideal of R^{\prime}.

3. Fuzzy-quotient rings

Let M be a fuzzy ideal of A. For all $x \in A$ let $x+M$ be the fuzzy subset of A defined by

$$
(x+M)(y)=M(y-x)
$$

for all $y \in A$. The fuzzy subset $x+M$ is called a fuzzy coset of the fuzzy ideal M. The set of all such fuzzy cosets will be denoted by A / M. Two binary operations on A / M (denoted by + and .) are defined as follows: for all $x, y \in A$,

$$
\begin{aligned}
(x+M)+(y+M) & =(x+y)+M \\
(x+M) \cdot(y+M) & =(x \cdot y)+M
\end{aligned}
$$

The above two operations are well defined and make A / M into a ring, called the fuzzyquotient ring of A by M [6].

Theorem 3.1 [1](Factorization of Homomorphisms). Let f be a homomorphism of the ring R onto the ring R^{\prime}, and I be an ideal of R such that $I \subseteq \operatorname{Ker} f$. Then there exists a unique homomorphism $\bar{f}: R / I \rightarrow R^{\prime}$ with the property that $f=\bar{f} \circ n_{I}$, where $n_{I}: R \rightarrow R / I$ is the natural homomorphism.

We can give a similar theorem to Theorem 3.1 as follows:

Theorem 3.2 Let $J: R \rightarrow L$ be a θ-Euclidean L-fuzzy ideal, $n: R \rightarrow R / R_{J}$ be the natural homomorphism. Also suppose that $\theta(a)=\theta(b)$ when $a-b \in \operatorname{Ker} n$. Let $\varphi: R / R_{J} \rightarrow L$ be defined as $\varphi\left(a+R_{J}\right)=J(a)$. Then there exists a unique $\theta^{*}(=n(\theta))$ Euclidean L-fuzzy ideal $\varphi: R / R_{J} \rightarrow L$ with the property that $J=\varphi \circ n$.

Proof. First we will show that this function is well-defined. Let $a+R_{J}=b+R_{J}$. So there exists $x \in R_{J}$ such that $a-b=x$.Using the definition of R_{J}, we obtain $J(x)=J(0)$.

$$
\begin{aligned}
J(0) & =J(x)=J(a-b) \\
& \Rightarrow J(0)=J(a-b) \\
& \Rightarrow J(a)=J(b) .
\end{aligned}
$$

Therefore we get $J(a)=J(b)$. This means that

$$
\varphi\left(a+R_{J}\right)=\varphi\left(b+R_{J}\right)
$$

KOÇ, BALKANAY

So φ is well-defined.
Let $a+R_{J}, b+R_{J}$ be in R / R_{J}.
(i)

$$
\begin{aligned}
\varphi\left[\left(a+R_{J}\right)+\left(b+R_{J}\right)\right] & =\varphi\left[(a+b)+R_{J}\right] \\
& =J(a+b) \\
& \geq \min \{J(a), J(b)\} \\
& =\min \left\{\varphi\left(a+R_{J}\right), \varphi\left(b+R_{J}\right)\right\} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\varphi\left[-\left(a+R_{J}\right)\right] & =\varphi\left[\left(-a+R_{J}\right)\right] \\
& =J(-a) \\
& =J(a) \\
& =\varphi\left[\left(a+R_{J}\right)\right]
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\varphi\left[\left(a+R_{J}\right) \cdot\left(b+R_{J}\right)\right] & =\varphi\left[(a b)+R_{J}\right] \\
& =J(a b) \\
& \geq \max \{J(a), J(b)\} \\
& =\max \left\{\varphi\left(a+R_{J}\right), \varphi\left(b+R_{J}\right)\right\}
\end{aligned}
$$

(iv) Let $a+R_{J}, R_{J} \neq b+R_{J} \in R / R_{J}$.

$$
\begin{gathered}
\Rightarrow b \notin R_{J} \Rightarrow J(b) \neq J(0) \\
\Rightarrow b \neq 0
\end{gathered}
$$

So $a, 0 \neq b \in R$. Since J is a θ-Euclidean L-fuzzy ideal of R, there exist elements $q, r \in R$ such that $a=b q+r$, where either $r=0$ or else $\max \{J(r), \theta(r)\} \geq$ $\max \{J(b), \theta(b)\}$.

$$
\begin{aligned}
a=b q+r & \Rightarrow a+R_{J}=b q+r+R_{J} \\
& \Rightarrow a+R_{J}=\left(b q+R_{J}\right)+\left(r+R_{J}\right)
\end{aligned}
$$

Therefore we obtain $a+R_{J}=\left(b+R_{J}\right) \cdot\left(q+R_{J}\right)+\left(r+R_{J}\right)$. If $r=0, \quad$ then $r+R_{J}=0+R_{J}$. So $r+R_{J}=R_{J}$. Since $r, q \in R$, we get $r+R_{J}, q+R_{J} \in R / R_{J}$.

Let $r+R_{J}=r^{\prime}$.
If $n(z)=r^{\prime}$ and $n(r)=r^{\prime}$, then $n(z-r)=0^{\prime}$.This means that $z-r \in \operatorname{Ker} n$. Hence we get $\theta(z)=\theta(r)$.So

$$
n(\theta)\left(r^{\prime}\right)=\bigvee\left\{\theta(z) \mid z \in n^{-1}\left(r^{\prime}\right)\right\}=\theta(r)
$$

If $\max \{J(r), \theta(r)\} \geq \max \{J(b), \theta(b)\}$, then $\max \left\{\varphi\left(r+R_{J}\right)=J(r), \theta(r)=n(\theta)\left(r^{\prime}\right)\right\} \geq$ $\max \left\{\varphi\left(b+R_{J}\right)=J(b), \theta(b)=n(\theta)\left(b^{\prime}\right)\right\}$. So $\max \left\{\varphi\left(r+R_{J}\right), \theta^{*}\left(r+R_{J}\right)\right\} \geq \max \{\varphi(b+$ $\left.\left.R_{J}\right), \theta^{*}\left(b+R_{J}\right)\right\}$. Finally, if J is a θ-Euclidean L-fuzzy ideal of R, then there exists a θ^{*}-Euclidean L-fuzzy ideal from R / R_{J} to L. Also for each $a \in R, J(a)=\varphi\left(a+R_{J}\right)=$ $\varphi(n(a))=(\varphi \circ n)(a)$. It means that $J=\varphi \circ n$.

Now let us show that this factorization is unique. Suppose that $\varphi^{\prime} \circ n=J$ for some other $\theta^{*}(=n(\theta))$-Euclidean L-fuzzy ideal $\varphi^{\prime}: R / R_{J} \rightarrow L$. But then

$$
\varphi\left(a+R_{J}\right)=J(a)=\left(\varphi^{\prime} \circ n\right)(a)=\varphi^{\prime}\left(a+R_{j}\right)
$$

for all $a \in R$. Hence we obtain $\varphi=\varphi^{\prime}$. So φ is a unique $\theta^{*}(=n(\theta))$-Euclidean L-fuzzy ideal from R / R_{J} into L with the property that $J=\varphi \circ n$.

Corollary 3.3 Let $J: R \rightarrow L$ be a θ-Euclidean L-fuzzy ideal. Suppose that $\theta(a)=\theta(b)$ when $a-b \in \operatorname{Ker} n$. Then there exists a θ^{*}-Euclidean L-fuzzy ideal from R / J to L.

Proof. \quad Since $J: R \rightarrow L$ is a θ-Euclidean L-fuzzy ideal and from Theorem 3.2., $\varphi: R / R_{J} \rightarrow L$ is a θ^{*}-Euclidean L-fuzzy ideal. Also the rings R / J and R / R_{J} are isomorphic. So there exists a θ^{*}-Euclidean L-fuzzy ideal from R / J to L.

Acknowledgement

The authors would like to thank the referees for their valuable suggestions.

References

[1] D.M Burton, A First Course in Rings and Ideals (Addison-Wesley Publishing Company, London, 1970).
[2] H.V. Kumbhojkar and M.S. Bapat, Not-so-fuzzy fuzzy ideals, Fuzzy Sets and Systems 37 (1990) 237-243.
[3] H.V. Kumbhojkar and M.S. Bapat, Correspondence theorem for fuzzy ideals, Fuzzy Sets and Systems 41 (1991) 213-219.
[4] H.V. Kumbhojkar and M.S. Bapat, On semiprime fuzzy ideals, Fuzzy Sets and Systems 60 (1993) 219-223.
[5] P. Sivaramakrishna Das, Fuzzy groups and level subgroups, J.Math.Anal.Appl. 84 (1981) 264-269.
[6] S. El-Badawy Yehia, Fuzzy partitions and fuzzy-quotient rings, Fuzzy Sets and Systems 54 (1993) 57-62.
[7] T. Kuraoka and N. Kuroki, On fuzzy quotient rings induced by fuzzy ideals, Fuzzy Sets and Systems 47 (1992) 381-386.

Ayten KOÇ
Received 26.02.2001
Department of Mathematics \&
Computer Sciences, İstanbul Kültür University,
Şirinevler, İstanbul-TURKEY
Erol BALKANAY
Department of Mathematics \&
Computer Sciences, İstanbul Kültür University,
Şirinevler, İstanbul-TURKEY

