Turk J Math 26 (2002) , 149 – 158. © TÜBİTAK

θ -Euclidean *L*-fuzzy Ideals of Rings

Ayten Koç, Erol Balkanay

Abstract

The concept of fuzzy ideals is extended by introducing θ -Euclidean *L*-fuzzy ideals in rings. In particular, some structural theorems for a θ -Euclidean *L*-fuzzy ideal of *R* are proved.

Key Words: Fuzzy quotient ring; isomorphism of rings; θ -Euclidean L-fuzzy ideal.

1. Introduction

In this paper we define a θ -Euclidean *L*-fuzzy ideal on a commutative ring with identity. Then we examine θ -Euclidean *L*-fuzzy ideals of the ring. In particular, we give some structural theorems for a θ -Euclidean *L*-fuzzy ideal. We also give a theorem similar to the Factorization of Homomorphisms Theorem.

2. Preliminaries

Throughout this paper, R denotes a commutative ring with identity and ring homomorphisms preserve identities. L denotes a lattice with the least element 0 and the greatest element 1. Unless stated otherwise, L is complete and completely distributive in the sense that it satisfies the following law:

$$\bigvee \{a_i \mid i \in I\} \land \bigvee \{b_j \mid j \in J\} = \bigvee \{a_i \land b_j \mid i \in I, j \in J\}[4]$$

for all $a_i, b_j \in L$.

Definition 2.1 [4] An *L*-fuzzy ideal is a function $J: R \to L$ satisfying the following axioms for all $x, y \in R$,

- (i) $J(x+y) \ge J(x) \land J(y)$,
- (ii) J(-x) = J(x),
- (iii) $J(xy) \ge J(x) \lor J(y)$.

Since we are considering L-fuzzy ideals over a fixed lattice L, we shall call them fuzzy ideals only.

Definition 2.2 [3]. Let $J: R \to L$ be a fuzzy ideal. The fuzzy subset $x + J: R \to L$ defined by (x + J)(y) = J(y - x) is called a coset of the fuzzy ideal J.

The set of all cosets of a fuzzy ideal J forms a ring under the binary operations '+' and '.' defined as

$$(x + J) + (y + J) = (x + y) + J$$
 and $(x + J) \cdot (y + J) = xy + J$.

We shall denote this ring by R/J.

Let $R_J = \{ x \in R \mid J(x) = J(0) \}$. This is a J(0)-level cut of J and hence is an ideal of R offering us the factor ring R/R_J [2].

Theorem 2.3 [3] The ring R/J is isomorphic to the ring R/R_J . The isomorphic correspondence is given by $x + J \leftrightarrow x + R_J$.

Definition 2.4 [7]. Let $f: R \to R'$ be a homomorphism. For the fuzzy point 0_1 of R', set Ker $f = f^{-1}(0_1)$ and call Ker f the fuzzy kernel of f.

Proposition 2.5 [3] If $f: R \to R'$ is a homomorphism and $J: R \to L$ and $J': R' \to L$ are fuzzy ideals, then

(i) $f^{-1}(J')$ is a fuzzy ideal which is constant on Ker f,

(ii) $f^{-1}(R'_{J'}) = R_{f^{-1}(J')},$

(iii) If f is an epimorphism, then $ff^{-1}(J') = J'$.

(iv) If J is constant on Ker f, then $f^{-1}f(J) = J$.

It may be noted that in Proposition 2.5, neither L is assumed to be complete distributive, nor f(J) is claimed to be a fuzzy ideal [3].

This assumption is made in the following [3]:

Proposition 2.6 [3] If L is a complete distributive lattice and $f: R \to R'$ is an epimorphism, then f(J) is a fuzzy ideal.

We will define now a θ -Euclidean *L*-fuzzy ideal on a commutative ring with identity. Strictly speaking we add an extra condition to the definition of the fuzzy ideal as follows:

Definition 2.7 Let $\theta: R \to L$ be a non-constant fuzzy subset of R. A function $\varphi: R \to L$ is called a θ -Euclidean L-fuzzy ideal if φ satisfies the following axioms.

(i) $\varphi(x+y) \ge \min\{\varphi(x), \varphi(y)\}$ for all x, y in R,

(ii)
$$\varphi(-x) = \varphi(x),$$

- (iii) $\varphi(xy) \ge \max\{\varphi(x), \varphi(y)\},\$
- (iv) For any $x, y \in R$, with $y \neq 0$, there exist elements $q, r \in R$ such that x = yq + rwhere either r = 0 or else $\max\{\varphi(r), \theta(r)\} \ge \max\{\varphi(y), \theta(y)\}$.

Example. Let Z be the ring of integers and $\varphi \colon Z \to [0,1]$ be a fuzzy subset defined by

$$\varphi(a) = \begin{cases} 1 & \text{if } a = 0, \\ 1/3 & \text{if } a \in (2) - 0, \\ 0 & \text{if } a \in Z - (2) \end{cases}$$

Let $\theta: Z \to [0,1]$ be a fuzzy subset defined by

$$\theta(a) = \begin{cases} 0 & \text{if } a = 0, \\ 1/3 & \text{if } a = \pm 3, \pm 5, \pm 7, \pm 9, \dots \\ 1/|a| & \text{otherwise.} \end{cases}$$

So φ is a [0, 1]-fuzzy ideal of Z. Also φ is a θ -Euclidean [0, 1]-fuzzy ideal of Z. **Example.** Let Z be the ring of integers and $\varphi \colon Z \to [0, 1]$ be a fuzzy set defined by

$$\varphi(a) = \begin{cases} 1 & \text{if } a = 0, \\ 1/3 & \text{if } a \in (2) - 0, \\ 0 & \text{if } a \in Z - (2). \end{cases}$$

Let $\theta_1 \colon Z \to [0,1]$ be a fuzzy subset defined by

$$\theta_1(a) = \begin{cases} 0 & \text{if } a=0, \\ 1/\mid a \mid & \text{otherwise.} \end{cases}$$

So φ is a [0,1]-fuzzy ideal of Z. But φ is not a θ_1 -Euclidean [0,1]-fuzzy ideal of Z.

Theorem 2.8 Let $f: R \to R'$ be an isomorphism of the rings and $\varphi': R' \to L$ be a θ' -Euclidean *L*-fuzzy ideal of R'. Then $\varphi' \circ f: R \to L$ is a $\theta' \circ f$ -Euclidean *L*-fuzzy ideal of R. Here, we mean that $(\varphi' \circ f)(x) = \varphi'(f(x))$

Proof. Let $\varphi = \varphi' \circ f$, $\theta = \theta' \circ f$ and also $a, b \in R$. Then

$$\begin{array}{cccc} R & \stackrel{\varphi}{\longrightarrow} & L \\ f \searrow & \swarrow \varphi' \\ & R' \end{array}$$

Because of Proposition 2.5 [3], $\varphi \colon R \to L$ is an *L*-fuzzy ideal of *R*. So it must be shown that (iv) is satisfied.

(iv) Let $a, b \in R$. Then $f(a), f(b) \in R'$. Since φ' is a θ' -Euclidean *L*-fuzzy ideal of R', there exist elements $f(r), f(q) \in R'$ such that f(a) = f(b)f(q) + f(r) where either f(r) = 0 or else $\max\{\varphi'(f(r)), \theta'(f(r))\} \ge \max\{\varphi'(f(b)), \theta'(f(b))\}$. Since f is an isomorphism, we can write

$$f(a) = f(bq) + f(r)$$

and

$$f(a) = f(bq + r),$$

thus (using one-to-oneness)

$$\Rightarrow a = bq + r$$

First, if f(r) = 0, then r = 0, since f is one-to-one.

Otherwise if $\max\{\varphi'(f(r)), \theta'(f(r))\} \ge \max\{\varphi'(f(b)), \theta'(f(b))\}\$, then $\max\{(\varphi' \circ f)(r), (\theta' \circ f)(r)\} \ge \max\{(\varphi' \circ f)(b), (\theta' \circ f)(b)\}\$.

So we get

$$\max\{\varphi(r), \theta(r)\} \ge \max\{\varphi(b), \theta(b)\}.$$

Therefore $\varphi \colon R \to L$ is a θ -Euclidean *L*-fuzzy ideal of *R*.

Theorem 2.9 Let $f: R \to R'$ be an onto homomorphism of the rings and $\varphi: R \to L$ be a θ -Euclidean *L*-fuzzy ideal which is constant on Ker f. Also suppose that $\theta(a) = \theta(b)$ when $a - b \in \text{Ker } f$. Then $f(\varphi): R' \to L$ is an $f(\theta)$ -Euclidean *L*-fuzzy ideal of R'.

Proof.

$$\begin{array}{cccc} R & \stackrel{\varphi}{\longrightarrow} & L \\ f \searrow & \swarrow f(\varphi) \\ & R' \\ \\ a & \longmapsto & \varphi(a) \\ \searrow & \swarrow \\ & f(a) \end{array}$$

Let $x' \in R'$. Then there exist elements $x_0 \in R$ such that $x' = f(x_0)$. Since φ is constant on Ker f, we get $\varphi(z) = \varphi(x_0)$ for all $z \in f^{-1}(x')$. Suppose f(z) = x' and

 $f(x_0) = x'$ for a moment. Then $f(z - x_0) = 0$ and so we obtain $z - x_0 \in \text{Ker } f$. That is to say,

$$\varphi(z - x_0) = \varphi(0) \Rightarrow \varphi(z) = \varphi(x_0).$$

 So

$$f(\varphi)(x') = \bigvee \{\varphi(z) \mid z \in f^{-1}(x')\} = \varphi(x_0)$$

and we get $f(\varphi)(y') = \varphi(y_0)$ in a similar way.

Is $f(\varphi)$ an $f(\theta)$ -Euclidean *L*-fuzzy ideal of R'?

Because of Proposition 2.6.[3], $f(\varphi)$ is an *L*-fuzzy ideal of R'. So it must be shown that (iv) is satisfied.

(iv) Let $x', y' \in R'$, then there exist elements $x_0, y_0 \in R$ such that $f(x_0) = x', f(y_0) = y'$. Since φ is a θ -Euclidean L-fuzzy ideal of R, there exist elements $q_0, r_0 \in R$ such that $x_0 = y_0q_0 + r_0$, where either $r_0 = 0$ or else $\max\{\varphi(r_0), \theta(r_0)\} \ge \max\{\varphi(y_0), \theta(y_0)\}$. So $f(x_0) = f(y_0q_0 + r_0)$. Therefore we get $f(x_0) = f(y_0)f(q_0) + f(r_0)$. So there exist $x', y', q', r' \in R'$, such that $f(x_0) = x', f(y_0) = y', f(q_0) = q', f(r_0) = r'$.

Let $r_0 = 0$. Then $f(r_0) = f(0) = 0$.

Since $\theta(a) = \theta(b)$ in case $a - b \in \text{Ker } f$, we obtain

$$f(\theta)(r') = \bigvee \{ \theta(z) \mid z \in f^{-1}(r') \} = \theta(r_0)$$
.

If $\max\{\varphi(r_0), \theta(r_0)\} \ge \max\{\varphi(y_0), \theta(y_0)\}$ then $\max\{f(\varphi)(r') = \varphi(r_0), f(\theta)(r') = \theta(r_0)\} \ge \max\{\varphi(y_0) = f(\varphi)(y'), \theta(y_0) = f(\theta)(y')\}$. That is $\max\{f(\varphi)(r'), f(\theta)(r')\} \ge \max\{f(\varphi)(y'), f(\theta)(y')\}$.

So $f(\varphi)$ is an $f(\theta)$ -Euclidean L-fuzzy ideal of R'.

3. Fuzzy-quotient rings

Let M be a fuzzy ideal of A. For all $x \in A$ let x + M be the fuzzy subset of A defined by

$$(x+M)(y) = M(y-x)$$

154

for all $y \in A$. The fuzzy subset x + M is called a fuzzy coset of the fuzzy ideal M. The set of all such fuzzy cosets will be denoted by A/M. Two binary operations on A/M (denoted by + and .) are defined as follows: for all $x, y \in A$,

$$(x + M) + (y + M) = (x + y) + M$$
,
 $(x + M).(y + M) = (x.y) + M$.

The above two operations are well defined and make A/M into a ring, called the fuzzyquotient ring of A by M [6].

Theorem 3.1 [1](Factorization of Homomorphisms). Let f be a homomorphism of the ring R onto the ring R', and I be an ideal of R such that $I \subseteq \text{Ker } f$. Then there exists a unique homomorphism $\overline{f}: R/I \to R'$ with the property that $f = \overline{f} \circ n_I$, where $n_I: R \to R/I$ is the natural homomorphism.

We can give a similar theorem to Theorem 3.1 as follows:

Theorem 3.2 Let $J: R \to L$ be a θ -Euclidean L-fuzzy ideal, $n: R \to R/R_J$ be the natural homomorphism. Also suppose that $\theta(a) = \theta(b)$ when $a - b \in \text{Ker } n$. Let $\varphi: R/R_J \to L$ be defined as $\varphi(a + R_J) = J(a)$. Then there exists a unique $\theta^*(=n(\theta))$ -Euclidean L-fuzzy ideal $\varphi: R/R_J \to L$ with the property that $J = \varphi \circ n$.

Proof. First we will show that this function is well-defined. Let $a + R_J = b + R_J$. So there exists $x \in R_J$ such that a-b = x. Using the definition of R_J , we obtain J(x) = J(0).

$$J(0) = J(x) = J(a - b)$$

$$\Rightarrow J(0) = J(a - b)$$

$$\Rightarrow J(a) = J(b).$$

Therefore we get J(a) = J(b). This means that

$$\varphi(a+R_J)=\varphi(b+R_J).$$

So φ is well-defined.

Let $a + R_J$, $b + R_J$ be in R/R_J .

(i)

$$\varphi[(a+R_J) + (b+R_J)] = \varphi[(a+b) + R_J]$$

= $J(a+b)$
 $\geq \min\{J(a), J(b)\}$
= $\min\{\varphi(a+R_J), \varphi(b+R_J)\}.$

(ii)

$$\varphi[-(a+R_J)] = \varphi[(-a+R_J)]$$
$$= J(-a)$$
$$= J(a)$$
$$= \varphi[(a+R_J)].$$

(iii)

$$\varphi[(a+R_J).(b+R_J)] = \varphi[(ab) + R_J]$$

= J(ab)
$$\geq \max\{J(a), J(b)\}$$

= max{ $\varphi(a+R_J), \varphi(b+R_J)$ }.

(iv) Let $a + R_J$, $R_J \neq b + R_J \in R/R_J$.

$$\Rightarrow b \notin R_J \Rightarrow J(b) \neq J(0)$$
$$\Rightarrow b \neq 0.$$

So a, $0 \neq b \in R$. Since J is a θ -Euclidean L-fuzzy ideal of R, there exist elements $q, r \in R$ such that a = bq + r, where either r = 0 or else $\max\{J(r), \theta(r)\} \geq \max\{J(b), \theta(b)\}$.

$$a = bq + r \quad \Rightarrow a + R_J = bq + r + R_J$$
$$\Rightarrow a + R_J = (bq + R_J) + (r + R_J).$$

Therefore we obtain $a + R_J = (b + R_J) \cdot (q + R_J) + (r + R_J)$. If r = 0, then $r + R_J = 0 + R_J$. So $r + R_J = R_J$. Since $r, q \in R$, we get $r + R_J$, $q + R_J \in R/R_J$.

Let $r + R_J = r'$.

If n(z) = r' and n(r) = r', then n(z - r) = 0'. This means that $z - r \in \text{Ker } n$. Hence we get $\theta(z) = \theta(r)$. So

$$n(\theta)(r') = \bigvee \{\theta(z) \mid z \in n^{-1}(r')\} = \theta(r).$$

If $\max\{J(r), \theta(r)\} \ge \max\{J(b), \theta(b)\}$, then $\max\{\varphi(r+R_J) = J(r), \theta(r) = n(\theta)(r')\} \ge \max\{\varphi(b+R_J) = J(b), \theta(b) = n(\theta)(b')\}$. So $\max\{\varphi(r+R_J), \theta^*(r+R_J)\} \ge \max\{\varphi(b+R_J), \theta^*(b+R_J)\}$. Finally, if J is a θ -Euclidean L-fuzzy ideal of R, then there exists a θ^* -Euclidean L-fuzzy ideal from R/R_J to L. Also for each $a \in R$, $J(a) = \varphi(a+R_J) = \varphi(n(a)) = (\varphi \circ n)(a)$. It means that $J = \varphi \circ n$.

Now let us show that this factorization is unique. Suppose that $\varphi' \circ n = J$ for some other $\theta^* (= n(\theta))$ -Euclidean *L*-fuzzy ideal $\varphi' : R/R_J \to L$. But then

$$\varphi(a + R_J) = J(a) = (\varphi' \circ n)(a) = \varphi'(a + R_j)$$

for all $a \in R$. Hence we obtain $\varphi = \varphi'$. So φ is a unique $\theta^* (= n(\theta))$ -Euclidean *L*-fuzzy ideal from R/R_J into *L* with the property that $J = \varphi \circ n$.

Corollary 3.3 Let $J: R \to L$ be a θ -Euclidean *L*-fuzzy ideal. Suppose that $\theta(a) = \theta(b)$ when $a - b \in \text{Ker } n$. Then there exists a θ^* -Euclidean *L*-fuzzy ideal from R/J to *L*.

Proof. Since $J: R \to L$ is a θ -Euclidean L-fuzzy ideal and from Theorem 3.2., $\varphi: R/R_J \to L$ is a θ^* -Euclidean L-fuzzy ideal. Also the rings R/J and R/R_J are isomorphic. So there exists a θ^* -Euclidean L-fuzzy ideal from R/J to L.

Acknowledgement

The authors would like to thank the referees for their valuable suggestions.

References

- D.M Burton, A First Course in Rings and Ideals (Addison-Wesley Publishing Company, London, 1970).
- [2] H.V. Kumbhojkar and M.S. Bapat, Not-so-fuzzy fuzzy ideals, Fuzzy Sets and Systems 37 (1990) 237-243.
- [3] H.V. Kumbhojkar and M.S. Bapat, Correspondence theorem for fuzzy ideals, Fuzzy Sets and Systems 41 (1991) 213-219.
- [4] H.V. Kumbhojkar and M.S. Bapat, On semiprime fuzzy ideals, Fuzzy Sets and Systems 60 (1993) 219-223.
- [5] P. Sivaramakrishna Das, Fuzzy groups and level subgroups, J.Math.Anal.Appl. 84 (1981) 264-269.
- [6] S. El-Badawy Yehia, Fuzzy partitions and fuzzy-quotient rings, Fuzzy Sets and Systems 54 (1993) 57-62.
- [7] T. Kuraoka and N. Kuroki, On fuzzy quotient rings induced by fuzzy ideals, Fuzzy Sets and Systems 47 (1992) 381-386.

Ayten KOÇ

Received 26.02.2001

Department of Mathematics & Computer Sciences, İstanbul Kültür University, Şirinevler, İstanbul-TURKEY Erol BALKANAY Department of Mathematics & Computer Sciences, İstanbul Kültür University, Şirinevler, İstanbul-TURKEY