Left Adjoint of Pullback Cat¹- profinite groups

Murat Alp

Abstract

In this paper, we present a brief review crossed modules [9], cat¹-groups [7], profinite crossed modules [6], cat¹-profinite groups [6], pullback profinite crossed modules [6] and also the pullback cat¹- profinite groups [2]. We prove that the pulback cat¹-profinite group has a left adjoint which is the induced cat¹-group.

Key Words: Crossed modules, ${\rm Cat}^1\mbox{-}{\rm groups},$ pullback, Profinite groups, Left, Right Adjoint, Cocomplete category.

1. Introduction

Crossed modules were introduced by J. H. C. Whitehead in [9]. Loday in [7] defined cat^1 -groups and showed that the XMod category of crossed modules is equivalent to the Cat category of cat^1 -groups. The manipulation of Crossed modules and cat^1 -groups structures have been computer implemented using the group theory language GAP [8]¹ in [3]. Enumeration of cat^1 -groups of low order was also presented in [4]. Profinite crossed modules were defined Korkes and Porter in [6]. They also gave some useful completions about profinite crossed modules and cat^1 -profinite groups in [6]. Pullback cat^1 -profinite groups were defined in [2].

Our aim is to show that the equivalence between cat¹-groups and crossed modules due to Loday [7] takes pullback cat¹-profinite groups to the pullback profinite crossed modules.

¹⁹⁹¹ A. M. S. C.: 13D99, 16A99, 17B99, 17D99, 18D35.

 $^{^1{\}rm Further}$ information can be found at the following internet web site: www-gap.dcs.st-andrews.ac.uk/~gap/

2. Crossed Modules and Cat¹-Groups

In this section we recall the descriptions of two equivalent categories: the category of crossed modules and their morphisms; and the category of cat¹-groups and their morphisms.

A crossed module $\mathcal{X} = (\partial : S \to R)$ consists of a group homomorphism ∂ , called the *boundary* of \mathcal{X} , together with an action $\alpha : R \to \operatorname{Aut}(S)$ satisfying, for all $s, s' \in S$ and $r \in R$,

CM1:
$$\partial(s^r) = r^{-1}(\partial s)r$$

CM2: $s^{\partial s'} = s'^{-1}ss'.$

The standard examples of crossed modules are:

- 1. Any homomorphism $\partial: S \to R$ of abelian groups with R acting trivially on S may be regarded as a crossed module.
- 2. A conjugation crossed module is an inclusion of a normal subgroup $S \trianglelefteq R$, where R acts on S by conjugation.
- 3. A central extension crossed module has as boundary a surjection $\partial : S \to R$ with central kernel, where $r \in R$ acts on S by conjugation with $\partial^{-1}r$.
- 4. An automorphism crossed module has as range a subgroup R of the automorphism group Aut(S) of S which contains the inner automorphism group of S. The boundary maps $s \in S$ to the inner automorphism of S by s.
- 5. An *R*-Module crossed module has an *R*-module as source and ∂ is the zero map.
- 6. The direct product $\mathcal{X}_1 \times \mathcal{X}_2$ of two crossed modules has source $S_1 \times S_2$, range $R_1 \times R_2$ and boundary $\partial_1 \times \partial_2$, with R_1 , R_2 acting trivially on S_2 , S_1 respectively.
- 7. An important motivating topological example of crossed module due to Whitehead [9] is the boundary $\partial : \pi_2(X, A, x) \to \pi_1(A, x)$ from the second relative homotopy group of a based pair (X, A, x) of topological spaces, with the usual action of the fundamental group $\pi_1(A, x)$.

A morphism between two crossed modules $\mathcal{X} = (\partial : S \to R)$ and $\mathcal{X}' = (\partial' : S' \to R')$ is a pair (σ, ρ) , where $\sigma : S \to S'$ and $\rho : R \to R'$ are homomorphisms satisfying

$$\partial' \sigma = \rho \partial, \ \sigma(s^r) = (\sigma s)^{\rho r}.$$

 ALP

In [7] Loday reformulated the notion of a crossed module as a cat¹-group, namely a group G with a pair of homomorphisms $t, h : G \to G$ having a common image R and satisfying certain axioms. We find it convenient to define a cat¹-group $\mathcal{C} = (e; t, h : G \to R)$ as a group G, two surjections $t, h : G \to R, t(r, s) = r, h(r, s) = r(\partial s)$ and an embedding $e : R \to G, er = (r, 1)$ satisfying:

```
CAT1: te = he = id_R,
CAT2: [\ker t, \ker h] = \{1_G\}.
```

The maps t, h are often called the *source* and *target*, but we choose to call them *tail* and *head* of \mathcal{C} , because *source* is the GAP term for the domain of a function. A morphism $\mathcal{C} \to \mathcal{C}'$ of cat¹-groups is a pair (γ, ρ) where $\gamma : G \to G'$ and $\rho : R \to R'$ are homomorphisms satisfying

$$h'\gamma = \rho h, \ t'\gamma = \rho t, \ e'\rho = \gamma e.$$

3. Profinite crossed modules and cat¹-profinite groups

A profinite crossed module [6] $\mathcal{PX} = (\partial : S \to R)$ is a crossed module in which S and R profinite groups, S acts continuously on R and ∂ is a continuous group homomorphism. The following are examples of profinite crossed modules [6]:

- 1. Let H be a closed normal subgroup of profinite group R with $i : H \to R$ the inclusion. Then we will say $(i : H \to R)$ is a closed normal subgroup pair. In this case, of course, R acts continuously on the left of H by conjugation and the inclusion homomorphism i makes $(i : H \to R)$ into a profinite crossed module.
- 2. Let R be a finitely generated profinite group, then $\operatorname{Aut}(R)$, the group of continuous automorphisms of R, is also profinite in the topology of uniform convergence. Conjugation gives a continuous homomorphism $\partial : R \to \operatorname{Aut}(R)$. Absolutely, $\operatorname{Aut}(R)$ acts continuously on R and ∂ is a profinite crossed module.
- 3. Suppose given a continuous morphism $\theta : M \to N$ of pseudocompact left *R*-modules and form the semidirect product $R \ltimes R$. This is a profinite group which we make act continuously on *M* via the projection from $R \ltimes N$ to *R*. We define a continuous morphism $\partial : M \to R \ltimes N$ by $\partial(m) = (1, \theta(m))$ where 1 denotes identity in *R* then $(\partial : M \to R \ltimes N)$ is a profinite crossed module.

If $\mathcal{PX} = (\partial : S \to R)$ and $\mathcal{PX}' = (\partial' : S' \to R')$ are profinite crossed modules and $(\mu, \eta) : (\partial : S \to R) \to (\partial' : S' \to R')$ is a morphism between them in which the pair (μ, η) are both continuous, then the pair (μ, η) is called a morphism of profinite crossed modules.

A cat¹-profinite group is a cat¹-group $\mathcal{C} = (e; t, h : G \to R)$ in which G is a profinite group and t and h are continuous endomorphisms of G.

A morphism of cat¹-profinite groups is a morphism $\phi : \mathcal{C} = (e; t, h : G \to R) \to \mathcal{C}' = (e'; t', h' : G' \to R')$ of the underlying cat¹-profinite groups such that ϕ is a continuous morphism of profinite groups.

To any pre cat¹-profinite group there is a canonically associated a cat¹-profinite group C, obtained by quotienting the source group by the Peiffer subgroup [ker t, ker h]. Then the corresponding functor is denoted

ass: (pre cat¹-profinite groups) \rightarrow (cat¹-profinite groups),

and is clearly the identity when restricted to cat^1 -profinite groups [5].

4. Pullbacks of Profinite Crossed modules and cat¹-profinite groups

Let $\mathcal{PX} = (\partial : S \to R)$ be a profinite crossed module and $\iota : Q \to R$ be a continuous homomorphism of profinite groups. Then $\iota^* \mathcal{X} = (\partial^* : \iota^* S \to Q)$ is the pullback of \mathcal{PX} by ι . So that $\iota^* S \subset Q \times S$ is the closed subgroup given by

$$\iota^*S = \{(q,s) \in Q \times S \mid \iota q = \partial s\}$$

and Q acts continuously on the right of ι^*S by

$$(q_1, s)^q = (q^{-1}q_1q, s^{\iota q})$$

and since $\partial^*(q_1, s) = q_1$.

Let $\mathcal{PC} = (e; t, h : G \to R)$ be a cat¹-profinite group and $\iota : Q \to R$ be a continuous homomorphism. Then $e^{**}; t^{**}, h^{**} : \iota^{**}G \to Q$ is a pullback of G where $\iota^{**}G \subset Q \times G \times Q$ and

$$\iota^{**}G = \{(q_1, g, q_2) \in Q \times G \times Q \mid \iota q_1 = tg, \ \iota q_2 = hg\}$$

Now we can define tail, head and emmbedding as follows:

$$\begin{array}{rcl} t^{**}(q_1,g,q_2) &=& q_1 \\ h^{**}(q_1,g,q_2) &=& q_2 \\ &e^{**}(q) &=& (q,e\iota q,q). \end{array}$$

The equivalence between the category of ProfXMod and ProfCat1 was shown in [2].

Proposition 4.1 If $\iota^* \mathcal{PX}$ is the pullback of the profinite crossed module \mathcal{X} over ι : $Q \to R$ and if \mathcal{C}, \mathcal{D} are the cat¹-profinite groups obtained from $\mathcal{X}, \iota^* \mathcal{X}$ respectively, then $\mathcal{D} \cong \iota^{**} \mathcal{C}$.

Proof:

Starting with the pullback profinite crossed module $\iota^* \mathcal{X} = (\partial^{\bullet} : \iota^* S \to Q)$, the source group of \mathcal{D} is defined as the semi-direct product $Q \ltimes \iota^* S$.

The tail, head and embedding of \mathcal{D} are respectively given by

$$\begin{array}{rcl} t^{\bullet}(q',(q,s)) &=& q' \\ h^{\bullet}(q',(q,s)) &=& q'\partial^{\bullet}(q,s) \\ &=& q'q \\ e^{\bullet}(q) &=& (q,(1_Q,1_S)) \end{array}$$

We then define an isomorphism of cat¹-profinite groups $(\psi, \mathrm{id}_Q) : \mathcal{D} \to \iota^{**}\mathcal{C}$,

where

$$\psi(q', (q, s)) = (q', (\iota q', s), q'q).$$

First note that $\psi(q',(q,s)) \in \iota^{**}(R \ltimes S)$ because

$$t(\iota q', s) = \iota q'$$

and

$$h(\iota q',s)=(\iota q')(\partial s)=(\iota q')(\iota q)=\iota(q'q)$$

We verify that ψ is a homomorphism as follows:

$$\psi((q'_1, (q_1, s_1))(q'_2, (q_2, s_2)) = \psi(q'_1q'_2, (q_1^{q'_2}q_2, s_1^{\iota q'_2}s_2))$$

$$= (q'_1q'_2, (\iota(q'_1q'_2), s_1^{\iota q'_2}s_2), q'_1q_1q'_2q_2)$$

$$\psi(q'_1, (q_1, s_1))\psi(q'_2, (q_2, s_2)) = (q'_1, (\iota q'_1, s_1), q'_1q_1)(q'_2, (\iota q'_2, s_2), q'_2q_2)$$

$$= (q'_1q'_2, (\iota q'_1, s_1)(\iota q'_2, s_2), q'_1q_1q'_2q_2)$$

$$= (q'_1q'_2, ((\iota q'_1)(\iota q'_2), s_1^{\iota q'_2}s_2), q'_1q_1q'_2q_2).$$

The inverse of ψ is given by $\psi^{-1}(q_1, (r, s), q_2) = (q_1, (q_1^{-1}q_2, s)).$

Then

$$\begin{array}{rcl}t^{**}\psi(q',(q,s))&=&t^{**}(q',(\iota q',s),q'q)\\&=&q'\\&=&t^{\bullet}(q',(q,s)),\\h^{**}\psi(q',(q,s))&=&h^{**}(q',(\iota q',s),q'q)\\&=&q'q\\&=&h^{\bullet}(q',(q,s)),\\\psi e^{\bullet}(q)&=&\psi(q,(1_Q,1_S))\\&=&(q,(\iota q,1_s),q)\\&=&e^{**}(q),\end{array}$$

so the diagram commutes and the proof is complete. $\hfill\square$

The universal property of induced cat¹-profinite group is the following. Let $\mathcal{C} = (e; t, h : G \to R)$ be a cat¹-group and let $\iota^{**}\mathcal{C} = (e^{**}; t^{**}, h^{**} : \iota^{**}G \to Q)$ be induced by the homomorphism $\iota : Q \to R$, is given by the diagram

where the pair (π, ι) is a morphism of cat¹-group such that for any cat¹-group $\mathcal{H} = (e'; t', h' : H \to Q)$ and any morphism of cat¹-group $(\psi, \iota) : \mathcal{C} \to \mathcal{H}$ there is a unique morphism $((\psi', 1) : \iota^{**}\mathcal{C} \to \mathcal{H}))$ of cat¹-profinite groups such that $\pi\psi' = \psi$.

5. Construction of the left adjoint

The construction of left adjoint of pullback cat^1 -groups were given in [1].

Proposition 5.1 The category of cat¹-profinite groups is cocomplete.

Proof: Let $F : \mathbf{C} \to (\operatorname{cat}^1 - \operatorname{profinite groups})$. We wish to construct colim F. For each object c of \mathbf{C} , we write

$$F(c) = (e_c; t_c, h_c : F_1(c) \to F_0(c),)$$

Then we form

$$F' = (e'; t', h': \operatorname{colim}_c F_1(c) \to \operatorname{colim}_c F_0(c)) \\ = (e'; t', h': F'_1 \to F'_0),$$

where F'_1, F'_0 are the colimits in the category of profinite groups, so that t'e' = h'e' = 1. So F' is a pre-cat¹-profinite group. The required colimit is then the associated cat¹-profinite group **ass** F',

ass
$$F' = (e''; t'', h'': F'_1/[\ker t', \ker h'] → F'_0).$$

Proposition 5.2 The functor $\iota^{**}: Cat^1 ProGrp/U \to Cat^1 ProGrp/R$ has a left adjoint $\iota_{**}: Cat^1 ProGrp/R \to Cat^1 ProGrp/U$.

Proof:

We can give the left adjoint construction as follows. Let $\mathcal{C} = (e; t, h : G \to R)$ be a cat¹-profinite group over R and $\iota : R \to U$ is a morphism of profinite groups. Then the induced cat¹-profinite group is $\iota_{**}\mathcal{C} = (e_{**}; t_{**}, h_{**} : \iota_{**}G \to U)$ is given by the pushout

$$\begin{array}{cccc} (1;1,1:R \rightarrow R) & \xrightarrow{\iota} & (1;1,1:U \rightarrow U) \\ & & & & \\ & & & \\ (e;t,h:G \rightarrow R) & \xrightarrow{\iota} & (e_{**};t_{**},h_{**}:\iota_{**}G \rightarrow U) \end{array}$$

We draw the above diagram as a three dimensional diagram as follows

in the category of cat¹-profinite groups. For computational purposes note that, by the previous proposition 5.1, $\iota_{**}G = (G *_R U)/[\ker t_{**}, \ker h_{**}]$, where $*_R$ denotes coproduct of profinite groups, that is, a free product with amalgamation over R. \Box

References

- Alp, M., Left adjoint of pullback cat¹-groups, *Turkish Journal of Mathematics*, Vol. 23 No. 2 243-249 (1999).
- [2] Alp, M., Pullbacks of Profinite Crossed modules and cat¹-profinite groups, Journal of Institute of Mathematics Computer Sciences, (To appear).
- [3] Alp, M., and Wensley, C. D., XMOD, Crossed modules and cat1-groups in GAP, version 1.3 Manual for the XMOD share package, 1-80, (1997).
- [4] Alp, M., and Wensley, C. D., Enumeration of cat¹-group of low order, International Journal of Algebra and Computation, Vol. 10, No. 4 407- 424 (2000).
- [5] Brown, R. and Loday, J. L., Homotopical excision, and Hurewicz theorems, for n-cubes of spaces, Proc. London Math. Soc., (3) 54 176-192, (1987).
- [6] Korkes , F. J., and Porter, T., Profinite crossed modules, U. W. B. Pure Mathematics Preprint No. 86.11, pp. 1-37, (1986).
- [7] Loday, J. L., Spaces with finitely many non-trivial homotopy groups, J.App.Algebra, 24 179-202, (1982).

- [8] Schönert, M. et al, GAP: Groups, Algorithms, and Programming, Lehrstuhl D f
 ür Mathematik, Rheinisch Westfölische Technische Hochschule, Aachen, Germany, third edition, 1993.
- [9] Whitehead, J. H. C., On adding relations to homotopy groups, Ann. Math., 47 806-810, (1946).

Murat ALP Dumlupinar University Art and Science Faculty Mathematics Department, Kütahya-TURKEY email: malp@dumlupinar.edu.tr Received 17.04.2001