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New Tensor Norms and Operator Ideals Associated to
Interpolation Spaces Between Sequence Spaces

G. Castañeda, J. A. López Molina, M. J. Rivera

Abstract

We introduce a wide class of tensor norms gλ,ρ which are defined with the help of

interpolation spaces between perfect sequence spaces defined by a general parameter
real interpolation method. We also characterize the associated λρ-nuclear and λρ-

integral operators.
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1. Introduction: perfect sequence spaces and interpolation spaces

The excellent book [5] of Defant and Floret contains a complete update on the
interplay between tensor norms and operator ideals in the class BAN of all Banach
spaces. However after the publication of [5] some new interesting results on these topics
with more or less direct relation with interpolation spaces has been appeared in the
literature. These results are closely connected with the paper of Matter [14] concerning
the ideal of (p, σ)-absolutely continuous operators and deals with the study of the typical
tensor norms associated with Matter’s operator ideals (see the papers of López Molina
and Sánchez Pérez [13] and Arango, López Molina and Rivera [1]).

Latter papers suggest the role can be played by interpolation spaces in order to de-
fine new tensor norms and operator ideals which can be characterized by factorization
properties of the involved operators. The purpose of this paper is to develop this research
program where the space `p of classical tensor norms of Saphar is replaced by an interpo-
lation space between perfect sequence Banach spaces, defined by general real interpolation
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methods. This idea is not completely new. In an essential way it appears already in the
Doctoral Dissertation of Harksen [6] in 1979, where it is used simply to provide examples
of general tensor norms. However we have been able to get more deep results which ex-
tends until a characterization of the associated nuclear and integral operators. Moreover,
our results point out the essential ingredients of the classical tensor norms gp of Saphar
which are hidden in his work by the very special properties of Lp spaces.

Given a tensor norm α in the class BAN three main problems arise:
Problem 1. Characterize the operator ideal Iα associated with the tensor norm α

(the α-integral operators).

Problem 2. Characterize the operator ideal Πα associated with the dual tensor norm
α′, i.e. compute the dual Banach space (E ⊗α F )′ for E, F ∈ BAN.

Problem 3. Characterize the minimal operator ideal corresponding to α (the α-
nuclear operators).

As we have said, we solve these problems for a wide class of tensor norms defined with
help of general real interpolation spaces between perfect sequence spaces. Section 1 of
the paper gives an account of definitions and results on function norms, perfect Banach
sequence spaces and interpolation spaces which are needed for our purposes. Section 2
contains the construction of the tensor norm gλ,ρ derived from interpolation spaces of the

pair of perfect sequence spaces λ := (λ0, λ1) defined through the function norm ρ and
solves quoted problem 2. Problem 3 is solved in section 2 and the more difficult problem
1 is solved in last section 3.

All the vector spaces we use are defined over the field R of real numbers. In general
our notation is standard. BAN will denote the class of all Banach spaces. If E ∈ BAN,
we denote by FIN(E) the set of all finite dimensional subspaces N ⊂ E. For every
E ∈ BAN, JE will be the canonical inclusion E ⊂ E′′. In order to reduce the length
of the paper we assume the reader is familiar with classical theory of tensor norms and
operator ideals and its basic tools such as ultraproducts of Banach spaces as soon as
Banach lattices theory. For all definitions and topics concerning these materials we refer
the reader to [5], [7] and [15] respectively. However a few words on ultraproducts follows,
mainly to set the notation.

Given a non void index set D and a Banach space Ed for every d ∈ D, we denote
`∞((Ed)) := {(xd) ∈ Πd∈DEd / supd∈D ‖xd‖ < ∞}. Given an ultrafilter U on D, we

put ZU := {(xd) ∈ `∞((Ed)) / limd,U ‖xd‖ = 0}. Given (xd) ∈ `∞((Ed)), its class in

the quotient set `∞((Ed))/ZU is denoted by (xd)U . Then the ultraproduct space (Ed)U is
the quotient Banach space `∞((Ed))/ZU whose canonical quotient norm equals the norm
‖(xd)U‖ := limd,U ‖xd‖. If Ed = E for every d ∈ D, (Ed)U is written (E)U and it is called
an ultraprower of E.
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CASTAÑEDA, LÓPEZ MOLINA, RIVERA

Given a family {Td : Ed −→ Fd | d ∈ D} of continuous linear maps between Banach
spaces Ed and Fd such that supd∈D ‖Td‖ < ∞ we can define the canonical ultraproduct

map (Td)U : (Ed)U −→ (Fd)U by

∀ (xd)U ∈ (Ed)U (Td)U ((xd)U ) = (Td(xd))U . (1)

If every Ed, d ∈ D is a Banach lattice, (Ed)U also is a Banach lattice with the canonical
order given by (xd)U ≤ (yd)U if and only if there is (xd) ∈ (xi)U and (yd) ∈ (yi)U such that
xd ≤ yd for every d ∈ D. Then (xd)U ∧ (yd)U = (xd ∧ yd)U . Moreover, it is easy to check
that if (xd)U ∧ (yd)U = 0, we can choose representatives (xd) ∈ (xd)U and (yd) ∈ (yd)U
such that xd ∧ yd = 0 for all d ∈ D.

The theory of sequence spaces goes back to Köthe (see [10]). Let ϕ be the set of all

sequences (xi) ∈ RN with only a finite number of non null components. A sequence space

λ is a linear subspace of RN containing ϕ and provided with a locally convex topology. In
such a spaces the symbol ei denotes always the sequence (0, 0, ...0, 1, 0, 0, ....) with 1 in the
i-th position. Analogously, when we use Bochner spaces λ[ν ] of vector valued sequences
where ν is another sequence space, enm denotes the infinite matrix with 0 in all entries
except 1 in the n-th file and m-th column.

If λ is a sequence space the α-dual λ× is defined as

λ× :=

{
(xi) ∈ RN /

∞∑
i=1

|xi yi| <∞ ∀ (yi) ∈ λ
}
.

In such a case (λ, λ×) is a dual pair under the canonical bilinear form

∀ (xi) ∈ λ, ∀ (yi) ∈ λ× 〈(xi), (yi)〉 =
∞∑
i=1

xi yi.

In this paper we shall use only sequence spaces λ which are Banach spaces when they
are provided with the strong topology β(λ, λ×). A sequence space is said to be perfect if

λ×× := (λ×)× = λ. Clearly a perfect Banach sequence space is a Banach lattice under
the natural order.

Let λ be a sequence space. The regular subspace λr of λ is defined as the closure of
ϕ in λ. An useful fact is as follows (see lemma 3.3 in [9]):
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Lemma 1 If a sequence space λ is a sublattice of RN (with the canonical pointwise order)
then

λr :=

{
(xi) ∈ λ / (xi) = lim

n→∞

n∑
i=1

xiei

}

(the limit is taken in the topology of λ).

The next result is due to T. Komura and Y. Komura (see [9], lemma 1.3 and lemma
3.3):

Proposition 2 Let λ be a perfect space. Then (λr)′ = (λr)× = λ×.

Let M be the set of Lebesgue measurable real functions on ]0,∞[ andM+ ⊂M the
set of f ∈M such that f(t) ≥ 0 for every t ∈]0,∞[. Let us denote the Lebesgue measure
on ]0,∞[ by dt. Classical Banach spaces Lp(]0,∞[, dt), 1≤ p ≤ ∞ will be denoted simply

by Lp(dt) if there is no risk of confusion. If f ∈ M+, Lp(f, dt), 1 ≤ p ≤ ∞ denotes the
weighted space

Lp(f, dt) :=
{
g / ‖f g‖Lp(dt) <∞

}
.

The theory of general Banach function spaces and function norms has been developed
by Lorentz and Luxemburg. All we need on this topic can be found, for instance, in [2].

Roughly speaking, a function norm is a map ρ :M+ −→ [0,∞] such that the set of classes
of functions (modulo equality almost everywhere with respect the Lebesgue measure)

Lρ := {f :]0,∞[−→ R / ρ(|f |) <∞}

contains all characteristic functions χ]a,b[, 0 < a < b < ∞ and becomes a Banach lattice

when it is endowed with the norm ‖f‖ρ := ρ(|f |). The precise conditions to get that are
not relevant for this paper. Thus we omit them. The interested reader can see all details
in [2].

We refer the reader to book [4] for the theory of interpolation spaces defined by the
real method. However we present in a concise way the basic facts we shall use in this
paper. A couple (E0, E1) of Banach spaces is said to be a compatible couple if there is
a Hausdorff topological vector space E such that E0 ⊂ E and E1 ⊂ E with continuous
inclusions. Given a compatible couple (E0, E1) the spaces E0 ∩ E1 and E0 +E1 are well
defined and they become Banach spaces when provided with the canonical norms

∀ x ∈ E0 ∩ E1 ‖x‖E0∩E1 := max{‖x‖E0 , ‖x‖E1}

172
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and

∀ x ∈ E0 + E1 ‖x‖E0+E1 = inf {‖x0‖E0 + ‖x1‖E1 /x = x0 + x1, x0 ∈ E0, x1 ∈ E1}

respectively.
An interpolation space of the compatible couple (E0, E1) is a Banach space X such

that E0∩E1 ⊂ X ⊂ E0+E1 with continuous inclusions and such that for every continuous
linear map T : E0 + E1 −→ E0 + E1 with the property that T|Ei ∈ L(Ei, Ei), i = 0, 1

then T|X ∈ L(X,X). In this paper we shall deal with interpolation spaces defined by the

so-called K- and J-methods.
The J-functional of Peetre is defined in ]0,∞[×(E0 ∩ E1) by

J(t; x) := max{‖x‖E0 , t ‖x‖E1}

and the K-functional of Peetre is defined in ]0,∞[×(E0 + E1) as

K(t; x) := inf {‖x0‖E0 + t ‖x1‖E1 / x = x0 + x1, x0 ∈ E0, x1 ∈ E1} .

Then we define

(E0, E1)ρ,K =
{
x ∈ E0 +E1 / ‖x‖ρ,K := ρ

(
K(t; x)

t

)
<∞

}
and

(E0, E1)ρ,J =
{
x ∈ E0 + E1 / ‖x‖ρ,J := inf

{
ρ

(
J(t; u(t))

t

)
/ x =

∫ ∞
0

u(t)
t

dt

}
<∞

}
,

where u :]0,∞[−→ E0 ∩ E1 is strongly measurable and the written Bochner integral is
convergent in E0 + E1.

The next proposition collects important known facts about function norms and inter-
polation spaces that we shall need in the sequel.

Proposition 3 (1) Let ρ be a function norm such that the function h : t ∈]0,∞[−→
min

(
1, 1

t

)
lies in Lρ. Then

(a) (E0, E1)ρ,K is an interpolation space of the couple (E0, E1) (the interpolated space

defined by the real method K).
(b) Let ωρ := ρ(h) be the norm in Lρ of the real function h. Then the inclusion maps

I1ρ
E0E1

: E0 ∩ E1 −→ (E0, E1)ρ,K , I2ρ
E0E1

: (E0, E1)ρ,K −→ E0 +E1
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have norms ‖I1ρ
E0E1
‖ = ωρ and ‖I2ρ

E0E1
‖ = 1

ωρ
.

(2) Let ρ be a function norm such that Lρ ⊂ L1(dt) + L1
(

1
t
, dt
)
. Then (E0, E1)ρ,J

is an interpolation space of the couple (E0, E1) (the interpolated space defined by the real
method J).

Proof. Consider the space Φρ of classes of real functions f defined on ]0,∞[ which

are measurable respect the measure d t
t , and such that ‖f‖Φρ := ρ

(
f
(

1
t

))
< ∞. Φρ

endowed with the norm ‖.‖Φρ is a Banach space and the map H : Lρ −→ Φρ defined

by H(f)(t) = f
(

1
t

)
for every f ∈ Lρ and t > 0, is a surjective isometry such that

H(h)(t) = min(1, t). Then to prove (1) it is enough to apply proposition 3.3.1 in [4] and
(3.3.4) and (3.3.5) of this proposition. Proposition 3.4.1 in [4] shows part (2). �

The setting just described is too general to obtain useful duality results. Fortunately,
by corollaries 3.3.6 3.4.6 in [4] we can consider a special set of function norms ρ with
some nice additional properties without lost of generality respect to the class of generated
interpolation spaces. Hence, from now on we shall suppose always the function norm ρ
verifies

L1(dt) ∩ L1

(
1
t
, dt

)
⊂ Lρ ⊂ L1(dt) + L1

(
1
t
, dt

)
(2)

with continuous inclusion maps.
Then we define

Lρr := L1(dt) ∩L1

(
1
t
, dt

)Lρ
and we can consider the new function norm ρr defined by ρr(f) = ρ(f) if f ∈ Lρr and
ρr(f) =∞ if f /∈ Lρr .

The associated function norm to ρ is defined by

ρ∗(f) = sup
{∫ ∞

0

f(t)g(t)dt /ρ(g) ≤ 1, g ∈ L1(dt) ∩ L1

(
1
t
, dt

)}
.

It is easy to check that

(ρr)∗ = ρ∗. (3)

Concerning duality we have the following proposition.
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Proposition 4 (1)

(Lρr)′ = (Lρ
r

)′ = Lρ
∗

isometrically.
(2)

((λ0, λ1)ρr ,J)′ = (λ′0, λ
′
1)ρ∗,K

isometrically.

Proof. It is enough to use the space Φρ and the map H of proposition 3 and to apply
(3.7.2), (3.7.3) remark 3.7.3 and theorem 3.7.6 in [4]. �

2. The tensor norm gλ,ρ

Let λ := (λ0, λ1) be a couple of perfect sequence spaces (which will be fixed in the
sequel of the paper) such that

‖ei‖λ0 = ‖ei‖λ1 = 1 = ‖ei‖λ×0 = ‖ei‖λ×1

for every i ∈ N. We shall denote by λ× the couple of its α-duals: λ× := (λ×0 , λ
×
1 ) and

by λr the couple of the corresponding regular subspaces: λr := (λr0, λr1). Consequently,
given a function norm ρ we shall use the simplified notations

λρ,K := (λ0, λ1)ρ,K λrρ,J := (λr0, λ
r
1)ρ,J λ×ρ∗,K := (λ×0 , λ

×
1 )ρ∗,K .

Our goal in this section is to define tensor norms in the class of all Banach spaces by
means of an interpolation space of the couple λ defined with help of ρ.

Proposition 5 The equalities ‖ei‖λ×
ρ∗,K

= ρ∗(h) and ‖ei‖λr
ρr,J

= 1
ρ∗(h) hold.

Proof. For every couple of Banach sequence spaces (µ0, µ1) and every function norm
η let us denote by

J1η
µ0,µ1

: µ0 ∩ µ1 −→ (µ0, µ1)η,J , J2η
µ0,µ1

: (µ0, µ1)η,J −→ µ0 + µ1

the canonical inclusion maps.

Clearly h(t) := min(1, 1
t ) ∈ L∞(dt)∩L∞(t, dt). By proposition 4, (1), taking topolog-

ical duals in (2) we obtain h(t) ∈ Lρ∗ and by proposition 3, (1) the interpolation space
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λ×ρ∗,K is well defined. Since (λr0 ∩λr1)′ = (λr0)×+(λr1)× = λ×0 +λ×1 and using the notation

of proposition 3 we have

1 = |〈ei, ei〉| ≤ ‖ei‖λ×0 +λ×1
‖ei‖λr0∩λr1 = ‖ei‖λ×0 +λ×1

≤ ‖ei‖λ×0 = 1

and hence, by proposition 3

1 = ‖ei‖λ×0 +λ×1
= ‖I2ρ∗

λ×0 ,λ
×
1

(ei)‖ ≤ ‖I2ρ∗

λ×0 ,λ
×
1
‖ ‖ei‖λ×

ρ∗,K
=

= ‖I2ρ∗

λ×0 ,λ
×
1
‖ ‖I1ρ∗

λ×0 ,λ
×
1

(ei)‖ ≤ ‖I2ρ∗

λ×0 ,λ
×
1
‖ ‖I1ρ∗

λ×0 ,λ
×
1
‖ ‖ei‖λ×0 ∩λ×1 =

1
ρ∗(h)

ρ∗(h) = 1

and we get

‖ei‖λ×
ρ∗,K

=
1

‖I2ρ∗

λ×0 ,λ
×
1
‖

= ρ∗(h).

Now note that

(λr0 ∩ λr1)′ = λ×0 + λ×1 and (λr0 + λr1)′ = λ×0 ∩ λ×1 ,

since λr0 ∩ λr1 is dense in every λri , i = 0, 1. By proposition 2, (3) and proposition 4 we

have (λrρr ,J)′ = λ×ρ∗,K isometrically. Then we can easily check that

(J1ρr

λr0,λ
r
1
)′ = I2ρ∗

λ×0 ,λ
×
1

and (J2ρr

λr0,λ
r
1
)′ = I1ρ∗

λ×0 ,λ
×
1

(4)

and hence

‖J2ρr

λr0,λ
r
1
‖ = ‖(J2ρr

λr0,λ
r
1
)′‖ = ‖I1ρ∗

λ×0 ,λ
×
1
‖ (5)

and

‖J1ρr

λr0,λ
r
1
‖ = ‖(J1ρr

λr0,λ
r
1
)′‖ = ‖I2ρ∗

λ×0 ,λ
×
1
‖. (6)

Now by (5) and (6) we get

1 = ‖ei‖λr0+λr1
= ‖J2ρr

λr0,λ
r
1
(ei)‖λr0+λr1

≤

≤ ‖J2ρr

λr0,λ
r
1
‖ ‖ei‖λr

ρr,J
= ‖(I1ρ∗

λ×0 ,λ
×
1

)′‖ ‖ei‖λr
ρr,J

= ‖(I1ρ∗

λ×0 ,λ
×
1

)′‖ ‖J1ρr

λr0,λ
r
1
(ei)‖ ≤

176
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≤ ‖(I1ρ∗

λ×0 ,λ
×
1

)′‖ ‖J1ρr

λr0,λ
r
1
‖ ‖ei‖λr0∩λr1 = ‖I1ρ∗

λ×0 ,λ
×
1
‖ ‖I2ρ∗

λ×0 ,λ
×
1
‖ = 1

and as a consequence

‖ei‖λr
ρr,J

=
1

‖(I1ρ∗

λ×0 ,λ
×
1

)′‖
=

1
‖I1ρ∗

λ×0 ,λ
×
1
‖

=
1

ρ∗(h)
.

�
Given a sequence {xi}∞i=1 in a Banach space E we define

πλ,ρ,J((xi)∞i=1) := πλ,ρ,J((xi)) := ‖(‖xi‖E)∞i=1‖λr
ρr,J

and
ελ,ρ,K((xi)∞i=1) := ελ,ρ,K((xi)) := sup

‖x′‖E′≤1

∥∥(〈xi, x′〉)∞i=1

∥∥
λρ,K

.

Remark that we use ρr and the couple (λr0, λ
r
1) in the definition of πρ,λ,J((xi)∞i=1) but ρ

and the couple (λ0, λ1) in the definition of ελ,ρ,K((xi)∞i=1). Note also that to compute

ερ,λ,K((xi)) for a finite sequence {x′i}ni=1 of vectors in a dual space E′, by the σ(E′′, E′)-

density of the closed unit ball of E in the closed unit ball of E′′ it is enough to take

ελ,ρ,K((x′i)) := sup
‖x‖E≤1

∥∥(〈x′i, x〉)
n
i=1

∥∥
λρ,K

. (7)

If {xi}mi=n is a finite sequence in E, m ≥ n ≥ 1 we define

πλ,ρ,J((xi)mi=n) := πλ,ρ,J(0, 0, ..., 0, xn, xn+1, ..., xm, 0, 0, 0...)

and analogously for ελ,ρ,K((xi)mi=n).

Now we can define the desired tensor norm. Given Banach spaces E and F, for every
tensor

z =
k∑
i=1

ni∑
j=1

xij ⊗ yij ∈ E ⊗ F (8)

we define

gλ,ρ(z;E, F ) = inf
n∑
i=1

πλ,ρ,J
(
(xij)nij=1

)
ελ×,ρ∗,K

(
(yij)nij=1

)
, (9)

where the inf is taken over all representations of z of type (8).
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Proposition 6 gλ,ρ is a tensor norm in the class BAN .

Proof. The proof is straightforward by applying criterion 12.2 in [5]. We need only to
show that gλ,ρ(1⊗ 1;R,R) = 1. By definition of gλ,ρ and by proposition 5

gλ,ρ(1⊗ 1;R,R) ≤ ‖e1‖λr
ρr,J
‖‖e1‖λ×

ρ∗,K
= 1.

The reverse inequality is obtained by a standard method using proposition 4 (2) and

noticing that for every tensor
∑n

i=1 αi ⊗ βi ∈ R ⊗ R, the equality ελ×,ρ∗,K((αi)ni=1) =

‖(αi)ni=1‖λ×
ρ∗,K

holds. �

We need to have a characterization of the completion E⊗̂gλ,ρF.

Theorem 7 Every element z ∈ E⊗̂gλ,ρF can be represented as

z =
∞∑
i=1

∞∑
j=1

xij ⊗ yij, xij ∈ E, yij ∈ F ∀ i, j ∈ N (10)

where

∀ i ∈ N
(
(‖xij‖)∞j=1

)
∈ λrρr ,J (11)

and
∞∑
i=1

πλ,ρ,J
(
(xij)∞j=1

)
ελ×,ρ∗,K

(
(yij)∞j=1

)
<∞. (12)

Moreover,

gλ,ρ(z) := ‖z‖E⊗̂gλ,ρF = inf
∞∑
i=1

πλ,ρ,J
(
(xij)∞j=1

)
ελ×,ρ∗,K

(
(yij)∞j=1

)
where the is taken over all representations of z verifying (11) and (12).

Proof. 1) By corollary 3.6.3 and lemma 3.6.2 in [4], λr0 ∩ λr1 is dense in λrρr ,J and by

lemma 1 every element of λrρr ,J is the limit of its sections. Hence it is easy to check that

every series of type (10), (11) and (12) is convergent in E⊗̂gλ,ρF and

gλ,ρ

 ∞∑
i=1

∞∑
j=1

xij ⊗ yij

 ≤ ∞∑
i=1

πλ,ρ,J
(
(xij)∞j=1

)
ελ×,ρ∗,K

(
(yij)∞j=1

)
. (13)
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2) Conversely, suppose 0 6= z ∈ E⊗̂gλ,ρF. Choose a Cauchy sequence {zn}∞n=1 ⊂
E ⊗gλ,ρ F such that

lim
n→∞

gλ,ρ(zn − z) = 0.

Given ε > 0 there is a strictly increasing sequence {nk}∞k=0 ⊂ N such that

gλ,ρ(zn0 − z) < ε
gλ,ρ(z)

2
and ∀ k ≥ 1 gλ,ρ(znk − znk−1 ;E, F ) < ε

gλ,ρ(z)
2k+1

. (14)

Clearly

z = zn0 + lim
n→∞

n∑
k=1

(znk − znk−1 ) = zn0 +
∞∑
k=1

(znk − znk−1) ∈ E⊗̂gλ,ρF. (15)

We select representations

zn0 =
v0∑
i=1

u0i∑
j=1

x0
ij ⊗ y0

ij ∈ E ⊗gλ,ρ F (16)

and

∀ k ≥ 1 znk − znk−1 =
vk∑
i=1

uki∑
j=1

xkij ⊗ ykij ∈ E ⊗gλ,ρ F (17)

such that

v0∑
i=1

πλ,ρ,J
(
(x0
ij)

u0i
j=1

)
ελ×,ρ∗,K

(
(y0
ij)

u0i
j=1

)
≤ gλ,ρ(zn0 ;E, F ) +

ε

2
(18)

and

∀ k ≥ 1
vk∑
i=1

πλ,ρ,J
(
(xkij)

uki
j=1

)
ελ×,ρ∗,K

(
(ykij)

uki
j=1

)
≤ gλ,ρ

(
znk − znk−1 ;E, F

)
+

ε

2k+1
.

(19)

By (14),(15), (18) and (19) it is clear now that, with a suitable definition of vectors and
indices we can write

z =
∞∑
i=1

di∑
j=1

xij ⊗ yij

179
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in such a way that

∞∑
i=1

πλ,ρ,J

(
(xij)dij=1

)
ελ×,ρ∗,K

(
(yij)

di
j=1

)
≤

≤ gλ,ρ(zn0 ;E, F ) +
ε

2
+
∞∑
k=1

(
gλ,ρ

(
znk − znk−1 ;E, F

)
+

ε

2k+1

)
≤

≤ gλ,ρ(z) + gλ,ρ(zn0 − z) +
ε

2
+ (1 + gλ,ρ(z))

∞∑
k=0

ε

2k+1
≤

≤
(

1 +
ε

2

)
gλ,ρ(z) +

ε

2
+ ε (1 + gλ,ρ(z))

and hence, ε being arbitrary,

∞∑
i=1

πλ,ρ,J

(
(xij)dij=1

)
ελ×,ρ∗,K

(
(yij)

di
j=1

)
≤ gλ,ρ(z). �

Now we characterize the topological dual ofE⊗gλ,ρF . We need the following definiton.

Definition 8 A sequence {xn}∞n=1 in the Banach space E is said to be weakly to be
λρ,K -sumable (respectively, absolutely λρ,K -sumable) if ελ,ρ,K((xn)) <∞ (resp., if

π̄λ,ρ,K((xn)) := ‖(‖xn‖)∞n=1‖λρ,K <∞).

It is straightforward to see that the set λρ,K(E) of all weakly λρ,K-sumable sequences

in E (resp., the set λρ,K [E] of all absolutely λρ,K-sumable sequences in E) is a Banach

space when it is provided with the norm ελ,ρ,K (resp., with the norm πλ,ρ,K). Let us
denote λρ,K(E)r the set of elements (xi) ∈ λρ,K (E) which are the limit of its sections

(x1, x2, ..., xn, 0, 0, ...) in the topology of λρ,K(E) if n goes to ∞.

Definition 9 Let E and F be Banach spaces. A linear map T ∈ L(E, F ) is said
to be regularly λρ,K-absolutely summing if (T (xn))∞n=1 ∈ λρ,K [F ] for every (xn)∞n=1 ∈
λρ,K (E)r.
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It can be proved that the set Pλ,ρ,K(E, F ) of all regularly λρ,K -absolutely summing
maps from E into F endowed with the norm

Πλ,ρ,K(T ) = sup {π̄λ,ρ,K ((T (xi))∞i=1) / ελ,ρ,K ((xi)∞i=1) ≤ 1, (xi) ∈ λρ,K(E)r}

for every T ∈ Pλ,ρ,K(E, F ), is a Banach space. Now we have this theorem:

Theorem 10 If E and F are Banach spaces, (E ⊗gλ,ρ F )′ = Pλ×,ρ∗,K(F, E′).

Proof. Let T ∈ Pλ×,ρ∗,K(F, E′). We define ϕT ∈ (E ⊗gλ,ρ F )′ as

∀ z =
n∑
i=1

ni∑
j=1

xij ⊗ yij ∈ E ⊗gλ,p F 〈T, z〉 := ϕT (z) :=
n∑
i=1

ni∑
j=1

〈xij, T (yij)〉,

which is well defined and continuous since, by proposition 4, (2),

|〈ϕT , z〉| ≤
n∑
i=1

ni∑
j=1

‖xij‖ ‖T (yij)‖ ≤

≤
n∑
i=1

∥∥∥(‖xij‖)nij=1

∥∥∥
λr
ρr,J

∥∥∥(‖T (yij)‖)nij=1

∥∥∥
λ×
ρ∗,K

≤

≤ Πλ×,ρ∗,K(T )

(
n∑
i=1

πλρ,J (xij)
ni
j=1

)
ελ×,ρ∗,K

(
(yij)

ni
j=1

)
and taking the infimum over all representations of z

|〈ϕT , z〉| ≤ Πλ×,ρ∗,K(T ) gλ,ρ(z).

Conversely, given ϕ ∈ (E ⊗gλ,ρ F )′, we define T : F −→ E′ by

∀ y ∈ F, ∀ x ∈ E 〈T (y), x〉 = 〈ϕ, x⊗ y〉.

Let (yi) ∈ λ×ρ∗,K(F )r. Fix an element (ηi) ∈ (λ×ρ∗,K)r such that ‖(ηi)‖λ×
ρ∗,K
≤ 1 and ηi > 0

for every i ∈ N. Given ε > 0, for every i ∈ N we can choose ai ∈ E, ‖ai‖ ≤ 1 such that
〈ϕ, ai ⊗ yi〉 ≥ 0 and

‖T (yi)‖ ≤ 〈ϕ, ai ⊗ yi〉+ ε ηi.
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Moreover, by Lemma 1 there is n0 ∈ N such that

∀ n ≥ n0, ∀ h ∈ N ∪ {0}
∥∥(ηi)n+h

i=n

∥∥
λ×
ρ∗,K
≤ ε and ελ×,ρ∗,K

(
(yi)n+h

i=n

)
≤ ε. (20)

As (λrρr ,J)′ = λ×ρ∗,K , there is (δi) ∈ λrρr ,J such that ‖(δi)‖λr
ρr,J
≤ 1 and

∥∥∥(‖T (yi)‖)n+h
i=n

∥∥∥
λ×
ρ∗,K

≤
n+h∑
i=n

δi‖T (yi)‖+ ε ≤
〈
ϕ,

n+h∑
i=n

δi ai ⊗ yi

〉
+ ε

n+h∑
i=n

δi ηi + ε ≤

≤ ‖ϕ‖ gλ,ρ

(
n+h∑
i=n

δi ai ⊗ yi;E, F
)

+ ε
∥∥(δi)n+h

i=n

∥∥
λrρr,J

∥∥(ηi)n+h
i=n

∥∥
λ×
ρ∗,K

+ ε ≤

≤ ‖ϕ‖
∥∥∥(‖δi ai‖)n+h

i=n

∥∥∥
λr
ρr,J

ελ×,ρ∗,K
(
(yi)n+h

i=n

)
+ 2 ε ≤ ε (‖ϕ‖+ 2)

and hence
∑∞

i=1 ‖T (yi)‖ei is convergent in λ×ρ∗,K . As the convergence in λ×ρ∗,K implies

coordinatewise convergence we have necessarily

(‖T (yi)‖)∞i=1 =
∞∑
i=1

‖T (yi)‖ei ∈ (λ×ρ∗,K)r ⊂ λ×ρ∗,K .

Then T ∈ Pλ×,ρ∗,K(F, E′). A similar computation using theorem 7 shows ‖(‖T (yi)‖)∞i=1‖λ×
ρ∗,K

≤ ‖ϕ‖ ελ×,ρ∗,K((yi)∞i=1) and hence Πλ×,ρ∗,K(T ) ≤ ‖ϕ‖. �

3. λρ-nuclear operators

Let E, F ∈ BAN. An operator T ∈ L(E, F ) is said to be λρ-nuclear if there is

z =
∑∞

i=1

∑∞
j=1 x

′
ij ⊗ yij ∈ E′⊗̂gλ,ρF verifying (12) such that

∀ x ∈ E T (x) =
∞∑
i=1

∞∑
j=1

〈x′ij, x〉yij. (21)

Nλ,ρ(E, F ) will denote the set of all λρ-nuclear operators from E into F. It is easy to

see that, for every T ∈ Nλ,ρ(E, F )

Nλ,ρ(T ) := inf
{
gλ,ρ(z) / z ∈ E′⊗̂gλ,ρF and (21) holds

}
is a norm in Nλ,ρ(E, F ) and that (Nλ,ρ,Nλ,ρ) is a Banach operator ideal. Our aim in
this section is to get a characterization of λρ-nuclear operators. We have
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Theorem 11 An operator T ∈ L(E, F ) is λρ-nuclear if and only if T has a factorization

`∞[`∞]

E

A

-
? D

`1[(λr)ρr ,J ]

6
F

B

-
T

where D is a positive diagonal operator and A and B are continuous linear maps. More-
over,

Nλρ(T ) := inf {‖A‖ ‖D‖ ‖B‖} ,

where the inf is taken over all possible factorizations as above.

Proof. a) Suppose T ∈ Nλρ(E, F ). By theorem 7 and by definition of the norm in

Nλρ(E, F ) given ε > 0, there is a representation

z =
∞∑
i=1

∞∑
j=1

x′ij ⊗ yij (22)

and a sequence {ni}∞i=1 ⊂ N such that x′ij = 0 for all j > ni and ελ×
ρ∗,K

((yij)∞j=1) = 1 for

every i ∈ N,

∞∑
i=1

πλ,ρr ,J
(
(x′ij)

∞
j=1

)
ελ×,ρ∗,K ((yij)) =

∞∑
i=1

πλ,ρr ,J
(
(x′ij)

∞
j=1

)
< Nλρ(T ) + ε. (23)

We define A : E → `∞[`∞], as

∀x ∈ E A (x) =

(〈x′ij, x〉∥∥x′ij∥∥
)∞
j=1

∞
i=1

. (24)

Clearly

‖A‖ = sup
‖x‖≤1

sup
i∈N

sup
j∈N

|
〈
x′ij, x

〉
|

‖x′ij‖
≤ 1. (25)
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The linear map D : `∞[`∞]→ `1[λrρr ,J ] defined as

∀ (ηij) ∈ `∞[`∞] D ((ηij)) =
((
ηij
∥∥x′ij∥∥)∞j=1

)∞
i=1

verifies

‖D((ηij))‖ =
∞∑
i=1

∥∥(‖ηijxij‖)∞j=1

∥∥
λrρr,J

≤

≤ ‖((ηij))‖`∞[`∞]

∞∑
i=1

πλρr,J ((xij)∞j=1) ≤ ‖((ηij))‖`∞[`∞](Nλ(T ) + ε),

and by the properties of the chosen representation of z, we see that D ((ηij)) actually lies

in `1[λrρr ,J ]. Then D is well defined and ‖D‖ ≤ (Nλ(T ) + ε).

Finally, we define B : `1[λrρr ,J ]→ F as

∀ (βij) ∈ `1[λrρr ,J ] B ((βij)) =
∞∑
i=1

∞∑
j=1

βijyij .

We demostrate that this definition is meaningful. By the property of sectional convergence
in λrρr ,J (see the beginning of the proof the theorem 7) every series

∑∞
j=1 βijyij , i ∈ N is

convergent in F. Then given δ > 0, there is n in N such that for every h ∈ N∥∥∥∥∥∥
n+h∑
i=n+1

∞∑
j=1

βijyij

∥∥∥∥∥∥ = sup
‖y′‖F ′≤1

∣∣∣∣∣∣
〈

n+h∑
i=n+1

∞∑
j=1

βijyij , y
′

〉∣∣∣∣∣∣ ≤

≤ sup
‖y′‖F ′≤1

n+h∑
i=n+1

∥∥∥∥∥∥
∞∑
j=1

βijej

∥∥∥∥∥∥
λr
ρr,J

∥∥∥∥∥∥
∞∑
j=1

〈yij , y′〉ej

∥∥∥∥∥∥
λ×
ρ∗,K

≤

≤ ελ×,ρ∗,K
(
(yij)∞j=1

) n+h∑
i=n+1

∥∥∥∥∥∥
∞∑
j=1

βijej

∥∥∥∥∥∥
λrρr,J

≤ δ

since ((βij)) ∈ `1[λrρr ,J ]. Hence we obtain easily ‖D‖ ≤ 1. Clearly T = BDA and

‖B‖ ‖D‖ ‖A‖ ≤ Nλ,ρ(T ) + ε.
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b) Conversely, let T = BDA be a factorization as the given one in the diagram. For
every i, j ∈ N, eij ∈ (`∞[`∞])′. Define u′ij ∈ E′ := A′ (eij) ∈ E′ for each i, j ∈ N. Then

∀ x ∈ E A(x) =
(

(〈A(x), eij〉)∞j=1

)
=
(

(〈x, A′(eij)〉)∞j=1

)
=
((
〈x, u′ij〉

)∞
j=1

)
and A (x) =

(
(
〈
u′ij, x

〉)
).

On the other hand, let ((bij)) such that

∀((βij)) ∈ `∞[`∞] D ((βij)) = (bijβij) ∈ `1[λrρr ,J ].

As the double sequence u := ((uij)) with uij = 1 for every i, j ∈ N belongs to `∞[`∞],

for every i ∈ N we have (bij)∞j=1 ∈ λrρr ,J and

‖D‖ =
∞∑
i=1

‖(bij)∞j=1‖λrρr,J <∞. (26)

Finally, put x′ij := biju
′
ij ∈ E′ and yij := B(eij) for every i, j ∈ N. By proposition 4, (2)

B′ : F ′ −→ `∞[λ×ρ∗,K ]. Hence by (26),

∞∑
i=1

πλ,ρr,J
(
(x′ij)

∞
j=1

)
ελ×,ρ∗,K

(
(yij)∞j=1

)
=

=
∞∑
i=1

∥∥∥(‖biju′ij‖)∞j=1

∥∥∥
λrρr,J

sup
‖y′‖≤1

∥∥∥((〈B(eij), y′〉)∞j=1

)∥∥∥
λ×
ρ∗,K

≤

≤ ‖A‖
∞∑
i=1

∥∥∥(‖bij‖)∞j=1

∥∥∥
λrρr,J

sup
‖y′‖≤1

∥∥∥(〈eij, B′(y′)〉)∞j=1

∥∥∥
λ×
ρ∗,K

≤

≤ ‖A‖
∞∑
i=1

∥∥∥(‖bij‖)∞j=1

∥∥∥
λr
ρr,J

sup
‖y′‖≤1

‖B′‖ ‖y′‖ ≤ ‖A‖ ‖B‖ ‖D‖ (27)

and we obtain that
∑∞

i=1

∑∞
j=1 x

′
ij ⊗ yij ∈ E⊗̂gλ,ρF. On the other hand, by continuity of

the involved maps, we easily obtain

∀ x ∈ E T (x) = BDA (x) =

〈 ∞∑
i=1

∞∑
j=1

x′ij ⊗ yij , x
〉

and hence T ∈ Nλ,ρ(E, F ). The formula for Nλ,ρ(T ) follows from part a) and (29). �
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4. λρ−integral operators

According to the general theory of tensor norms and operator ideals (see [5]) we have
the following definition.

Definition 12 Given Banach spaces E and F an operator T ∈ L(E, F ) is said to be a λρ-

integral operator if it belongs to the maximal normed operator ideal (Iλ,ρ, Iλ,ρ) associated
with the tensor norm gλ,ρ.

A first result in order to get a complete characterization of λρ-integral operators is
provided by this theorem:

Theorem 13 Let H be a closed sublattice of a space L∞(Ω, µ). Let T : H −→ `1[λrρr,J ]

be a positive operator. Then T is λρ-integral.

Proof. Let I1 : `1[λrρr ,J ] −→ (`1[λrρr ,J ])′′ be the canonical inclusion map. By the

representation theorem of maximal operator ideals (theorem 17.5 in [5]) we only need

to show that I1T is λρ-integral from H into (`1[λrρr,J ])′′. By proposition 4, (2) (λrρr ,J)′ =

λ×ρ∗,K . Then, (λ×ρ∗,K)×× ⊂ (λrρr ,J)× ⊂ (λrρr ,J)′ = λ×ρ∗,K . Hence λ×ρ∗,K is perfect and by

proposition 2, (2) we have (`1[λrρr,J ])′ = `∞[λ×ρ∗,K ] and

(c0[(λ×ρ∗,K)r ])′ = `1[(λ×ρ∗,K)×] ⊂ `1[(λrρr ,J)′′] ⊂ (`1[λrρr ,J ])′′.

Let I2 : `1[(λ×ρ∗,K)×] −→ (`1[λrρr ,J ])′′ and I3 : `1[λrρr ,J ] −→ `1[(λ×ρ∗,K)×] be the in-

clusion maps. Clearly I1T = I2I3T and hence it is enough to prove that I3T ∈
Iλ,ρ(H, `1[(λ×ρ∗,K)×]). Once again by the representation theorem of maximal operator

ideals we only need to show that I3T ∈ (H ⊗g′λ,ρ c0[(λ×ρ∗,K)r ])′.

Every x ∈ c0[(λ×ρ∗,K)r ] is a scalar double sequence (xij)∞i,j=1 such that

lim
i→∞

‖(xij)∞j=1‖(λ×
ρ∗,K)r = 0

and
‖x‖ = sup

i∈N
‖(xij)∞j=1‖(λ×

ρ∗,K)r .

By lemma 1 the linear span T of the set {eij , i ∈ N, j ∈ N} is dense in c0[(λ×ρ∗,K)r]. Hence

by density lemma (see [5]), our theorem will be proved if we show that I3T ∈ (H⊗g′
λ,ρ
T )′.
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Let

z =
n∑
i=1

fi ⊗ xi ∈ H ⊗ T .

Given ε > 0 there are finite dimensional subspaces M ⊂ H,N ⊂ T such that z ∈M ⊗N
and

g′λ,ρ(z;M,N) ≤ g′λ,ρ(z;H, T ) + ε.

Let {f j}kj=1 and {yj := (ηjnm)}hj=1 be bases of M and N , respectively. Let s ∈ N
be such that ηjnm = 0 for every j = 1, 2, ..., h and every n > s and m > s. Let us

Qvt : `1[λrρr ,J ] −→ R (resp. Pvt : `1[(λ×ρ∗,K)×] −→ R) denote the canonical projection

onto the (v, t)-axis of `1[λrρr ,J ] (resp. `1[(λ×ρ∗,K)×]), v, t ∈ N. Then, if

f =
k∑
i=1

αif i ∈M y x =
h∑
j=1

βjyj ∈ N

we have

〈f ⊗ x, I3T 〉 =
k∑
i=1

h∑
j=1

αiβj〈f i ⊗ yj, I3T 〉 =

=
k∑
i=1

h∑
j=1

αiβj〈I3T (f i),y
j〉 =

k∑
i=1

h∑
j=1

αiβj

s∑
n=1

s∑
m=1

ηjnm〈I3T (f i), enm〉 =

=
k∑
i=1

h∑
j=1

αiβj

s∑
n=1

s∑
m=1

ηjnmPnmI3T (f i) =

=

〈
s∑

n=1

s∑
m=1

PnmI3T ⊗ enm,

(
k∑
i=1

αif i

)
⊗

h∑
j=1

βj yj
〉

=

=

〈
s∑

n=1

s∑
m=1

PnmI3T ⊗ enm, f ⊗ x

〉
= 〈U, f ⊗ x〉

where U is the tensor

U :=
s∑

n=1

s∑
m=1

PnmI3T ⊗ enm ∈ H ′ ⊗ `1[λrρr ,J ].
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The last result is extended by linearity and we get

∀z ∈M ⊗N 〈z, I3T 〉 = 〈U, z〉.

On the other hand, given δ > 0, for every n, m = 1, 2, ..., s there is gnm ∈ H ⊂
L∞(Ω, µ) such that ‖gnm‖ ≤ 1 y ‖PnmI3T‖H′ ≤ |PnmI3T (gnm)| + δ. Putting g :=
max{|gnm| / n,m = 1, 2, ..., r}, as H is a sublattice of L∞(Ω, µ) and I3T is a positive
operator, we have g ∈ H , ‖g‖H ≤ 1 and

πρ,λ,J ((PnmI3T )sm=1)) = ‖(‖PnmI3T‖H′)sm=1‖λrρr,J ≤

≤ ‖(|PnmI3T (gnm)|)sm=1‖λrρr,J + δ

∥∥∥∥∥
s∑

m=1

em

∥∥∥∥∥
λrρr,J

≤

≤ ‖(PnmI3T (g))sm=1‖λr
ρr,J

+ δ

∥∥∥∥∥
s∑

m=1

em

∥∥∥∥∥
λr
ρr,J

=

=

∥∥∥∥∥
s∑

m=1

QnmT (g)enm

∥∥∥∥∥
λrρr,J

+ δ

∥∥∥∥∥
s∑

m=1

em

∥∥∥∥∥
λrρr,J

. (28)

Moreover, by proposition 4, (2) and (7), for every 1 ≤ n ≤ s

ερ∗,λ×,K((enm)sm=1) =

= sup
{
‖(〈enm, ((vmn))〉)sm=1‖λ×

ρ∗,K
/ ‖(vnm)‖`∞[λ×

ρ∗,K] ≤ 1
}

=

= sup


∥∥∥∥∥

s∑
m=1

vnmenm

∥∥∥∥∥
λ×
ρ∗,K

/ ‖(vnm)‖`∞[λ×
ρ∗,K] ≤ 1

 ≤ 1. (29)

Hence, by definition of gλ,ρ and using (29) y (28) we get

|〈z, I3T 〉| = |〈U, z〉| ≤ g′λ,ρ(z;M,N) gλ,ρ(U) ≤

≤ (g′λ,ρ(z;H, T ) + ε)
s∑

n=1

πρ,λ,J ((PnmI3T )sm=1) ερ∗,λ×,K ((enm)sm=1) ≤
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CASTAÑEDA, LÓPEZ MOLINA, RIVERA

≤ (g′λ,ρ(z;H, T ) + ε)

 s∑
n=1

∥∥∥∥∥
s∑

m=1

QnmT (g)enm

∥∥∥∥∥
λr
ρr,J

+ δ

s∑
n=1

∥∥∥∥∥
s∑

m=1

em

∥∥∥∥∥
λr
ρr,J

 ≤

≤ (g′λ(z;H, T ) + ε)

 sup
‖w‖H≤1

s∑
n=1

∥∥∥∥∥
s∑

m=1

QnmT (w)enm

∥∥∥∥∥
λr
ρr,J

+ δ
s∑

n=1

∥∥∥∥∥
s∑

m=1

em

∥∥∥∥∥
λr
ρr,J

 ≤

≤ (g′λ,ρ(z;H, T ) + ε)

‖T‖+ δ

s∑
n=1

∥∥∥∥∥
s∑

m=1

em

∥∥∥∥∥
λr
ρr,J

 .

But δ > 0 being arbitrarily and independent of the subspaces M and N , we obtain

|〈z, I3T 〉| = |〈U, z〉| ≤ (g′λ,ρ(z;H, T ) + ε)‖T‖.

Finally, ε > 0 being arbitrary, we have

|〈z, I3T 〉| = |〈U, z〉| ≤ g′λ,ρ(z;H, T )‖T‖. �

Definition 14 A Banach lattice X is said to be lattice finitely representable in a lattice
X if, for every finite dimensional sublattice M of X and for every ε > 0, there are a
finite dimensional sublattice N of X and a lattice isomorphism J : M → N such that
‖J‖‖J−1‖ ≤ 1 + ε.

A deep result of Conroy and Moore (see [3] for example) asserts that the bidual
lattice E′′ of every Banach lattice E is lattice finitely representable in E, a result which
can be looked as the lattice version of the principle of local reflexivity. On the other
hand finite representability is closely related to ultraproducts since a Banach lattice E is
lattice finitely representable in a Banach lattice F if and only if E is order isometric to
a sublattice of an ultrapower (F )U (see proposition 4.5 in [16] for instance).

Now we shall need two auxiliary results. First one is an extension of a theorem of
Hollstein [8] which has been proved in [12] and concerns to arbitrary tensor products

with L∞,δ spaces of Lindenstrauss. We recall that given 1 ≤ δ <∞, a Banach space E is

said to be an L∞,δ-space if for every finite dimensional subspace P ⊂ E and ε > 0 there
is a finite dimensional subspace Q, P ⊂ Q ⊂ E such that the Banach-Mazur distance

d(Q, `∞dim(Q)) < δ. It is known that the spaces L∞(µ) are L∞,δ-spaces for every δ > 1.

Then we have the following.
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Proposition 15 Let E be an L∞,δ-space, F a Banach space and H a closed subspace of
F . For every finitely generated tensor norm α we have the isomorphism

(E ⊗α F )/(E ⊗H) ' E ⊗α F/H

and for every v ∈ E ⊗α F/H there is u ∈ E ⊗ F such that (IE ⊗ KH)(u) = v and
α(u;E, F ) ≤ α(v;E, F/H) (IE denotes the identity map on E and KH : F → F/H

denotes the canonical quotient map).

The second result is a sort of approximation of finite dimensional vector subspaces of
a Banach lattice G by finite dimensional sublattices:

Lemma 16 (see [16], Lemma 4.4) Let G be an order complete Banach lattice and let
X ⊂ G be a finite dimensional Banach subspace of G. Then for every ε > 0 there is a
finite dimensional Banach sublattice Y of G and an operator A : X −→ Y such that

∀ x ∈ X ‖A(x)− x‖ ≤ ε ‖x‖.

In particular, ‖A‖ ≤ 1 + ε.

Now theorem 13 can be substantially generalized in the following way:

Theorem 17 Let H be a closed sublattice of a space L∞(µ). Let X be a Banach lattice

which is lattice finitely representable in the Bochner lattice `1[λrρr,J ]. Then, every lattice

homomorphism T : H −→ X is λρ-integral.

Proof. By the representation theorem of maximal ideals (theorem 17.5 in [5]) it is
enough to see that T ∈ (H ⊗g′λ,ρ X

′)′. Fix a representation

z =
n∑
i=1

hi ⊗ x′i

of an element z ∈ H ⊗X′. Given ε > 0 we choose M ∈ FIN(H) and N ∈ FIN(X′) such
that z ∈M ⊗N and

g′λ,ρ(z;M,N) ≤ g′λ,ρ(z;H,X′) + ε. (30)

We identify M with JM (M) ⊂ JH(H) ⊂ H ′′. H ′′ is order isometric to some space
L∞(ν), H being an abstract M -space. Given δ > 0 since H ′′ is order complete, by lemma
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16, there is a finite dimensional sublattice H1 ⊂ H ′′ and a linear operator A : M −→ H1

such that

∀ h ∈ M ‖A(h)− h‖ ≤ δ ‖h‖ (31)

and

‖A‖ ≤ 1 + δ. (32)

If T ′′ : H ′′ −→ X′′ is the bitransposed map of T we have

|〈T, z〉| =
∣∣∣∣∣
n∑
i=1

〈T (hi), x′i〉
∣∣∣∣∣ ≤

≤
∣∣∣∣∣
n∑
i=1

〈T ′′(hi −A(hi)), x′i〉
∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

〈T ′′A(hi), x′i〉
∣∣∣∣∣ ≤

≤ ‖T ′′‖
n∑
i=1

‖hi −A(hi)‖ ‖x′i‖+

∣∣∣∣∣
n∑
i=1

〈T ′′A(hi), x′i〉
∣∣∣∣∣ . (33)

Using Conroy and Moore’s theorem, H ′′ is lattice finitely representable in H. Then
there is a sublattice H2 ⊂ H and a lattice isomorphism B : H1 −→ H2 such that
‖B‖ ‖B−1‖ ≤ 1 + δ. By a result of Ando (see for instance theorem 1.4.19 in [15]) T ′′ is a

lattice homomorphism also. Hence X1 := T ′′B−1(H2) = T ′′(H1) is a finite dimensional
sublattice of X′′. Once again by the theorem of Conroy and Moore, there exists a finite
dimensional sublattice X2 ⊂ X and a lattice isomorphism C : X1 −→ X2 such that
‖C‖ ‖C−1‖ ≤ 1 + δ. By our hypothesis, there is also a finite dimensional sublattice

Z ⊂ `1[λrρr ,J ] and a lattice isomorphism J : X2 −→ Z such that ‖J‖ ‖J−1‖ ≤ 1 + δ.

Define R := JCT ′′B−1 : H1 −→ Z. Let VZ : Z −→ `1[λrρr ,J ] be the canonical

inclusion, hi := BA(hi) for every i = 1, 2, ..., n and K : X′′′ −→ X′′′/T ′′(H1)⊥ =
(T ′′(H1))′ = X′1 the canonical quotient map. We have〈

n∑
i=1

T ′′A(hi), x′i

〉
=

n∑
i=1

〈T ′′B−1, BA(hi) ⊗ x′i〉 =

=
n∑
i=1

〈T ′′B−1(hi), x′i〉 =
n∑
i=1

〈(JC)−1(JC)T ′′B−1(hi), x′i〉 =

191
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=
n∑
i=1

〈(JC)−1R(hi), K(x′i)〉 =
n∑
i=1

〈R(hi), ((JC)−1)′K(x′i)〉 =

=

〈
R,

n∑
i=1

hi ⊗ ((JC)−1)′K(x′i)

〉
. (34)

By theorem 13, the map VZR : H1 −→ `1[λrρr ,J ] is λρ-integral and its integral norm

verifies the equality settled in this theorem, all the involved operators in its definition

being positive. Hence, if Q = V ′Z : (`1[λrρr ,J ])′ −→ Z′ = (`1[λrρr ,J ])′/Z⊥ is the canonical

quotient map and zi ∈ (`1[λrρr ,J ])′ are elements such that Q(zi) = ((JC)−1)′K(x′i) and

the inequality of proposition 15 holds for every i = 1, 2, ..., n, by (34) we have〈
n∑
i=1

T ′′A(hi), x′i

〉
=

n∑
i=1

〈R(hi), Q(zi)〉 =
n∑
i=1

〈VZR(hi), zi〉 =

=

〈
VZR,

n∑
i=1

hi ⊗ zi

〉
≤ ‖VZR‖ g′λ,ρ

(
n∑
i=1

hi ⊗ zi;H2, (`1[λrρr ,J ])′
)
. (35)

As H2 is an abstract M−space, the dual H ′2 is an abstract L−space and by the
classical Bonhenblust-Nakano-Kakutani’s theorem and proposition II.5.3 in [11], H2 is an

L∞,1+δ-space. Using now proposition 15 and the metric property of mappings, by (35),
(32) and (30) we obtain〈

n∑
i=1

T ′′A(hi), x′i

〉
≤ (1 + δ)‖R‖ g′λ,ρ

(
n∑
i=1

hi ⊗Q(zi);H2, Z
′

)
≤

≤ (1 + δ)‖J‖ ‖T‖ ‖C‖ ‖B−1‖ g′λ,ρ

(
n∑
i=1

hi ⊗ ((JC)−1)′K(x′i);H2, Z
′

)
≤

≤ (1 + δ)‖J‖ ‖T‖ ‖C‖ ‖B−1‖ ‖(JC)−1‖ ‖K‖ g′λ,ρ

(
n∑
i=1

hi ⊗ x′i;H2, N

)
≤

≤ (1 + δ)3‖T‖ ‖B−1‖ g′λ,ρ

(
n∑
i=1

BA(hi) ⊗ x′i;H2, N

)
≤
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≤ (1 + δ)3‖T‖ ‖B−1‖ ‖B‖ ‖A‖ g′λ,ρ (z;M,N) ≤ (1 + δ)5‖T‖
(
g′λ,ρ(z;H,X

′) + ε
)
. (36)

Turning to (33), using (31) finally we get

|〈T, z〉| ≤ δ ‖T‖
n∑
i=1

‖hi‖ ‖x′i‖ + (1 + δ)5 ‖T‖
(
g′λ,ρ(z;H,X

′) + ε)
)
.

Since δ and ε are arbitrary we obtain

|〈T, z〉| ≤ ‖T‖ g′λ,ρ(z;H,X′)

as desired. �

Theorem 18 Let E, F ∈ BAN and T ∈ L(E, F ). Then T is λρ-integral if and only if

there is a measure space (Ω,A, µ) such that JFT can be factorized as

L∞(Ω, µ)

E

A

?

-

D - X

6
F ′′F

JF

B

-
T

where X is a lattice finitely representable in `1[λrρr ,J ] Banach lattice and D is a lattice

homomorphism. Moreover,

Iλ,ρ(T ) = inf{‖B‖ ‖D‖ ‖A‖}

over all factorizations of that type.

Proof. The sufficient condition follows from theorem 17 and elementary properties
of operator ideals. Hence

Igλ,ρ(T ) = sup
g′λ,ρ(z;E,F ′)≤1

|〈T, z〉| = sup
g′λ,ρ(z;E,F ′)≤1

|〈JFT, z〉| =

= Igλ,ρ(JFT ) ≤ ‖B‖ ‖D‖ ‖A‖.

To prove the necessary condition we define

D = {(M,N) / M ∈ FIN(E), N ∈ FIN(F ′)}
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and the partial order in D given by (M1, N1) ≤ (M2, N2) ⇐⇒ M1 ⊂ M2 and N1 ⊂ N2.

The family

H = {X (M,N) /(M,N) ∈ D} ,

where

∀ (M0, N0) ∈ D X (M0, N0) = {(M,N) ∈ D / (M0, N0) ≤ (M,N)} ,

is a filter basis in D. Let U be an ultrafilter finer than H.
Let T ∈ Iλ,ρ(E, F ). By the theorem of representation of maximal operator ideals,

φ = JFT ∈ (E ⊗g′λ,ρ F
′)′ and hence for every (M,N) ∈ D and every z ∈ M ⊗ N we

have g′λ,ρ(z;E, F
′) ≤ g′λ,ρ(z;M,N). This means that the restriction φ|M⊗N to M ⊗ N

of φ belongs to (M ⊗g′
λ,ρ

N)′ = M ′ ⊗g′
λ,ρ

N ′ and hence it is a λρ-nuclear operator that

furthermore, g′λ,ρ being a finitely generated tensor norm, verifies

Nλ,ρ(φ|M⊗N ) = Iλ,ρ(φ|M⊗N ) ≤ Iλ,ρ(φ).

By theorem 11, given ε > 0 there is a factorization

`∞[`∞]

M

AMN

-
? DMN

`1[λrρr ,J ]

6
N

BMN

-
φ|M⊗N

such that ‖AMN‖ = 1, ‖BMN‖ = 1 and

‖BMN‖‖DMN‖‖AMN‖ = ‖DMN‖ ≤ Nλ,ρ(φ|M⊗N)(1 + ε) =

= Igλ,ρ (φ|M⊗N )(1 + ε) ≤ Igλ,ρ(φ)(1 + ε). (37)

Put MMN := M and NMN := N for every (M,N) ∈ D. Let GE : E −→ (MMN )U
and GF ′ : F ′ → (NMN )U be the natural isometric embeddings into the corresponding
ultraproducts, defined by GE(x) = (zMN )U where zMN = x if x ∈ M and zMN = 0 in
other case and analogously for GF ′ . We form the ultraproduct of spaces and operators
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given in the previous diagram. If JU : (N ′MN )U −→ ((NMN )U )′ is the natural inclusion,
we get the diagram

JFT
-E F ′′

GE (GF ′ )′

?

6

(`∞[`∞])U

(MMN )U

A

-
?

D
(`1[(λrρr ,J ])U

6

((NMN )U )′

B

-(φ|M⊗N)U
(N ′MN )U -JU

where we have defined A := (AMN )U , D := (DMN)U and B = (BMN )U .
As H := (`∞[`∞])U is an abstract M -space, its bidual H ′′ is a lattice order isometric

to some space L∞(Ω, µ). Let P : F ′′′′ −→ F ′′ be canonical projection map. Clearly
‖P ‖ ≤ 1 and PJF ′′JFT = JFT. Hence, if A1 := JHAGE, B1 := P (GF ′)′′′(JU )′′B′′ and

Z := (`1[λrρr,J ])U we get the commutative diagram

L∞(Ω, µ)

E

A1

-
?

D′′
Z′′

6
F ′′

B1

-
JFT

Since Z is lattice finitely representable in `1[λrρr ,J ] by Conroy Moore’s theorem, Z′′

is lattice finitely representable in `1[λrρr ,J ] also. Moreover D is a positive and preserving

disjointness linear map, (remember the comments given in section 1 when the order in
an ultraproduct of Banach lattices was defined). Then D is a lattice homomorphism
(theorem 1.3.11 in [15]). By a result of Ando (thoerem 1.4.19 in [15]) D′′ is a lattice
homomorphism also and so we get the desired factorization. Furthermore

‖A1‖ ‖D′′‖ ‖B1‖ ≤ ‖GE‖ ‖A‖ ‖D‖ ‖(GF ′)′‖ ‖B‖ =
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= lim
(M,N),U

‖BMN‖ ‖DMN‖ ‖AMN‖ ≤ Igλρ (φ)(1 + ε)

and ε being arbitrary, having in mind the result of the sufficient condition in the present
theorem, we get the desired formula to compute Igλρ (φ). �
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3300 Medelĺın. Colombia.
e.mail: gcasta@sigma.eafit.edu.co
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