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On Non-Existence of Korovkin’s Theorem in the

Space of Lp−locally Integrable Functions

A. D. Gadjiev, E. İbikli

Abstract

It is shown that a Korovkin-type theorem does not hold in the weighted space

of Lp−locally integrable functions on the whole real axis.
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1. The problem of convergence of sequences of linear positive operators in the space of

functions, which are continuous on a finite interval [a, b] and bounded on the whole real

axis, was systematically investigated in Korovkin’s monograph [1] . Many generalizations

and extensions of Korovkin’s classical theorem are known (we refer to monograph [2]

for a bibliography). In particular, it was shown in papers [3] and [4]∗ that Korovkin’s

theorem does not hold in the weighted spaces of functions f,which are continuous on the

whole axis and satisfy the inequality |f (x)| ≤ Mfρ (x), where Mf is a positive constant

depending on the function f and ρ (x) ≥ 1 is a continuous and increasing function on

(−∞,∞) . This space is a linear normed space endowed with the norm

‖f‖ρ = sup
−∞<x<∞

|f (x)|
ρ (x)

.

The aim of this paper is to investigate the existence of Korovkin-type theorems in

the space of Lp−locally integrable functions. Note that the problem of convergence of
AMS Classification: 41A36, 41A25
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sequences of linear positive operators, acting from Lp(a, b) to Lp(a, b), has been studied

by many authors. We refer the reader to the papers [5]− [10] . Note that all results

mentioned are restricted to the case of the finite interval [a, b] .

We will consider the problem of convergence of sequences of linear positive operators

in the space of locally integrable functions on the whole real axis.

Let w(x) = 1 + x2 , −∞ < x <∞, and denote by Lp,w(loc) the space of measurable

functions f satisfying the inequality x+ 1
2∫

x− 1
2

|f(t)|p dt


1
p

≤Mfw(x) , −∞ < x <∞,

where p ≥ 1 and Mf is a constant depending on the function f . Setting

‖f‖p,w = sup
−∞<x<∞

(
x+ 1

2∫
x− 1

2

|f(t)|p dt
) 1
p

w(x)
,

we see that Lp,w(loc) is a linear normed space with this norm.

We will deal with the following problem.

Let Ln, n = 1, 2, ..., be a sequence of linear positive operators, acting from Lp,w(loc)

to Lp,w(loc) and satisfying the following two conditions:

i) The norms of these operators are uniformly bounded;

ii) For m = 0, 1, 2

lim
n→∞

‖Ln(tm; x)− xm‖p,w = 0. (1.1)

Is it possible to assert then that for each function f ∈ Lp,w(loc)

lim
n→∞

‖Lnf − f‖p,w = 0 ?

An affirmative solution to this problem would lead to a Korovkin-type theorem in

Lp,w(loc).

However, we are going to show that the answer is negative.
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2. Main result

Our main result is the following.

Theorem 1. There exists a sequence of linear positive operators Ln, acting from

Lp,w(loc) to Lp,w(loc) and satisfying conditions i), ii), and there exists a function f∗ ∈
Lp,w(loc) for which

lim
n→∞

‖Lnf∗ − f∗‖p,w ≥ 21− 1
p .

Proof. We define a sequence of operators Ln by the formulas

Ln(f, x) =


x2

(x+ 1
2 )2 f(x + 1

2 ), if (n− 1
2 ) ≤ x ≤ n

f(x), otherwise.

Obviously that Ln are linear positive operators, acting from Lp,w(loc) to Lp,w(loc) and

‖Lnf‖p,w ≤ 4 ‖f‖p,w .

Since

‖Ln (ym, t)− tm‖p,w ≤ sup
(n−1

2 )≤x≤n

(
x+ 1

2

)m
1 + x2

≤
(
n + 1

2

)m
1 +

(
n− 1

2

)2
for m = 0, 1 and Ln

(
t2, x

)
= x2, conditions (i) holds.

Consider the function

f∗(x) =


x2, if x ∈

∞⋃
k=1

[
k − 1

2
, k
)

−x2, if x ∈
∞⋃
k=0

(
k, k + 1

2

]
0 , if x < 0

which obviously belongs to Lp,w(loc). For n− 1
2 ≤ y ≤ n obviously f∗(y) = y2 , f∗(y+ 1

2 ) =

−(y + 1
2 )2 and therefore
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‖Lnf∗ − f∗‖p,w ≥ 1
w(n)

 n∫
n− 1

2

∣∣∣∣ y2

(y + 1
2
)2
f∗(y +

1
2

)− f∗(y)
∣∣∣∣p dy


1
p

=
1

w(n)

 n∫
n− 1

2

∣∣∣∣ y2

(y + 1
2 )2

(y +
1
2

)2 + y2

∣∣∣∣p dy


1
p

≥ 21− 1
p

(
n− 1

2

)2
1 + n2

by the definition of w(x). The theorem is proved.

3. In this section we will give an affirmative statement on approximation in

Lp,w(loc).

First of all, let wα(x) = 1 + |x|2+α
, α > 0, and let Lp,wα(loc) be the space of

measurable functions f with the finite norm

‖f‖p,wα = sup
−∞<x<∞

1
wα (x)

 x+ 1
2∫

x− 1
2

|f(t)|p dt


1
p

.

Obviously, for any numbers a, b (a < b)

Lp (−∞,∞) ⊂ Lp,wα (loc) ⊂ Lp,w (loc) ⊂ Lp (a, b) .

Let also CB (−∞,∞) be the space of all continuous and bounded functions f on the

whole real axis with the norm

‖f‖CB = sup
−∞<x<∞

|f(x)| .
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Lemma 1. Let f ∈Lp,w(loc). Then given ε>0 there exists a function g∈CB (−∞,∞)

such that

‖f − g‖p,wα < ε

for any α > 0.

Proof. Using the inequality

sup
|x|≤x0

1
wα (x)

 x+ 1
2∫

x− 1
2

|f(t)|p dt


1
p

≤


(x0+ 1

2 )∫
−(x0+ 1

2 )

|f(t)|p dt


1
p

,

and the well known Lusin Theorem, we can find a continuous function g1 such that

sup
|x|≤x0

1
wα (x)

 x+ 1
2∫

x−1
2

|f(t) − g1 (t)|p dt


1
p

< ε (3.2)

holds for any ε > 0.

Since by the definition of Lp,w(loc)

sup
|x|>x0

1
wα (x)

 x+ 1
2∫

x− 1
2

|f(t)|p dt


1
p

≤Mf sup
|x|>x0

w (x)
wα (x)

, (3.3)

we can choose x0 > 0 so large that the inequality

sup
|x|>x0

w (x)
wα (x)

< ε (3.4)

holds for any ε > 0.

Therefore, denoting by g a continuous and bounded function on the whole real axis,

which coincides with g1 on
(
−x0 − 1

2 , x0 + 1
2

)
, we complete the proof by using (3.2),

(3.3) and (3.4).

Lemma 2. Let Ln be a sequence of linear positive operators acting from Lp,w(loc)

to Lp,w(loc) and satisfying conditions (i) and (ii). Then for any f ∈ CB (−∞,∞)

lim
n→∞

‖Lnf − f‖p,wα = 0 .
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Proof. We have

lim
n→∞

‖Lnf − f‖p,wα ≤ ‖Ln (|f(y) − f (t)| , t)‖p,wα + ‖ f ‖CB ‖Ln1− 1‖p,w

and the last term tends to zero by (1.1).

Consider the first term on the right hand side. Since f is continuous and bounded we

can write the inequality [1] as

|f(y) − f (t)| < ε +
2 ‖ f ‖CB

δ2
(y − t)2

and for x0 satisfying (3.4) the following inequality holds:

‖Ln (|f(y) − f (t)| , t)‖p,wα ≤ (2 ‖ f ‖CB + 1) ‖Ln1‖p,w ε

+
2 ‖ f ‖CB

δ2
sup
|x|≤x0

1
w (x)

 x+ 1
2∫

x− 1
2

Lpn

(
(y − t)2

, t
)
dt


1
p

It remains to note that by condition (i) the last term tends to zero as n → ∞ and the

‖Ln1‖p,w are uniformly bounded.

Theorem 2. Let Ln be a sequence of linear positive operators acting from Lp,w(loc)

to Lp,w(loc) as well as from Lp,wα (loc) to Lp,wα (loc) and satisfying conditions (i) and (ii).

Then for any function f ∈ Lp,w(loc)

lim
n→∞

‖Lnf − f‖p,wα = 0

and the result fails to be true for α = 0.

Proof. Using Lemma 1 and the uniform boundedness of ‖Ln‖ we have ‖Ln‖ ≤ M

and

‖Lnf − f‖p,wα ≤ ‖Ln (f − g, t)‖p,wα + ‖Lng − g‖p,wα + ‖f − g‖p,wα
≤ (M + 1) ‖f − g‖p,wα + ‖Lng − g‖p,wα .

The proof now follows from the Lemma 1 and Lemma 2. The last assertion of the

theorem follows from Theorem 1.
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