Turk J Math 26 (2002) , 215 – 227. © TÜBİTAK

Asymptotic Formulas for the Eigenvalues of the Schrodinger Operator

S. Atılgan, S. Karakılıç, O. A. Veliev

Abstract

In this paper, we obtain asymptotic formulas for the eigenvalues of the ddimensional Schrodinger operator

$$L = -\Delta + q(x)$$

in d-dimensional parallelepiped F with Dirichlet and Neumann boundary conditions.

Let $\Omega = \{m_1w_1 + m_2w_2 + ... + m_dw_d : m_i \in \mathbb{Z}, i = 1, 2, ..., d\}$ be a lattice in \mathbb{R}^d with the reduced orthonormal basis

$$w_1 = (a_1, 0, ..., 0), w_2 = (0, a_2, 0, ..., 0), ..., w_d = (0, ..., 0, a_d)$$

and $\Gamma = \{m_1\gamma_1 + m_2\gamma_2 + ... + m_d\gamma_d : m_i \in Z, i = 1, 2, ..., d\}$ be the dual lattice of Ω , where the vectors $\{\gamma_i\}_{i=1}^d$ are biorthoganal to the vectors $\{w_i\}_{i=1}^d$. Denote by $F \equiv [0, a_1) \times [0, a_2) \times ... \times [0, a_d)$ the fundamental domain \mathbb{R}^d/Ω of the lattice Ω .

We consider the Schrödinger operators $L_D(q(x))$ and $L_N(q(x))$, defined by the differential expression

$$Lu = -\Delta u + q(x)u \tag{1}$$

in $L_2(F)$ with the Dirichlet boundary condition

$$u|_{\partial F} = 0 \tag{2}$$

0	1	5
4	т	J

and the Neumann boundary condition

$$\frac{\partial u}{\partial n}|_{\partial F} = 0,\tag{3}$$

respectively.

Here ∂F denotes the boundary of F, $x = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$, $d \ge 2$, Δ is the Laplace operator in \mathbb{R}^d , $\frac{\partial}{\partial n}$ denotes differentiation along outward normal n and q(x) is a real valued, periodic (with respect to lattice Ω) function of $W_2^l(F)$, where $l \ge \frac{(d+2)(d-1)}{2} + d + 1$.

First asymptotic formula for the eigenvalue of Schrodinger operator in parallelpiped with quasiperiodic boundary condition is obtained in papers [6], [7], [8]. The other asymptotic formulas for quasiperiodic boundary conditions in two and three dimensional cases are obtained in [4], [5], [1], [2]. The asymptotic formula for Dirichlet boundary condition in two dimension is obtained in [3].

We use the method of papers [7], [8] to find the asymptotic formula for the eigenvalues of $L_D(q(x))$ and $L_N(q(x))$ in arbitrary dimension.

We denote the eigenfunctions and the eigenvalues of the operator $L_D(q(x))$ by Φ_n and μ_n , respectively and denote the eigenfunctions and the eigenvalues of the operator $L_N(q(x))$ by Ψ_n and Λ_n , respectively.

The eigenvalues of the operators $L_D(0)$ and $L_N(0)$ are $|\gamma|^2$ for $\gamma \in \frac{\Gamma}{2}$. The normalized eigenfunctions of the operators $L_D(0)$ and $L_N(0)$, corresponding to the eigenvalue $|\gamma|^2$ are $\sum_{\alpha \in A_{\gamma}} (\text{sign } \prod_{i=1}^d \alpha_i) e^{\langle \alpha, x \rangle}$ and $\sum_{\alpha \in A_{\gamma}} e^{\langle \alpha, x \rangle}$, respectively, where $\gamma = (\gamma_1, \gamma_2, ..., \gamma_d) \in \frac{\Gamma}{2}$ and

$$A_{\gamma} = \{ \alpha = (\alpha_1, \alpha_2, ..., \alpha_d) \in R^d : |\alpha_i| = |\gamma_i|, i = 1, 2, ..., d \}$$

The potential q(x) in the expression (1) can be written in the form

$$q(x) = \sum_{\gamma \in \frac{\Gamma}{2}} q_{\gamma} \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}, \tag{4}$$

where $q_{\gamma} = \int_{F} q(x) \overline{\sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}} dx$ for $\gamma \in \frac{\Gamma}{2}$ (without loss of generality we can assume $q_0 = \int_{F} q(x) dx = 0$.) are the Fourier coefficients of the potential q(x) with respect to the basis $\{\sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle} : \gamma \in \frac{\Gamma}{2}\}$. Since $q(x) \in W_2^l(F)$, one can write

$$q(x) = \sum_{\gamma \in \Gamma(\rho^{\alpha})} q_{\gamma} \sum_{\beta \in A_{\gamma}} e^{i\langle \beta, x \rangle} + O(\rho^{-p\alpha}),$$
(5)

where p = l - d, $\Gamma(\rho^{\alpha}) = \{\gamma \in \frac{\Gamma}{2} : 0 < |\gamma| < \rho^{\alpha}\}, \alpha = 1/(d+2) \text{ and } \rho \text{ is a large parameter.}$ Let us introduce the following notations:

$$M \equiv \sum_{\gamma \in \frac{\Gamma}{2}} |q_{\gamma}| \tag{6}$$

$$V_b(\rho^{\alpha}) \equiv \{x \in R^d : ||x|^2 - |x+b|^2| < \rho^{\alpha}\}$$
$$U(\rho^{\alpha}, p) \equiv R^d \setminus \bigcup_{b \in \Gamma(p\rho^{\alpha})} V_b(\rho^{\alpha}).$$

The domain $U(\rho^{\alpha}, p)$ is said to be non-resonance domain and the eigenvalues $|\gamma|^2$ are called non-resonance eigenvalues, if $\gamma \in U(\rho^{\alpha}, p)$. The domains $V_b(\rho^{\alpha})$ for all $b \in \Gamma(p\rho^{\alpha})$ are called resonance domains and the eigenvalues $|\gamma|^2$ are called resonance eigenvalues, if $\gamma \in V_b(\rho^{\alpha})$. Note that the number of non-resonance eigenvalues is essentially greater than the number of resonance eigenvalues. Namely, if $N_n(\rho)$ and $N_r(\rho)$ denote the number of $\gamma \in U(\rho^{\alpha}, p) \bigcap (R(2\rho) \setminus R(\rho))$ and $\gamma \in \bigcup_{b \in \Gamma(p\rho^{\alpha})} V_b(\rho^{\alpha}) \bigcap (R(2\rho) \setminus R(\rho))$, respectively, then

$$\frac{N_r(\rho)}{N_n(\rho)} = O(\rho^{(d+1)\alpha - 1}) = o(1)$$
(7)

for $(d+1)\alpha < 1$ where $R_{\rho} = \{x \in R^d : |x| \le \rho\}$ (see remark 1).

In this paper, we obtain asymptotic formulas for non-resonance eigenvalues by using the following well-known formulas:

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_\gamma} e^{i\langle \alpha, x \rangle}) = (\Psi_n, q(x) \sum_{\alpha \in A_\gamma} e^{i\langle \alpha, x \rangle})$$
(8)

$$(\mu_n - |\gamma|^2)(\Phi_n, \sum_{\alpha \in A_\gamma} (\operatorname{sign} \prod_{i=1}^n \alpha_i) e^{i\langle \alpha, x \rangle}) = (\Phi_n, q(x) \sum_{\alpha \in A_\gamma} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle})$$
(9)

where (.,.) is the inner product in $L_2(F)$.

Note that (8) can be obtained from

$$-\Delta\Psi_n(x) + q(x)\Psi_n(x) = \Lambda_n\Psi_n(x) \tag{10}$$

by multiplying both sides of this equation by $\sum_{\alpha \in A_{\gamma}} e^{i \langle \alpha, x \rangle}$.

The Formula (9) can be obtained in the same way.

We say that $|\gamma|^2$ is of the order of ρ^2 and write $|\gamma|^2 \sim \rho^2$, if $c_1\rho^2 < |\gamma|^2 < c_2\rho^2$, where by $c_i, i = 1, 2, ...$ we denote the positive, independent on ρ constants whose exact values are not important.

Lemma 1 Let $|\gamma|^2$ be the eigenvalue of the operators $L_D(0)$ and $L_N(0)$ of the order of ρ^2 . Then there are n_1 and n_2 such that $|\Lambda_{n_1} - |\gamma|^2| < 2M$, $|\mu_{n_2} - |\gamma|^2| < 2M, |(\Psi_{n_1}, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle})| > c_3 \rho^{\frac{-(d-1)}{2}}$ and $|(\Phi_{n_2}, \sum_{\alpha \in A_{\gamma}} (sign \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle})| > c_4 \rho^{\frac{-(d-1)}{2}}$, where M is the number defined in (6).

proof: It is well known that the set of eigenfunctions Ψ_n of the self-adjoint operator $L_N(q(x))$ is an orthonormal basis in $L_2(F)$. Using (8) and (6) we get

$$\sum_{n:|\Lambda_n-|\gamma|^2|>2M} |(\Psi_n(x), \sum_{\alpha\in A_{\gamma}} e^{i\langle\alpha, x\rangle})|^2 \le \frac{1}{4}.$$

Hence by the Parsevals equality, we have

$$\sum_{n:|\Lambda_n-|\gamma|^2|\leq 2M} |(\Psi_n(x), \sum_{\alpha\in A_{\gamma}} e^{i\langle\alpha, x\rangle})|^2 > \frac{3}{4}.$$
(11)

On the other hand, it is well known that if $a \sim \rho$ then the number of $\gamma \in \frac{\Gamma}{2}$ satisfying $||\gamma| - a| < 1$ is less than $c_5\rho^{d-1}$. Therefore the number of eigenvalues of $L_N(0)$ lying in $(a^2 - \rho, a^2 + \rho)$ is less than $c_6\rho^{d-1}$. Since, by general perturbation theory, the *n*-th eigenvalue of $L_N(q(x))$ lies in *M*-neighborhood of the *n*-th eigenvalue of $L_N(0)$, the number of the eigenvalues Λ_n of the operator $L_N(q(x))$ in the interval $I = [|\gamma|^2 - 2M, |\gamma|^2 + 2M]$ is less than $c_7\rho^{d-1}$. By this fact and the inequality (11), there

exists $n_1 \in I$ such that

$$|(\Psi_{n_1}(x), \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle})| > c_3 \rho^{-\frac{(d-1)}{2}}$$

Similarly, by using (9) for $\Phi_n(x)$, we get

$$|(\Phi_{n_2}, \sum_{\alpha \in A_{\gamma}} (\operatorname{sign} \prod_{i=1}^{d} \alpha_i) e^{i\langle \alpha, x \rangle})| > c_4 \rho^{-\frac{(d-1)}{2}}$$

The lemma is proved. \Box

Lemma 2 Let $\gamma \in U(\rho^{\alpha}, p)$, i.e. $|\gamma|^2$ be the non-resonance eigenvalue of $L_D(0)$ and $L_N(0)$ and Λ_n and μ_n be the eigenvalues of $L_N(q(x))$ and $L_D(q(x))$, respectively, lying in the interval $I = [|\gamma|^2 - 2M, |\gamma|^2 + 2M]$, then $|\Lambda_n - |\gamma + b|^2| > \frac{1}{2}\rho^{\alpha}$ and $|\mu_n - |\gamma + b|^2| > \frac{1}{2}\rho^{\alpha}$ for all $b \in \Gamma(m\rho_{\alpha})$.

proof: If $\gamma \in U(\rho^{\alpha}, p)$, then for all $b \in \Gamma(m\rho_{\alpha})$ we have the inequality

$$||\gamma|^2 - |\gamma + b|^2| \ge \rho^{\alpha}$$

which, together with the fact that $\Lambda_n \in I$, implies

$$|\Lambda_n - |\gamma + b|^2| = |\Lambda_n - |\gamma + b|^2 \mp |\gamma|^2| \ge |||\gamma|^2 - |\gamma + b|^2| - |\Lambda_n - |\gamma|^2|| \ge |\rho^{\alpha} - 2M|,$$

where ρ^{α} is sufficiently large so the result follows. Similarly $|\mu_n - |\gamma + b|^2| > \frac{1}{2}\rho^{\alpha}$. \Box

Theorem 1 Let $\gamma \in U(\rho^{\alpha}, p), |\gamma| \sim \rho$; i.e., $|\gamma|^2$ be non-resonance eigenvalue of the operators $L_D(0)$ and $L_N(0)$. Then there exists an eigenvalue Λ_n of the operator $L_N(q(x))$ and an eigenvalue μ_n of the operator $L_D(q(x))$ satisfying the following formulas :

$$\Lambda_n = |\gamma|^2 + O(\rho^{-\alpha}) \tag{12}$$

$$\mu_n = |\gamma|^2 + O(\rho^{-\alpha}). \tag{13}$$

proof: First, we prove the theorem for $L_N(q(x))$, i.e., we prove (12).

By Lemma 1, there is an index n such that $|\Lambda_n - |\gamma|^2| \leq 2M$ and

 $|(\Psi_n(x), \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle})| > c_3 \rho^{-\frac{(d-1)}{2}}$. We prove that this eigenvalue satisfies the Formula (12). Substituting the decomposition (5) of the potential q(x) in the Formula (8) we have:

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}) = \sum_{\gamma_1 \in \Gamma(\rho^{\alpha})} q_{\gamma_1}(\Psi_n, \sum_{\beta_1 \in A_{\gamma_1}} e^{i\langle \beta_1, x \rangle} \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}) + O(\rho^{-p\alpha}).$$

Using the formula

$$\sum_{\beta_1 \in A_{\gamma_1}} e^{i\langle \beta_1, x \rangle} \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle} = \sum_{\beta_1 \in A_{\gamma_1}} \sum_{\alpha \in A_{\gamma+\beta_1}} e^{i\langle \alpha, x \rangle}, \tag{14}$$

which can be easily proved by direct calculation, we get

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}) = \sum_{\gamma_1 \in \Gamma(\rho^{\alpha})} \sum_{\beta_1 \in A_{\gamma_1}} q_{\gamma_1}(\Psi_n, \sum_{\alpha \in A_{\gamma+\beta_1}} e^{i\langle \alpha, x \rangle}) + O(\rho^{-p\alpha}).$$

Since $\gamma + \beta_1 \in \frac{\Gamma}{2}$, i.e.; $|\gamma + \beta_1|^2$ is an eigenvalue of the operator $L_N(0)$ with the corresponding eigenfunction $\sum_{\alpha \in A_{\gamma+\beta_1}} e^{i\langle \alpha, x \rangle}$, we can use the Formula (8). Therefore using (8) in the last equation we obtain

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}) = \sum_{\gamma_1 \in \Gamma(\rho^{\alpha})} \sum_{\beta_1 \in A_{\gamma_1}} q_{\gamma_1} \frac{(\Psi_n, q(x) \sum_{\alpha \in A_{\gamma+\beta_1}} e^{i\langle \alpha, x \rangle}) + O(\rho^{-p\alpha})}{\Lambda_n - |\gamma + \beta_1|^2}$$

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}) = \sum_{\gamma_1 \in \Gamma(\rho^{\alpha})} \sum_{\beta_1 \in A_{\gamma_1}} q_{\gamma_1} \frac{(\Psi_n, q(x) \sum_{\alpha \in A_{\gamma+\beta_1}} e^{i\langle \alpha, x \rangle})}{\Lambda_n - |\gamma + \beta_1|^2} + O(\rho^{-p\alpha})$$
(15)

Here, we use the fact(see Lemma 2) that the denominator of the fraction in (15) satisfies

$$|\Lambda_n - |\gamma + \beta_1|^2| > \frac{1}{2}\rho^{\alpha}$$

since $\beta_1 \in \Gamma(\rho^{\alpha})$. Again, substituting the decomposition of q(x) in Equation (15) and using the last inequality, we get

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle})$$

$$= \sum_{\gamma_1 \in \Gamma(\rho^{\alpha})} \sum_{\beta_1 \in A_{\gamma_1}} q_{\gamma_1} \frac{(\Psi_n, \sum_{\gamma_2 \in \Gamma(\rho^{\alpha})} q_{\gamma_2} \sum_{\alpha \in A_{\gamma_2}} e^{i\langle \alpha, x \rangle} \sum_{\alpha \in A_{\gamma + \beta_1}} e^{i\langle \alpha, x \rangle}) + O(\rho^{-p\alpha})}{\Lambda_n - |\gamma + \beta_1|^2} + O(\rho^{-p\alpha}).$$

Now using the Equation (14), we have

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}) = \sum_{\gamma_1, \gamma_2 \in \Gamma(\rho^{\alpha})} \sum_{\beta_1 \in A_{\gamma_1}, \beta_2 \in A_{\gamma_2}} q_{\gamma_1} q_{\gamma_2} \frac{(\Psi_n, \sum_{\alpha \in A_{\gamma+\beta_1}+\beta_2} e^{i\langle \alpha, x \rangle})}{\Lambda_n - |\gamma+\beta_1|^2} + O(\rho^{-p\alpha})$$

If the terms with coefficient $(\Psi_n, \sum_{\alpha \in A_\gamma} e^{i\langle \alpha, x \rangle})$ are isolated, we obtain

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}) = \sum_{\substack{\gamma_1, \gamma_2 \in \Gamma(\rho^{\alpha}) \\ \beta_1 \in A_{\gamma_1} \\ \beta_2 \in A_{\gamma_2}}} \sum_{\substack{q_{\gamma_1} q_{\gamma_2} \frac{(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle})}{\Lambda_n - |\gamma + \beta_1|^2}} + \sum_{\substack{\gamma_1, \gamma_2 \in \Gamma(\rho^{\alpha}) \\ \beta_1 \in A_{\gamma_1} \\ \beta_2 \in A_{\gamma_2}}} \sum_{\substack{q_{\gamma_1} q_{\gamma_2} \frac{(\Psi_n, \sum_{\alpha \in A_{\gamma + \beta_1 + \beta_2}} e^{i\langle \alpha, x \rangle})}{\Lambda_n - |\gamma + \beta_1|^2}} + O(\rho^{-p\alpha}) \quad (16)$$

By the same method as above, iterating p times the formula (16) and isolating each time the terms with multiplicant $(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle})$, we get

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_\gamma} e^{i\langle \alpha, x \rangle}) = (\sum_{i=1}^p S_i)(\Psi_n, \sum_{\alpha \in A_\gamma} e^{i\langle \alpha, x \rangle}) + C_p + O(\rho^{-p\alpha}),$$
(17)

where

$$S_m(\Lambda_n) = \sum_{\gamma_1,\dots,\gamma_{m+1}\in\Gamma(\rho^\alpha)} \sum_{\substack{\beta_{m+1}=-(\beta_1+\dots+\beta_m)\\\beta_1\in A_{\gamma_1},\dots,\beta_{m+1}\in A_{\gamma_{m+1}}}} \frac{q_{\gamma_1}\dots q_{\gamma_{m+1}}}{(\Lambda_n-|\gamma+\beta_1|^2)\dots(\Lambda_n-|\gamma+\beta_1+\dots+\beta_m|^2)}$$
(18)

$$C_{p} = \sum_{\gamma_{1},\dots,\gamma_{p+1}\in\Gamma(\rho^{\alpha})}\sum_{\substack{\beta_{p+1}\neq-(\beta_{1}+\dots+\beta_{p})\\\beta_{1}\in A_{\gamma_{1}},\dots,\beta_{p+1}\in A_{\gamma_{p+1}}}} \frac{q_{\gamma_{1}}\dots q_{\gamma_{p+1}}(\Psi_{n},\sum_{\alpha\in A_{\gamma+\beta_{1}}+\dots+\beta_{p+1}}e^{i\langle\alpha,x\rangle})}{(\Lambda_{n}-|\gamma+\beta_{1}|^{2})\dots(\Lambda_{n}-|\gamma+\beta_{1}+\dots+\beta_{p}|^{2})}$$
(19)

For all $m = 1, 2, ..., p, \gamma_m \in \Gamma(\rho^{\alpha})$ and $\beta_m \in A_{\gamma_m} \Rightarrow |\gamma_m| = |\beta_m| < \rho^{\alpha}$ and $|\beta_1 + \beta_2 + ... + \beta_m| < p\rho^{\alpha}$, hence we can use Lemma 2 and the Equation (6). Then we have

$$\sum_{m=1}^{p} S_m(\Lambda_n) = O(\rho^{-\alpha}), \qquad C_p = O(\rho^{-p\alpha}).$$
(20)

Taking into account that for Λ_n , we only used the condition $\Lambda_n \in I$, we have

$$\sum_{m=1}^{p} S_m(a) = O(\rho^{-\alpha}), \qquad \forall a \in I$$
(21)

If we substitute (20) into (17), we get

$$(\Lambda_n - |\gamma|^2)(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}) = O(\rho^{-\alpha})(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle}) + O(\rho^{-p\alpha})$$
(22)

dividing both sides of the Equation (22) by $(\Psi_n, \sum_{\alpha \in A_{\gamma}} e^{i\langle \alpha, x \rangle})$, using Lemma 1 and the obvious inequality $p\alpha > \frac{d-1}{2} + \alpha$ (see definition of p and α), we get the proof for $L_N(q(x))$.

By the same way, we can prove the theorem for $L_D(q(x))$, i.e., for the non-resonance eigenvalue $|\gamma|^2$ of $L_D(0)$ ($\gamma \in U(\rho^{\alpha}, l)$), there is an eigenvalue μ_n of $L_D(q(x))$ such that

the Formula (13) is satisfied. Indeed, to prove this, instead of (8), we use the Formula (9) with the same decomposition (5) of q(x) and we get

$$(\mu_n - |\gamma|^2)(\Phi_n, \sum_{\alpha \in A_{\gamma}} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle})$$
$$= \sum_{\gamma_1 \in \Gamma(\rho^{\alpha})} q_{\gamma_1}(\Phi_n, \sum_{\beta_1 \in A_{\gamma_1}} e^{i\langle \beta_1, x \rangle} \sum_{\alpha \in A_{\gamma}} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle}) + O(\rho^{-p\alpha})$$

and instead of (14), using the following formula

$$\sum_{\beta_1 \in A_{\gamma_1}} e^{i\langle \beta_1, x \rangle} \sum_{\alpha \in A_{\gamma}} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle} = \sum_{\beta_1 \in A_{\gamma_1}} \sum_{\alpha \in A_{\gamma+\beta_1}} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle}$$

we get

$$(\mu_n - |\gamma|^2)(\Phi_n, \sum_{\alpha \in A_{\gamma}} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle})$$
$$= \sum_{\gamma_1 \in \Gamma(\rho^{\alpha})} \sum_{\beta_1 \in A_{\gamma_1}} q_{\gamma_1}(\Phi_n, \sum_{\alpha \in A_{\gamma+\beta_1}} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle}) + O(\rho^{-p\alpha})$$

By the similar considerations, we can iterate the above formula p times and by isolating the coefficient of $(\Phi_n, \sum_{\alpha \in A_{\gamma}} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle})$, we obtain the equation

$$(\mu_n - |\gamma|^2)(\Phi_n, \sum_{\alpha \in A_{\gamma}} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle}) = (\sum_{m=1}^p S_m)(\Phi_n, \sum_{\alpha \in A_{\gamma}} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle}) (23) + C_p + O(\rho^{-p\alpha}),$$

instead of (17), where S_m is the same as Equation (18) and

$$C_{p} = \sum_{\gamma_{1},\ldots,\gamma_{p+1}\in\Gamma(\rho^{\alpha})}\sum_{\substack{\beta_{p+1}\neq-(\beta_{1}+\ldots+\beta_{p})\\\beta_{1}\in\mathcal{A}_{\gamma_{1}},\ldots,\beta_{p+1}\in\mathcal{A}_{\gamma_{p+1}}}} \frac{q_{\gamma_{1}}\ldots q_{\gamma_{p+1}}(\Phi_{n},\sum_{\alpha\in A_{\gamma+\beta_{1}+\ldots+\beta_{p+1}}}(\operatorname{sign}\prod_{i=1}^{d}\alpha_{i})e^{i\langle\alpha,x\rangle})}{(\mu_{n}-|\gamma+\beta_{1}|^{2})\ldots(\mu_{n}-|\gamma+\beta_{1}+\ldots+\beta_{p}|^{2})}$$

Hence, by similar calculations, we get the proof. \Box

Theorem 2 Let $\gamma \in U(\rho^{\alpha}, p)$, $|\gamma| \sim \rho$ then there is an eigenvalue Λ_n of the operator $L_N(q(x))$ and an eigenvalue μ_n of the operator $L_D(q(x))$ satisfying the formulas

$$\Lambda_n = |\gamma|^2 + F_{k-1} + O(\rho^{-k\alpha}),$$
(24)

and

$$\mu_n = |\gamma|^2 + F_{k-1} + O(\rho^{-k\alpha}), \tag{25}$$

for all $k = 1, 2, \dots p - z$ where

$$F_{0} = 0, F_{1} = \sum_{\gamma_{1} \in \Gamma(\rho^{\alpha})} \sum_{\beta_{1} \in A_{\gamma_{1}}} \frac{|q_{\gamma_{1}}|^{2}}{|\gamma|^{2} - |\gamma - \beta_{1}|^{2}},$$
$$F_{s} = \sum_{i=1}^{s} S_{i}(|\gamma|^{2} + F_{s-1}), s = 2, 3, ..., p$$

and $z = \left[\frac{d-1}{2\alpha}\right] + 1$. ($\left[\frac{d-1}{2\alpha}\right]$ is the integer part of $\frac{d-1}{2\alpha}$.)

proof: We prove that for the eigenvalues Λ_n and μ_n satisfying the Formulas (12) and (13) the Formulas (24) and (25) hold, respectively. Let us prove it by mathematical induction on k:

for k = 1; by Theorem 1, Λ_n and μ_n satisfy the equations

$$\Lambda_n = |\gamma|^2 + F_0 + O(\rho^{-\alpha}),$$

$$\mu_n = |\gamma|^2 + F_0 + O(\rho^{-\alpha}),$$

where $F_0 = 0$,

for k = j ; assume that it is true, i.e

$$\Lambda_n = |\gamma| + F_{j-1} + O(\rho^{-j\alpha}). \tag{26}$$

$$\mu_n = |\gamma| + F_{j-1} + O(\rho^{-j\alpha}).$$
(27)

For k = j + 1, we must prove that

$$\Lambda_n = |\gamma|^2 + F_j + O(\rho^{-(j+1)\alpha}), \tag{28}$$

$$\mu_n = |\gamma|^2 + F_j + O(\rho^{-(j+1)\alpha}).$$
(29)

To prove this we put Expression (26) into $S_m(\Lambda_n)$ and (27) into $S_m(\mu_n)$ and divide both sides of (17) by $(\Psi_n(x), \sum_{\alpha \in A_\gamma} e^{i\langle \alpha, x \rangle})$ and (23) by $(\Phi_n(x), \sum_{\alpha \in A_\gamma} (\operatorname{sign} \prod_{i=1}^d \alpha_i) e^{i\langle \alpha, x \rangle})$, we get

$$\Lambda_n = |\gamma|^2 + \sum_{m=1}^p S_m(|\gamma|^2 + F_{j-1} + O(\rho^{-j\alpha}) + O(\rho^{-(p-z)\alpha}))$$
(30)

$$\mu_n = |\gamma|^2 + \sum_{m=1}^p S_m(|\gamma|^2 + F_{j-1} + O(\rho^{-j\alpha}) + O(\rho^{-(p-z)\alpha}))$$
(31)

adding and subtracting the term $\sum_{m=1}^{p} S_m(|\gamma|^2 + F_{j-1})$ in (30) and (31), we have

$$\Lambda_n = |\gamma|^2 + \left[\sum_{m=1}^p S_m(|\gamma|^2 + F_{j-1} + O(\rho^{-j\alpha})) - S_m(|\gamma|^2 + F_{j-1})\right] + \sum_{m=1}^p S_m(|\gamma|^2 + F_{j-1}) + O(\rho^{-(p-z)\alpha})$$
(32)

$$\mu_n = |\gamma|^2 + \left[\sum_{m=1}^p S_m(|\gamma|^2 + F_{j-1} + O(\rho^{-j\alpha})) - S_m(|\gamma|^2 + F_{j-1})\right] + \sum_{m=1}^p S_m(|\gamma|^2 + F_{j-1}) + O(\rho^{-(p-z)\alpha})$$
(33)

 $\sum_{m=1}^{p} S_m(|\gamma|^2 + F_{j-1}) = F_j, \text{ so we need only to show that the expressions in the square brackets in (32) and (33) are equal to <math>O(\rho^{-(j+1)\alpha})$. First we prove that $F_j = O(\rho^{-\alpha})$ for all j = 0, 1, 2, ..., p by induction. By Theorem 1 $F_0 = 0$. Suppose $F_{j-1} = O(\rho^{-\alpha})$ then by $(21)F_j = S_m(|\gamma|^2 + F_{j-1}) = O(\rho^{-\alpha}).$

Using this and Lemma 2, we have

$$||\gamma|^{2} + F_{j-1} + O(\rho^{-(j)\alpha}) - |\gamma + \beta_{1} + \dots + \beta_{m}|^{2}| > \frac{1}{3}\rho^{\alpha}$$
$$||\gamma|^{2} + F_{j-1} - |\gamma + \beta_{1} + \dots + \beta_{m}|^{2}| > \frac{1}{3}\rho^{\alpha}, m = 1, 2, \dots, p$$

Hence, by direct calculations and using the above inequalities, it can be easily checked that the expressions in the square brackets are equal to $O(\rho^{-(j+1)\alpha})\square$.

Remark 1 It is clear that $V_b(\rho^{\alpha}) \cap (R(2\rho) \setminus R(\rho))$ is the part of $(R(2\rho) \setminus R(\rho))$ which is contained between two parallel hyperplanes $\{x : |x|^2 - |x + b|^2 = -\rho^{\alpha}\}$ and $\{x : |x|^2 - |x + b|^2 = \rho^{\alpha}\}$. The distance of this hyperplanes from the origin is $\frac{\rho^{\alpha}}{|b|}$. Therefore $\mu(V_b(\rho^{\alpha}) \cap (R(2\rho) \setminus R(\rho))) = O(\rho^{d-1+\alpha})$. Since the number of the vectors γ in $\Gamma(p\rho^{\alpha})$ is equal to $\rho^{d\alpha}$ and $\mu(R(2\rho) \setminus R(\rho)) \sim \rho^d$, we have $\mu(\bigcup_{b \in \Gamma(p\rho^{\alpha})} V_b(\rho^{\alpha}) \cap (R(2\rho) \setminus R(\rho))) = O(\rho^{d-1+(d+1)\alpha})$ and $\mu(U(\rho^{\alpha}, p) \cap (R(2\rho) \setminus R(\rho))) = \mu((R(2\rho) \setminus R(\rho)))(1 + O(\rho^{(d+1)\alpha-1})))$ from which we get (7).

References

 Feldman, J., Knorrer, H., Trubowitz, E.: The Perturbatively Stable Spectrum of the Periodic Schrodinger Operator. *Invent. Math.*, 100,1990,259-300.

- [2] Feldman, J., Knorrer, H., Trubowitz, E.: The Perturbatively unstable Spectrum of the Periodic Schrodinger Operator. Comment.Math.Helvetica, 66,1991,557-579.
- [3] Hald, O. H., McLaughlin, J. R.: Inverse Nodal Problems: Finding the Potential from Nodal Lines. Memoirs of AMS. number 572, vol.119,0065-9266,(1996).
- [4] Karpeshina, Yu. E.: Perturbation Theory for the Schrodinger Operator with a non-smooth Periodic Potential.Math.USSR-Sb.,71,1992,101-123.
- [5] Karpeshina, Yu. E.: Perturbation series for the Schrodinger Operator with a Periodic Potential near Planes of Diffraction. Communication in Analysis and Geometry, 4, (1996), 3, pp. 339-413.
- [6] Veliev, O. A.: On the Spectrum of the Schrodinger Operator with Periodic Potential. Dokl. Akad. Nauk SSSR 268 (1983), no. 6,1289-1292.
- [7] Veliev, O. A.: Asimptotic Formulas for the Eigenvalues of the Periodic Schrodinger Operator and the Bethe-Sommerfeld Conjecture. Functional Anal. i Prilozhen. 21 (1987), no. 2, 1-15.
- [8] Veliev, O. A.: The Spectrum of Multidimensional Periodic Operators. Teor. Funktsional Anal. i Prilozhen. (1988). no. 49, 17-34.

S. ATILGAN, S. KARAKILIÇ, O. A. VELIEV D.E.U., Department of Mathematics, Faculty of Science, Tinaztepe, Buca, İzmir-TURKEY e-mail: sedef.erim@deu.edu.tr

227

Received 19.10.2001