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Abstract

In this paper, we obtain asymptotic formulas for the eigenvalues of the d-

dimensional Schrodinger operator

L = −∆ + q(x)

in d-dimensional parallelepiped F with Dirichlet and Neumann boundary conditions.

Let Ω = {m1w1 +m2w2 + ...+ mdwd : mi ∈ Z, i = 1, 2, ..., d} be a lattice in Rd with

the reduced orthonormal basis

w1 = (a1, 0, ..., 0), w2 = (0, a2, 0, ..., 0), ..., wd = (0, ..., 0, ad)

and Γ = {m1γ1 + m2γ2 + ... + mdγd : mi ∈ Z, i = 1, 2, ..., d} be the dual lattice

of Ω, where the vectors {γi}di=1 are biorthoganal to the vectors {wi}di=1 . Denote by

F ≡ [0, a1)× [0, a2)× ...× [0, ad) the fundamental domain Rd/Ω of the lattice Ω.

We consider the Schrodinger operators LD(q(x)) and LN (q(x)), defined by the differ-

ential expression

Lu = −∆u+ q(x)u (1)

in L2(F ) with the Dirichlet boundary condition

u|∂F = 0 (2)
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and the Neumann boundary condition

∂u

∂n
|∂F = 0, (3)

respectively.

Here ∂F denotes the boundary of F , x = (x1, x2, ...xd) ∈ Rd, d ≥ 2,∆ is the Laplace

operator in Rd, ∂
∂n

denotes differentiation along outward normal n and q(x) is a real

valued, periodic (with respect to lattice Ω) function of W l
2(F ), where l ≥ (d+2)(d−1)

2
+d+1.

First asymptotic formula for the eigenvalue of Schrodinger operator in parallelpiped

with quasiperiodic boundary condition is obtained in papers [6], [7], [8]. The other

asymptotic formulas for quasiperiodic boundary conditions in two and three dimensional

cases are obtained in [4], [5], [1], [2]. The asymptotic formula for Dirichlet boundary

condition in two dimension is obtained in [3].

We use the method of papers [7], [8] to find the asymptotic formula for the eigenvalues

of LD(q(x)) and LN (q(x)) in arbitrary dimension.

We denote the eigenfunctions and the eigenvalues of the operator LD(q(x)) by Φn
and µn, respectively and denote the eigenfunctions and the eigenvalues of the operator

LN (q(x)) by Ψn and Λn , respectively.

The eigenvalues of the operators LD(0) and LN(0) are |γ|2 for γ ∈ Γ
2 . The normalized

eigenfunctions of the operators LD(0) and LN (0), corresponding to the eigenvalue |γ|2 are∑
α∈Aγ (sign

∏d
i=1 αi)e

〈α,x〉 and
∑

α∈Aγ e
〈α,x〉, respectively, where γ = (γ1 , γ2, ..., γd) ∈ Γ

2

and

Aγ = {α = (α1, α2, ..., αd) ∈ Rd : |αi| = |γi|, i = 1, 2, ..., d}.

The potential q(x) in the expression (1) can be written in the form

q(x) =
∑
γ∈ Γ

2

qγ
∑
α∈Aγ

ei〈α,x〉, (4)

where qγ =
∫
F q(x)

∑
α∈Aγ e

i〈α,x〉dx for γ ∈ Γ
2 (without loss of generality we can assume

q0 =
∫
F
q(x)dx = 0 .) are the Fourier coefficients of the potential q(x) with respect to

the basis {
∑
α∈Aγ e

i〈α,x〉 : γ ∈ Γ
2 } . Since q(x) ∈W l

2(F ), one can write
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q(x) =
∑

γ∈Γ(ρα)

qγ
∑
β∈Aγ

ei〈β,x〉 +O(ρ−pα), (5)

where p = l−d, Γ(ρα) = {γ ∈ Γ
2 : 0 < |γ| < ρα}, α = 1/(d+2) and ρ is a large parameter.

Let us introduce the following notations:

M ≡
∑
γ∈ Γ

2

|qγ| (6)

Vb(ρα) ≡ {x ∈ Rd : ||x|2− |x+ b|2| < ρα}

U(ρα, p) ≡ Rd\
⋃

b∈Γ(pρα)

Vb(ρα).

The domain U(ρα, p) is said to be non-resonance domain and the eigenvalues |γ|2 are

called non-resonance eigenvalues, if γ ∈ U(ρα, p) . The domains Vb(ρα) for all b ∈ Γ(pρα)

are called resonance domains and the eigenvalues |γ|2 are called resonance eigenvalues, if

γ ∈ Vb(ρα). Note that the number of non-resonance eigenvalues is essentially greater than

the number of resonance eigenvalues. Namely, if Nn(ρ) and Nr(ρ) denote the number of

γ ∈ U(ρα, p)
⋂

(R(2ρ)\R(ρ)) and γ ∈
⋃
b∈Γ(pρα) Vb(ρ

α)
⋂

(R(2ρ)\R(ρ)), respectively, then

Nr(ρ)
Nn(ρ)

= O(ρ(d+1)α−1) = o(1) (7)

for (d+ 1)α < 1 where Rρ = {x ∈ Rd : |x| ≤ ρ} (see remark 1).

In this paper, we obtain asymptotic formulas for non-resonance eigenvalues by using

the following well-known formulas:

(Λn − |γ|2)(Ψn,
∑
α∈Aγ

ei〈α,x〉) = (Ψn, q(x)
∑
α∈Aγ

ei〈α,x〉) (8)

(µn − |γ|2)(Φn,
∑
α∈Aγ

(sign
n∏
i=1

αi)ei〈α,x〉) = (Φn, q(x)
∑
α∈Aγ

(sign
d∏
i=1

αi)ei〈α,x〉) (9)
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where (., .) is the inner product in L2(F ) .

Note that (8) can be obtained from

−∆Ψn(x) + q(x)Ψn(x) = ΛnΨn(x) (10)

by multiplying both sides of this equation by
∑
α∈Aγ e

i〈α,x〉.

The Formula (9) can be obtained in the same way.

We say that |γ|2 is of the order of ρ2 and write |γ|2 ∼ ρ2, if c1ρ2 < |γ|2 < c2ρ
2, where

by ci, i = 1, 2, ... we denote the positive, independent on ρ constants whose exact values

are not important.

Lemma 1 Let |γ|2 be the eigenvalue of the operators LD(0) and LN (0) of the order of

ρ2 . Then there are n1 and n2 such that |Λn1 − |γ|2| < 2M ,

|µn2 − |γ|2| < 2M ,|(Ψn1,
∑
α∈Aγ e

i〈α,x〉)| > c3ρ
−(d−1)

2 and

|(Φn2 ,
∑
α∈Aγ (sign

∏d
i=1 αi)e

i〈α,x〉)| > c4ρ
−(d−1)

2 , where M is the number defined in (6).

proof: It is well known that the set of eigenfunctions Ψn of the self-adjoint operator

LN (q(x)) is an orthonormal basis in L2(F ). Using (8) and (6) we get

∑
n:|Λn−|γ|2|>2M

|(Ψn(x),
∑
α∈Aγ

ei〈α,x〉)|2 ≤ 1
4
.

Hence by the Parsevals equality, we have

∑
n:|Λn−|γ|2|≤2M

|(Ψn(x),
∑
α∈Aγ

ei〈α,x〉)|2 > 3
4
. (11)

On the other hand, it is well known that if a ∼ ρ then the number of γ ∈ Γ
2

satisfying ||γ| − a| < 1 is less than c5ρ
d−1. Therefore the number of eigenvalues of

LN (0) lying in (a2 − ρ, a2 + ρ) is less than c6ρ
d−1. Since, by general perturbation

theory, the n-th eigenvalue of LN (q(x)) lies in M -neighborhood of the n-th eigenvalue

of LN (0), the number of the eigenvalues Λn of the operator LN (q(x)) in the interval

I = [|γ|2− 2M, |γ|2 + 2M ] is less than c7ρd−1. By this fact and the inequality (11), there
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exists n1 ∈ I such that

|(Ψn1(x),
∑
α∈Aγ

ei〈α,x〉)| > c3ρ
− (d−1)

2

Similarly, by using (9) for Φn(x), we get

|(Φn2,
∑
α∈Aγ

(sign
d∏
i=1

αi)ei〈α,x〉)| > c4ρ
− (d−1)

2

The lemma is proved. 2

Lemma 2 Let γ ∈ U(ρα, p), i.e. |γ|2 be the non-resonance eigenvalue of LD(0) and

LN (0) and Λn and µn be the eigenvalues of LN (q(x)) and LD(q(x)), respectively, lying in

the interval I = [|γ|2−2M, |γ|2 +2M ], then |Λn−|γ+b|2| > 1
2
ρα and |µn−|γ+b|2| > 1

2
ρα

for all b ∈ Γ(mρα).

proof: If γ ∈ U(ρα, p), then for all b ∈ Γ(mρα) we have the inequality

||γ|2 − |γ + b|2| ≥ ρα

which, together with the fact that Λn ∈ I, implies

|Λn − |γ + b|2| = |Λn − |γ + b|2 ∓ |γ|2| ≥ |||γ|2 − |γ + b|2| − |Λn − |γ|2|| ≥ |ρα − 2M |,

where ρα is sufficiently large so the result follows. Similarly |µn − |γ + b|2| > 1
2ρ
α. 2

Theorem 1 Let γ ∈ U(ρα, p), |γ| ∼ ρ; i.e.,|γ|2 be non-resonance eigenvalue of the

operators LD(0) and LN(0) . Then there exists an eigenvalue Λn of the operator LN(q(x))

and an eigenvalue µn of the operator LD(q(x)) satisfying the following formulas :

Λn = |γ|2 +O(ρ−α) (12)

µn = |γ|2 +O(ρ−α). (13)
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proof: First, we prove the theorem for LN (q(x)), i.e., we prove (12).

By Lemma 1, there is an index n such that |Λn − |γ|2| ≤ 2M and

|(Ψn(x),
∑
α∈Aγ e

i〈α,x〉)| > c3ρ
− (d−1)

2 . We prove that this eigenvalue satisfies the Formula

(12). Substituting the decomposition (5) of the potential q(x) in the Formula (8) we have:

(Λn − |γ|2)(Ψn ,
∑
α∈Aγ

ei〈α,x〉) =
∑

γ1∈Γ(ρα)

qγ1 (Ψn,
∑

β1∈Aγ1

ei〈β1,x〉
∑
α∈Aγ

ei〈α,x〉) + O(ρ−pα).

Using the formula

∑
β1∈Aγ1

ei〈β1,x〉
∑
α∈Aγ

ei〈α,x〉 =
∑

β1∈Aγ1

∑
α∈Aγ+β1

ei〈α,x〉, (14)

which can be easily proved by direct calculation, we get

(Λn − |γ|2)(Ψn,
∑
α∈Aγ

ei〈α,x〉) =
∑

γ1∈Γ(ρα)

∑
β1∈Aγ1

qγ1(Ψn,
∑

α∈Aγ+β1

ei〈α,x〉) +O(ρ−pα).

Since γ + β1 ∈ Γ
2
, i.e.; |γ + β1 |2 is an eigenvalue of the operator LN (0) with the

corresponding eigenfunction
∑

α∈Aγ+β1
ei〈α,x〉, we can use the Formula (8). Therefore

using (8) in the last equation we obtain

(Λn − |γ|2)(Ψn ,
∑
α∈Aγ

ei〈α,x〉) =
∑

γ1∈Γ(ρα)

∑
β1∈Aγ1

qγ1

(Ψn, q(x)
∑
α∈Aγ+β1

ei〈α,x〉) + O(ρ−pα)

Λn − |γ + β1|2

(Λn − |γ|2)(Ψn ,
∑
α∈Aγ

ei〈α,x〉) =
∑

γ1∈Γ(ρα)

∑
β1∈Aγ1

qγ1

(Ψn, q(x)
∑
α∈Aγ+β1

ei〈α,x〉)

Λn − |γ + β1|2
(15)

+O(ρ−pα)

Here, we use the fact(see Lemma 2) that the denominator of the fraction in (15) satisfies

|Λn − |γ + β1|2| >
1
2
ρα
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since β1 ∈ Γ(ρα). Again, substituting the decomposition of q(x) in Equation (15) and

using the last inequality, we get

(Λn − |γ|2)(Ψn,
∑
α∈Aγ

ei〈α,x〉)

=
∑

γ1∈Γ(ρα)

∑
β1∈Aγ1

qγ1

(Ψn,
∑
γ2∈Γ(ρα) qγ2

∑
α∈Aγ2

ei〈α,x〉
∑

α∈Aγ+β1
ei〈α,x〉) + O(ρ−pα)

Λn − |γ + β1|2

+O(ρ−pα).

Now using the Equation (14), we have

(Λn − |γ|2)(Ψn ,
∑
α∈Aγ

ei〈α,x〉) =
∑

γ1,γ2∈Γ(ρα)

∑
β1∈Aγ1 ,β2∈Aγ2

qγ1qγ2

(Ψn,
∑

α∈Aγ+β1+β2
ei〈α,x〉)

Λn − |γ + β1|2

+O(ρ−pα)

If the terms with coefficient (Ψn,
∑

α∈Aγ e
i〈α,x〉) are isolated, we obtain

(Λn − |γ|2)(Ψn,
∑
α∈Aγ

ei〈α,x〉) =
∑

γ1,γ2∈Γ(ρα)

∑
β2=−β1
β1∈Aγ1
β2∈Aγ2

qγ1qγ2

(Ψn,
∑

α∈Aγ e
i〈α,x〉)

Λn − |γ + β1|2

+
∑

γ1,γ2∈Γ(ρα)

∑
β2 6=−β1
β1∈Aγ1
β2∈Aγ2

qγ1qγ2

(Ψn,
∑

α∈Aγ+β1+β2
ei〈α,x〉)

Λn − |γ + β1|2
+ O(ρ−pα) (16)

By the same method as above, iterating p times the formula (16) and isolating each

time the terms with multiplicant (Ψn,
∑
α∈Aγ e

i〈α,x〉), we get

(Λn − |γ|2)(Ψn,
∑
α∈Aγ

ei〈α,x〉) = (
p∑
i=1

Si)(Ψn ,
∑
α∈Aγ

ei〈α,x〉) +Cp + O(ρ−pα), (17)
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where

Sm(Λn) =
∑

γ1,...γm+1∈Γ(ρα)

∑
βm+1=−(β1+...+βm)

β1∈Aγ1 ,...,βm+1∈Aγm+1

qγ1 ...qγm+1

(Λn − |γ + β1|2)...(Λn − |γ + β1 + ...+ βm|2)

(18)

Cp =
∑

γ1,...γp+1∈Γ(ρα)

∑
βp+1 6=−(β1+...+βp)

β1∈Aγ1 ,...,βp+1∈Aγp+1

qγ1 ...qγp+1(Ψn,
∑
α∈Aγ+β1+...+βp+1

ei〈α,x〉)

(Λn − |γ + β1|2)...(Λn − |γ + β1 + ...+ βp|2)

(19)

For all m = 1, 2, ..., p, γm ∈ Γ(ρα) and

βm ∈ Aγm ⇒ |γm| = |βm| < ρα and |β1 + β2 + ...+ βm| < pρα, hence we can use Lemma

2 and the Equation (6). Then we have

p∑
m=1

Sm(Λn) = O(ρ−α), Cp = O(ρ−pα). (20)

Taking into account that for Λn, we only used the condition Λn ∈ I, we have

p∑
m=1

Sm(a) = O(ρ−α), ∀a ∈ I (21)

If we substitute (20) into (17), we get

(Λn − |γ|2)(Ψn,
∑
α∈Aγ

ei〈α,x〉) = O(ρ−α)(Ψn,
∑
α∈Aγ

ei〈α,x〉) + O(ρ−pα) (22)

dividing both sides of the Equation (22) by (Ψn,
∑
α∈Aγ e

i〈α,x〉), using Lemma 1 and the

obvious inequality pα > d−1
2 +α (see definition of p and α), we get the proof for LN (q(x)).

By the same way, we can prove the theorem for LD(q(x)), i.e, for the non-resonance

eigenvalue |γ|2 of LD(0) (γ ∈ U(ρα, l)), there is an eigenvalue µn of LD(q(x)) such that
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the Formula (13) is satisfied. Indeed, to prove this, instead of (8), we use the Formula

(9) with the same decomposition (5) of q(x) and we get

(µn − |γ|2)(Φn,
∑
α∈Aγ

(sign
d∏
i=1

αi)ei〈α,x〉)

=
∑

γ1∈Γ(ρα)

qγ1(Φn,
∑

β1∈Aγ1

ei〈β1,x〉
∑
α∈Aγ

(sign
d∏
i=1

αi)ei〈α,x〉) + O(ρ−pα)

and instead of (14), using the following formula

∑
β1∈Aγ1

ei〈β1,x〉
∑
α∈Aγ

(sign
d∏
i=1

αi)ei〈α,x〉 =
∑

β1∈Aγ1

∑
α∈Aγ+β1

(sign
d∏
i=1

αi)ei〈α,x〉

we get

(µn − |γ|2)(Φn,
∑
α∈Aγ

(sign
d∏
i=1

αi)ei〈α,x〉)

=
∑

γ1∈Γ(ρα)

∑
β1∈Aγ1

qγ1(Φn,
∑

α∈Aγ+β1

(sign
d∏
i=1

αi)ei〈α,x〉) +O(ρ−pα)

By the similar considerations, we can iterate the above formula p times and by isolating

the coefficient of (Φn,
∑
α∈Aγ (sign

∏d
i=1 αi)e

i〈α,x〉), we obtain the equation

(µn − |γ|2)(Φn,
∑
α∈Aγ

(sign
d∏
i=1

αi)ei〈α,x〉) = (
p∑

m=1

Sm)(Φn,
∑
α∈Aγ

(sign
d∏
i=1

αi)ei〈α,x〉) (23)

+Cp + O(ρ−pα),

instead of (17), where Sm is the same as Equation (18) and
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Cp =

∑
γ1,...γp+1∈Γ(ρα)

∑
βp+1 6=−(β1+...+βp)

β1∈Aγ1 ,...,βp+1∈Aγp+1

qγ1 ...qγp+1(Φn,
∑

α∈Aγ+β1+...+βp+1
(sign

∏d
i=1 αi)e

i〈α,x〉)

(µn − |γ + β1|2)...(µn − |γ + β1 + ...+ βp|2)
.

Hence, by similar calculations, we get the proof. 2

Theorem 2 Let γ ∈ U(ρα, p), |γ| ∼ ρ then there is an eigenvalue Λn of the operator

LN (q(x)) and an eigenvalue µn of the operator LD(q(x)) satisfying the formulas

Λn = |γ|2 + Fk−1 + O(ρ−kα), (24)

and

µn = |γ|2 + Fk−1 + O(ρ−kα), (25)

for all k = 1, 2, ...p− z where

F0 = 0, F1 =
∑

γ1∈Γ(ρα)

∑
β1∈Aγ1

|qγ1 |2
|γ|2 − |γ − β1|2

,

Fs =
s∑
i=1

Si(|γ|2 + Fs−1), s = 2, 3, ..., p

and z = [ d−1
2α ] + 1. ( [ d−1

2α ] is the integer part of d−1
2α .)

proof: We prove that for the eigenvalues Λn and µn satisfying the Formulas (12) and

(13) the Formulas (24) and (25) hold, respectively. Let us prove it by mathematical

induction on k :

for k = 1 ; by Theorem 1,Λn and µn satisfy the equations

Λn = |γ|2 + F0 +O(ρ−α),

µn = |γ|2 + F0 +O(ρ−α),

where F0 = 0,
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for k = j ; assume that it is true, i.e

Λn = |γ|+ Fj−1 + O(ρ−jα). (26)

µn = |γ|+ Fj−1 +O(ρ−jα). (27)

For k = j + 1, we must prove that

Λn = |γ|2 + Fj + O(ρ−(j+1)α), (28)

µn = |γ|2 + Fj +O(ρ−(j+1)α). (29)

To prove this we put Expression (26) into Sm(Λn) and (27) into Sm(µn) and divide both

sides of (17) by (Ψn(x),
∑
α∈Aγ e

i〈α,x〉) and (23) by

(Φn(x),
∑
α∈Aγ (sign

∏d
i=1 αi)e

i〈α,x〉) , we get

Λn = |γ|2 +
p∑

m=1

Sm(|γ|2 + Fj−1 +O(ρ−jα) + O(ρ−(p−z)α)) (30)

µn = |γ|2 +
p∑

m=1

Sm(|γ|2 + Fj−1 +O(ρ−jα) + O(ρ−(p−z)α)) (31)

adding and subtracting the term
∑p

m=1 Sm(|γ|2 + Fj−1) in (30) and (31), we have

Λn = |γ|2 + [
p∑

m=1

Sm(|γ|2 + Fj−1 + O(ρ−jα)) − Sm(|γ|2 + Fj−1)]

+
p∑

m=1

Sm(|γ|2 + Fj−1) + O(ρ−(p−z)α) (32)
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µn = |γ|2 + [
p∑

m=1

Sm(|γ|2 + Fj−1 +O(ρ−jα))− Sm(|γ|2 + Fj−1)]

+
p∑

m=1

Sm(|γ|2 + Fj−1) +O(ρ−(p−z)α) (33)

∑p
m=1 Sm(|γ|2 +Fj−1) = Fj , so we need only to show that the expressions in the square

brackets in (32) and (33) are equal to O(ρ−(j+1)α). First we prove that Fj = O(ρ−α) for

all j = 0, 1, 2, ..., p by induction. By Theorem 1 F0 = 0. Suppose Fj−1 = O(ρ−α) then

by (21)Fj = Sm(|γ|2 + Fj−1) = O(ρ−α).

Using this and Lemma 2, we have

||γ|2 + Fj−1 +O(ρ−(j)α) − |γ + β1 + ...+ βm|2| >
1
3
ρα

||γ|2 + Fj−1 − |γ + β1 + ...+ βm|2| >
1
3
ρα, m = 1, 2, ..., p

Hence, by direct calculations and using the above inequalities, it can be easily checked

that the expressions in the square brackets are equal to O(ρ−(j+1)α)2.

Remark 1 It is clear that Vb(ρα)
⋂

(R(2ρ)\R(ρ)) is the part of (R(2ρ)\R(ρ)) which

is contained between two parallel hyperplanes {x : |x|2 − |x + b|2 = −ρα} and {x :

|x|2 − |x+ b|2 = ρα}. The distance of this hyperplanes from the origin is ρα

|b| . Therefore

µ(Vb(ρα)
⋂

(R(2ρ)\R(ρ))) = O(ρd−1+α). Since the number of the vectors γ in Γ(pρα) is

equal to ρdα and µ(R(2ρ)\R(ρ)) ∼ ρd, we have µ(
⋃
b∈Γ(pρα) Vb(ρ

α)
⋂

(R(2ρ)\R(ρ))) =

O(ρd−1+(d+1)α) and µ(U(ρα, p)
⋂

(R(2ρ)\R(ρ))) = µ((R(2ρ)\R(ρ)))(1 + O(ρ(d+1)α−1))

from which we get (7).
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