Remarks on Bounded Operators in Köthe Spaces

P. Djakov, T. Terzioğlu, M. Yurdakul, V. Zahariuta

Abstract

We prove that if $\lambda(A), \lambda(B)$ and $\lambda(C)$ are Köthe spaces such that $L(\lambda(A), \lambda(B))$ and $L(\lambda(C), \lambda(A))$ consist of bounded operators then each operator acting on $\lambda(A)$ that factors over $\lambda(B) \hat{\otimes}_{\pi} \lambda(C)$ is bounded.

If X and Y are topological vector spaces then a linear operator $T: X \rightarrow Y$ is bounded if there exists a neighborhood of zero U in X such that $T(U)$ is a bounded set in Y. We write $(X, Y) \in \mathcal{B}$ if each continuous linear operator from X into Y is bounded. As in [2] we say that a pair (X, Y) has the bounded factorization property and write $(X, Y) \in \mathcal{B F}$ if each linear continuous operator $T: X \rightarrow X$ that factors over Y (i.e. $T=S_{1} S_{2}$, where $S_{2}: X \rightarrow Y$ and $S_{1}: Y \rightarrow X$ are linear continuous operators) is bounded. There is still no general characterization of pairs of Fréchet spaces with $\mathcal{B F}$ property (see Question 1 in [2]).

First, let us note some obvious properties of the relation $\mathcal{B} \mathcal{F}$:
(i) if $E \subset X$ and $F \subset Y$ are, respectively, complemented subspaces of X and Y, then $(X, Y) \in \mathcal{B} \mathcal{F}$ implies $\quad(E, F) \in \mathcal{B} \mathcal{F}$;
(ii) if $(X, Y) \in \mathcal{B}$ and $(Z, X) \in \mathcal{B}$ then $(X, Y \times Z) \in \mathcal{B} \mathcal{F}$.

In [2] we used the second property in order to construct non-trivial examples of pairs of Fréchet spaces with $\mathcal{B F}$ property.

Our aim here is to prove that if X, Y, Z are Köthe spaces such that $(X, Y) \in \mathcal{B}$ and $(Z, X) \in \mathcal{B}$ then $\left(X, Y \widehat{\otimes}_{\pi} Z\right) \in \mathcal{B} \mathcal{F}$ (Theorem 3). Our approach is based on a AMS Subject Classification [1991]: Primary 46A45.
characterization of pairs of Köthe spaces with property \mathcal{B} ([4], Theorem 3.3; see also [1] and Proposition 1 below), which is a modification of Vogt's result [9], Satz 1.5, where ℓ_{∞}-Köthe space $\lambda^{\infty}(B)$ is considered instead of $\lambda(B)$. Here we provide a direct proof of Proposition 1 in the spirit of [9] as suggested in [4]. The proof in [1] was based on a characterization of \mathcal{B} in terms of quasi-diagonal operators obtained in $([3,8,1])$. We observe (using an argument from [1]) that the quasi-diagonal characterization of \mathcal{B} itself can be obtained as a consequence of Proposition 1.

Let \mathbf{I} be a countable set, and let $A=\left(a_{i p}\right)_{i \in \mathbf{I}, p \in \mathbb{N}}$ be a matrix of real numbers such that $0 \leq a_{i p} \leq a_{i, p+1}$. A Köthe space $\lambda(A)$ is the space of all sequences $x=\left(x_{i}\right)$ of real (or complex) numbers such that $\|x\|_{p}=\sum_{i \in \mathbf{I}}\left|x_{i}\right| a_{i p}<\infty \quad \forall p \in \mathbb{N}$; regarded with the system of seminorms $\|x\|_{p}, p \in \mathbb{N}$ it is a Fréchet space. As usual, we denote the canonical basis of $\lambda(A)$ by $\left(e_{i}\right)_{i \in \mathbf{I}}$.

An operator $T: \lambda(A) \rightarrow \lambda(B)$ is called quasi-diagonal if there exist a map $m: i \rightarrow m(i)$ and a sequence of numbers $\left(t_{i}\right)$ such that $T\left(e_{i}\right)=t_{i} e_{m(i)}, \forall i \in \mathbf{I}$.

If X and Y are locally convex spaces we denote by $X \widehat{\otimes}_{\pi} Y$ the completion of their projective tensor product. In case $X=\lambda(A), A=\left(a_{i p}\right)_{i, p \in \mathbb{N}}$ and $Y=\lambda(B), B=$ $\left(b_{j p}\right)_{i, p \in \mathbb{N}}$ the space $X \widehat{\otimes}_{\pi} Y$ is naturally isomorphic to the space $\lambda(C), C=\left(c_{\nu p}\right), c_{\nu p}=$ $a_{i p} b_{j p}, \nu=(i, j) \in \mathbf{I}=\mathbb{N} \times \mathbb{N}$ (e.g. [10]).

We use the following notation for the operator seminorms of a linear operator T between Fréchet spaces X and Y (which may take as a value ∞):

$$
|T|_{p, q}:=\sup \left\{\|T x\|_{p}:\|x\|_{q} \leq 1\right\}
$$

Recall that the operator T is continuous if and only if there is a map $\pi: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
|T|_{p, \pi(p)}<\infty, \quad p \in \mathbb{N}
$$

while T is bounded if and only if there is r such that

$$
|T|_{q, r}<\infty, \quad q \in \mathbb{N}
$$

We refer to $[5,6,7]$ for terminology used, but not defined here.
Proposition 1 ([9, 4]) If $\lambda(A), A=\left(a_{i p}\right)$ and $\lambda(B), B=\left(b_{\nu q}\right)$ are Köthe spaces then $(\lambda(A), \lambda(B)) \in \mathcal{B}$ if and only if for each $\pi: \mathbb{N} \rightarrow \mathbb{N}$ there is $k \in \mathbb{N}$ such that for each
$r \in \mathbb{N}$ there are $q_{0} \in \mathbb{N}$ and $M>0$ such that

$$
\begin{equation*}
\frac{b_{\nu r}}{a_{i k}} \leq M \max _{1 \leq q \leq q_{0}}\left\{\frac{b_{\nu q}}{a_{i \pi(q)}}\right\} \tag{1}
\end{equation*}
$$

holds for all i, ν.
Proof. The necessity part follows from [9], Satz 1.1, if applied to the set of all one-dimensional operators $T:=e_{\nu} \otimes e_{i}^{\prime}$, since $\left|e_{\nu} \otimes e_{i}^{\prime}\right|_{q, \pi(q)}=\frac{b_{\nu q}}{a_{i \pi(q)}}$.

To prove that (1) is sufficient we fix an operator $T \in L(\lambda(A), \lambda(B))$, find $\pi(q)$ from the continuity of T and choose k as in (1). If $T e_{i}=\sum_{\nu=1}^{\infty} u_{\nu, i} e_{\nu}$ then $|T|_{q, \pi(q)}=$ $\sup _{i \in \mathbb{N}}\left\{\sum_{\nu=1}^{\infty}\left|u_{\nu, i}\right| \frac{b_{\nu q}}{a_{i \pi(q)}}\right\}<\infty$. Now,

$$
\begin{aligned}
|T|_{r, k} & =\sup _{i}\left\{\sum_{\nu=1}^{\infty}\left|u_{\nu, i}\right| \frac{b_{\nu r}}{a_{i k}}\right\} \leq M \sup _{i} \sum_{\nu=1}^{\infty}\left|u_{\nu, i}\right| \max _{1 \leq q \leq q_{0}}\left\{\frac{b_{\nu q}}{a_{i \pi(q)}}\right\} \\
& \leq M \sup _{i}\left\{\sum_{\nu=1}^{\infty}\left|u_{\nu, i}\right| \sum_{q=1}^{q_{0}} \frac{b_{\nu q}}{a_{i \pi(q)}}\right\} \leq M \sum_{q=1}^{q_{0}} \sup _{i}\left\{\sum_{\nu=1}^{\infty}\left|u_{\nu, i}\right| \frac{b_{\nu q}}{a_{i \pi(q)}}\right\} \\
& =\sum_{q=1}^{q_{0}} M|T|_{q, \pi(q)}<\infty
\end{aligned}
$$

This means T is bounded.
The following result generalizes the corresponding fact for nuclear spaces ([3, 8]); it is obtained in [1], and used there to prove Proposition 1. Now we observe (using an argument from ([1])) that it can be obtained as a corollary of Proposition 1.

Corollary $2 A$ pair of Köthe spaces $\lambda(A)$ and $\lambda(B)$ has the property \mathcal{B} if and only if each continuous quasi-diagonal operator from $\lambda(A)$ into $\lambda(B)$ is bounded.

Proof. Obviously it is enough to prove that if (1) fails then there exists a continuous unbounded quasi-diagonal operator from $\lambda(A)$ into $\lambda(B)$.

Suppose (1) fails; then there exists a map $q \rightarrow \pi(q)$ such that

$$
\forall k \exists r_{k} \forall n \in \mathbb{N} \exists i_{n}, \nu_{n} \quad: \quad \frac{b_{\nu_{n} r_{k}}}{a_{i_{n} k}} \geq n \max _{1 \leq q \leq n} \frac{b_{\nu_{n} q}}{a_{i_{n} \pi(q)}}
$$

where the sequences $\left(i_{n}\right)=\left(i_{n}(k)\right)$ and $\left(\nu_{n}\right)=\left(\nu_{n}(k)\right)$ depend on k.
There exist new sequences (for convenience we use the same notations (i_{n}) and (ν_{n})) such that the sequence $\left(i_{n}\right)$ is strictly increasing and for each k there exists a subsequence $\left(n_{j}\right)$ with $i_{n_{j}}=i_{n_{j}}(k), \nu_{n_{j}}=\nu_{n_{j}}(k), \forall j$. Indeed, let $\mathbb{N}=\cup_{s} N_{s}$ be a representation of \mathbb{N} as a sum of disjoint infinite subsets. Choose one after another elements $i_{n}=i_{k_{n}}(s)$ and $\nu_{n}=\nu_{k_{n}}(s)$ for $n \in N_{s}$ so that $i_{n}>i_{n-1}$.

Consider a quasi-diagonal operator $T: K(a) \rightarrow K(b)$ defined by

$$
T e_{i}=0 \quad \text { for } \quad i \neq i_{n}, \quad T e_{i_{n}}=t_{n} \tilde{e}_{\nu_{n}}
$$

where

$$
t_{n}^{-1}:=\max _{1 \leq q \leq n} \frac{b_{\nu_{n} q}}{a_{i_{n} \pi(q)}}
$$

By the choice of constants t_{n} the operator T is continuous. On the other hand for each k there exists r_{k} such that for some subsequence $\left(n_{j}\right)$ we have

$$
t_{n_{j}} b_{\nu_{n_{j}} r_{k}} / a_{i_{n_{j}} k} \geq n_{j}
$$

hence the operator T is unbounded.

Theorem 3 Suppose $A=\left(a_{n p}\right), B=\left(b_{i q}\right)$ and $C=\left(c_{j q}\right)$ are Köthe matrices and $\lambda(A), \lambda(B)$ and $\lambda(C)$ are the corresponding Köthe spaces. If $(\lambda(A), \lambda(B)) \in \mathcal{B}$ and $(\lambda(C), \lambda(A)) \in \mathcal{B}$ then $\left(\lambda(A), \lambda(B) \hat{\otimes}_{\pi} \lambda(C)\right) \in \mathcal{B} \mathcal{F}$.

Proof. The tensor product $\lambda(B) \hat{\otimes}_{\pi} \lambda(C)$ is isomorphic to the Köthe space generated by the matrix $D=\left(b_{i q} c_{j q}\right)$; we denote the elements of the canonical basis of $\lambda(D)$ by $e_{i j}$, then $\left|e_{i j}\right|_{q}=b_{i q} c_{j q}$.

Let $T: \lambda(A) \rightarrow \lambda(D)$ and $S: \lambda(D) \rightarrow \lambda(A)$ be arbitrary continuous operators, and let $\left(T_{n}^{i j}\right),\left(S_{i j}^{m}\right)$ be their matrix representations, that is $T e_{n}=\sum_{i j} T_{n}^{i j} e_{i j}, S e_{i j}=\sum_{m} S_{i j}^{m} e_{m}$. In order to prove the theorem we show that the composition $S T: \lambda(A) \rightarrow \lambda(A)$ is a bounded operator.

Since the operator S is continuous there is a map $\pi: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{m}\left|S_{i j}^{m}\right| a_{m p} \leq C_{p} b_{i \pi(p)} c_{j \pi(p)}, \quad(i, j) \in \mathbb{N}^{2} \tag{2}
\end{equation*}
$$

holds with some constant $C_{p}, p \in \mathbb{N}$.
Since $(\lambda(C), \lambda(A)) \in \mathcal{B}$, by Proposition 1 there is l such that for every $r \in \mathbb{N}$ there exist $p_{0} \in \mathbb{N}$ and $M>0$ such that

$$
\begin{equation*}
\frac{a_{m r}}{c_{j l}} \leq M \max _{1 \leq p \leq p_{0}}\left\{\frac{a_{m p}}{c_{j \pi(p)}}\right\} \tag{3}
\end{equation*}
$$

holds for all m, j.
Since the operator T is continuous there exists a map $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i j}\left|T_{n}^{i j}\right| b_{i q} c_{j q} \leq \tilde{C}_{q} a_{n \sigma(q)}, \quad n \in \mathbb{N} \tag{4}
\end{equation*}
$$

holds for any $q \in \mathbb{N}$ with some constant $\tilde{C}_{q}>0$. Without loss of generality we can assume that the above inequality remains true if $c_{j q}$ is replaced by $c_{j l}$ since the map σ and the constant \tilde{C} may be chosen so that $\sigma(q)=\sigma(l)$ and $\tilde{C}_{q}=\tilde{C}_{l}$ for $q \leq l$. Now, again by Proposition 1, the relation $(\lambda(A), \lambda(B)) \in \mathcal{B}$ implies that for the map σ there is $k \in \mathbb{N}$ such that for every $s \in \mathbb{N}$ there are $q_{0} \in \mathbb{N}$ and $M_{1}>0$ such that

$$
\begin{equation*}
\frac{b_{i s}}{a_{n k}} \leq M_{1} \max _{1 \leq q \leq q_{0}}\left\{\frac{b_{i q}}{a_{n \sigma(q)}}\right\}, \quad i, n \in \mathbb{N} \tag{5}
\end{equation*}
$$

Let $R=S T$, then $R e_{n}=\sum_{m}\left(\sum_{i j} T_{n}^{i j} S_{i j}^{m}\right) e_{m}$. By (3), (2), we have

$$
\begin{aligned}
\left\|R e_{n}\right\|_{r} & \leq \sum_{m} \sum_{i j}\left|T_{n}^{i j} S_{i j}^{m}\right| a_{m r} \leq \sum_{m} \sum_{i j}\left|T_{n}^{i j}\right|\left|S_{i j}^{m}\right| M \max _{1 \leq p \leq p_{0}}\left\{\frac{a_{m p}}{c_{j \pi(p)}}\right\} c_{j l} \\
& \leq M \sum_{p=1}^{p_{0}} \sum_{i j}\left|T_{n}^{i j}\right| C_{p} b_{i \pi(p)} c_{j l} .
\end{aligned}
$$

Now, by (5) with $s=\pi(p)$, we get

$$
\begin{aligned}
\left\|R e_{n}\right\|_{r} & \leq M \sum_{p=1}^{p_{0}} C_{p} \sum_{i j}\left|T_{n}^{i j}\right| M_{1}(\pi(p)) \max _{1 \leq q \leq q_{0}(\pi(p))}\left\{\frac{b_{i q}}{a_{n \sigma(q)}}\right\} a_{n k} c_{j l} \\
& \leq M \sum_{p=1}^{p_{0}} C_{p} M_{1}(\pi(p)) \sum_{q=1}^{q_{0}(\pi(p))} \sum_{i j}\left|T_{n}^{i j}\right| \frac{b_{i q}}{a_{n \sigma(q)}} a_{n k} c_{j l}
\end{aligned}
$$

Finally, applying (4) with $c_{j l}$ instead of $c_{j q}$, we have

$$
\left\|R e_{n}\right\|_{r} \leq\left[M \sum_{p=1}^{p_{0}} C_{p} M_{1}(\pi(p)) \sum_{q=1}^{q_{0}(\pi(p))} \tilde{C}_{q}\right] a_{n k}=D a_{n k}
$$

i.e. $|R|_{k, r} \leq D$, which means that the operator R is bounded. The theorem is proved.

References

[1] P.B.Djakov, M.S.Ramanujan, Bounded and unbounded operators between Köthe spaces, to appear in Studia Math.
[2] P. B. Djakov, T. Terzioğlu, M. Yurdakul, V. P. Zahariuta, Bounded operators and isomorphisms of Cartesian products of Fréchet spaces, Mich. Math. J., 45, 599-609, 1998.
[3] M.M.Dragilev, Riesz classes and multi-regular bases, (Russian), Theory of functions, functional analysis and their applications, Kharkov, vol. 15, 512-525, 1972.
[4] J. Krone, D. Vogt, The splitting relation for Köthe spaces, Math. Z., 190, 387-400, 1985.
[5] G. Köthe, Topological vector spaces I, Berlin-Heidelberg-New York, 1969.
[6] G. Köthe, Topological vector spaces II, Berlin-Heidelberg-New York, 1979.
[7] R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
[8] Z.Nurlu, T.Terzioğlu, Consequences of the existence of a non-compact operator, Manuscripta Math. 47, 1-12, 1984.
[9] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J.Reine. Angew. Math., 345, 182-200, 1983.
[10] V.P.Zahariuta, Linear Topologic Invariants and their applications to Isomorphic Classification of Generalized Power Spaces, Turkish Journal of Mathematics, 20, 237-289, 1996.

Department of Mathematics
Sofia University
1164 Sofia-BULGARIA
Ohio State University
Columbus, OH 43210, USA
e-mail: djakov@fmi.uni-sofia.bg
e-mail: djakov@math.ohio-state.edu
T. TERZİOĞLU

Sabancı University
İstanbul-TURKEY
e-mail:tosun@sabanciuniv.edu.tr
M. YURDAKUL

Department of Mathematics
Middle East Technical University
06531 Ankara, Turkey
e-mail: myur@metu.edu.tr
V. P. ZAHARIUTA

Department of Mathematics
Rostov State University
Rostov-on-Don-RUSSIA
Department of Mathematics
Middle East Technical University
06531 Ankara-TURKEY
e-mail: zaha@math.metu.edu.tr

