n-Commutator Groups

A. A. Mehrvarz and K. Azizi

Abstract

A sufficient condition such that any element of G^{\prime} (the commutator subgroup of $G)$ can be represented as a product of n commutators, was studied in [1]. In this article we study a necessary and sufficient condition such that any element of G^{\prime} can be represented as a product of n commutators, Let n be the smallest nature number such that any element of finite group G can be represented as a product of n commutators. A group G with this property will be called an n-commutator group, and n will be denoted by $c(G)$. Then $\frac{\ln \left(\left|G^{\prime}\right|\right)}{\ln (|G: Z(G)|)} \leq 2 c(G)$. In particular, if the all elements of G^{\prime} can be represented as a commutator, then $\left|G^{\prime}\right| \leq|G: Z(G)|^{2}$.

Key Words: Commutator subgroup, irreducible characters.

1. Introduction

Let G be a finite group and G^{\prime} be the commutator subgroup of G. Also, let $\operatorname{Irr}(G)$ be the set of all complex irreducible characters of G and $\operatorname{Lin}(G)=\{\chi \in \operatorname{Irr}(G) \mid \chi(1)=1\}$, $\operatorname{Irr}_{1}(G)=\operatorname{Irr}(G)-\operatorname{Lin}(G)$. We suppose that if $\chi \in \operatorname{Irr}(G)$, then $T(\chi)=\{g \in G \mid \chi(g)=$ $0\}$.

Definition 1. Let n be a natural number. Then a finite group G is called an n commutator group if any element of G^{\prime} can be represented as a product of n commutators, and no natural number fewer than n have this property. We then denote n by $c(G)$.

[^0]
2. Generalities

Lemma 1. Let χ be an irreducible character of G. Then, for any g and x in G,

$$
\begin{equation*}
\sum_{t \in G} \chi(g[t, x])=\frac{|G|}{\chi(1)} \chi(g x) \overline{\chi(x)} \tag{1}
\end{equation*}
$$

Proof. Let k_{s} be the class sum for an element $s \in G$. Then

$$
k_{s}=\frac{\left|G: C_{G}(s)\right|}{|G|} \sum_{t \in G} s^{t}
$$

We extend the character χ by linearity to $\mathbb{C} G$ and define a function

$$
\omega_{\chi}: Z(\mathbb{C} G) \longrightarrow \mathbb{C}
$$

by

$$
\omega_{\chi}(z)=\frac{\chi(z)}{\chi(1)}
$$

for any $z \in Z(\mathbb{C} G)$. Then it is clear that ω_{χ} is a homomorphism of $Z(\mathbb{C} G)$. Since

$$
\omega_{\chi}\left(k_{s}\right)=\frac{\left|G: C_{G}(s)\right|}{\chi(1)} \chi(s),
$$

it follows that for any $u, x \in G$,

$$
\begin{equation*}
\omega_{\chi}\left(k_{u} k_{x}\right)=\omega_{\chi}\left(k_{u}\right) \omega_{\chi}\left(k_{x}\right)=\frac{\left|G: C_{G}(u)\right|\left|G: C_{G}(x)\right|}{\chi(1)^{2}} \chi(u) \chi(x) \tag{2}
\end{equation*}
$$

Setting $t_{2} t_{1}^{-1}=t$, we get

$$
\begin{align*}
\omega_{\chi}\left(k_{u} k_{x}\right) & =\frac{\chi\left(k_{u} k_{x}\right)}{\chi(1)} \\
& =\frac{\left|G: C_{G}(u)\right|\left|G: C_{G}(x)\right|}{\chi(1)|G|^{2}} \sum_{t_{1}, t_{2} \in G} \chi\left(u x^{t_{2} t_{1}^{-1}}\right) \tag{3}\\
& =\frac{\left|G: C_{G}(u)\right|\left|G: C_{G}(x)\right|}{\chi(1)|G|} \sum_{t \in G} \chi\left(u x^{t}\right)
\end{align*}
$$

which, together with (2), yields

$$
\begin{equation*}
\sum_{t \in G} \chi\left(u x^{t}\right)=\frac{|G|}{\chi(1)} \chi(u) \chi(x) \tag{4}
\end{equation*}
$$

Replacing x by x^{-1} in (4) and observing that

$$
\chi\left(u\left(x^{-1}\right)^{t}\right)=\chi\left(u[t, x] x^{-1}\right)=\chi\left(x^{-1} u[t, x]\right)
$$

we have

$$
\sum_{t \in G} \chi\left(x^{-1} u[t, x]\right)=\frac{|G|}{\chi(1)} \chi(u) \overline{\chi(x)}
$$

Taking into account that $\chi(x g)=\chi(g x)$ and replacing $x^{-1} u$ by g in the last equality, we get the required relation.

Lemma 2. Let χ be an irreducible character of G. Then any element $g \in G$ and $x_{1}, x_{2}, \cdots, x_{n} \in G$,

$$
\begin{align*}
& \sum_{t_{1}, t_{2}, \cdots, t_{n} \in G} \chi\left(g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n}, x_{n}\right]\right) \\
& =\left(\frac{|G|}{\chi(1)}\right)^{n} \chi\left(g x_{1} x_{2} \cdots x_{n}\right) \overline{\chi\left(x_{1}\right) \chi\left(x_{2}\right) \cdots \chi\left(x_{n}\right)} \tag{5}
\end{align*}
$$

Proof. For $n=1$, the result is true by Lemma 1. Suppose that the lemma is valid for any $k<n$. Then for any $g, x_{1}, x_{2}, \cdots, x_{n-1} \in G$ we have

$$
\begin{aligned}
& \sum_{t_{1}, t_{2}, \cdots, t_{n-1} \in G} \chi\left(g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n-1}, x_{n-1}\right]\right) \\
= & \left(\frac{|G|}{\chi(1)}\right)^{n-1} \chi\left(g x_{1} x_{2} \cdots x_{n-1}\right) \overline{\chi\left(x_{1}\right) \chi\left(x_{2}\right) \cdots \chi\left(x_{n-1}\right)} .
\end{aligned}
$$

By Lemma 1,

$$
\begin{aligned}
& \sum_{t_{1}, t_{2}, \cdots, t_{n} \in G} \chi\left(g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n}, x_{n}\right]\right) \\
= & \sum_{t_{1}, t_{2}, \cdots, t_{n-1} \in G} \sum_{t_{n}} \chi\left(g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n-1}, x_{n-1}\right]\left[t_{n}, x_{n}\right]\right) \\
= & \sum_{t_{1}, t_{2}, \cdots, t_{n-1} \in G} \frac{|G|}{\chi(1)} \chi\left(g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n-1}, x_{n-1}\right] x_{n}\right) \overline{\chi\left(x_{n}\right)} \\
= & \frac{|G|}{\chi(1)} \sum_{t_{1}, t_{2}, \cdots, t_{n-1} \in G} \chi\left(x_{n} g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n-1}, x_{n-1}\right]\right) \overline{\chi\left(x_{n}\right)} .
\end{aligned}
$$

By induction,

$$
\begin{aligned}
& \sum_{t_{1}, t_{2}, \cdots, t_{n-1} \in G} \chi\left(x_{n} g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n-1}, x_{n-1}\right]\right) \\
= & \left(\frac{|G|}{\chi(1)}\right)^{n-1} \chi\left(x_{n} g x_{1} x_{2} \cdots x_{n-1}\right) \overline{\chi\left(x_{1}\right) \chi\left(x_{2}\right) \cdots \chi\left(x_{n-1}\right)},
\end{aligned}
$$

so that

$$
\begin{aligned}
& \sum_{t_{1}, t_{2}, \cdots, t_{n} \in G} \chi\left(g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n}, x_{n}\right]\right) \\
= & \left(\frac{|G|}{\chi(1)}\right)^{n} \chi\left(g x_{1} x_{2} \cdots x_{n}\right) \overline{\chi\left(x_{1}\right) \chi\left(x_{2}\right) \cdots \chi\left(x_{n}\right)} .
\end{aligned}
$$

Lemma 3. Let χ be an irreducible character of G. Then
a) For any natural number n and $g \in G$

$$
\sum_{g_{1} g_{2} \cdots g_{n}=g} \chi\left(g_{1}\right) \chi\left(g_{2}\right) \cdots \chi\left(g_{n}\right)=\left(\frac{|G|}{\chi(1)}\right)^{n-1} \chi(g) .
$$

b) For any $g \in G$,

$$
\sum_{\substack{t_{i}, x_{i} \in G \\ i \in\{1,2, \ldots, n\}}} \chi\left(g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n}, x_{n}\right]\right)=\left(\frac{|G|}{\chi(1)}\right)^{2 n} \chi(g) .
$$

Proof. a) The element

$$
e_{\chi}=\frac{\chi(1)}{|G|} \sum_{g \in G} \overline{\chi(g)} g
$$

is an idempotent of the algebra $Z(\mathbb{C} G)$. Since $e_{\chi}^{n}=e_{\chi}$, it follows that

$$
\begin{aligned}
& \frac{\chi(1)}{|G|} \sum_{g \in G} \overline{\chi(g)} g \\
= & \prod_{i=1}^{n}\left(\frac{\chi(1)}{|G|} \sum_{g_{i} \in G} \overline{\chi\left(g_{i}\right)} g_{i}\right) \\
= & \left(\frac{\chi(1)}{|G|}\right)^{n} \sum_{g_{i} \in G} \overline{\chi\left(g_{1}\right) \cdots \chi\left(g_{n}\right)} g_{1} \cdots g_{n} \\
= & \left(\frac{\chi(1)}{|G|}\right)^{n} \sum_{g \in G}\left(\sum_{g_{1} g_{2} \cdots g_{n}=g} \overline{\chi\left(g_{1}\right) \chi\left(g_{2}\right) \cdots \chi\left(g_{n}\right)}\right) g .
\end{aligned}
$$

Comparing the coefficients of g in the first and the last expressions, we get the required result.
b) Summing up equations (5) over $x_{1}, x_{2}, \cdots, x_{n} \in G$ we get

$$
\begin{align*}
& \sum_{t_{i}, x_{i} \in G} \chi\left(g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n}, x_{n}\right]\right)= \\
& \left(\frac{|G|}{\chi(1)}\right)^{n} \sum_{x_{1}, x_{2}, \cdots, x_{n} \in G} \chi\left(g x_{1} x_{2} \cdots x_{n}\right) \chi\left(x_{1}^{-1}\right) \chi\left(x_{2}^{-1}\right) \cdots \chi\left(x_{n}^{-1}\right)= \tag{7}\\
& \left(\sum_{x_{1}, x_{2}, \cdots, x_{n} \in G} \chi\left(g x_{1} x_{2} \cdots x_{n}\right) \chi\left(x_{n}^{-1}\right) \chi\left(x_{n-1}^{-1}\right) \cdots \chi\left(x_{1}^{-1}\right)\right)\left(\frac{|G|}{\chi(1)}\right)^{n}
\end{align*}
$$

Put

$$
u_{1}=g x_{1} \cdots x_{n}, u_{2}=x_{n}^{-1}, \cdots, u_{n+1}=x_{1}^{-1}
$$

Then $u_{1} \cdots u_{n+1}=g$, and the last expression in (7) can be rewritten as

$$
\left(\frac{|G|}{\chi(1)}\right)^{n} \sum_{u_{1} \cdots u_{n+1}=g} \chi\left(u_{1}\right) \chi\left(u_{2}\right) \cdots \chi\left(u_{n+1}\right)
$$

and hence, by part (a), it is equal to

$$
\left(\frac{|G|}{\chi(1)}\right)^{2 n} \chi(g)
$$

as required.

Theorem 1. Let G be a finite group. Then G is an n-commutator group if and only if

$$
\begin{equation*}
|G|^{2 n-1} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)^{2 n-1}} \tag{8}
\end{equation*}
$$

is a natural number for all $g \in G^{\prime}$, where n is the smallest natural number with this property.
Proof. Let $\rho=\sum_{\chi} \chi(1) \chi$ be the regular character of G. Multiplying both sides of (6) by $\chi(1)$ and summing over all $\chi \in \operatorname{Irr}(G)$, we get

$$
\begin{equation*}
\sum_{\substack{t_{i}, x_{i} \in G, i \in\{1,2, \cdots, n\}}} \rho\left(g\left[t_{1}, x_{1}\right]\left[t_{2}, x_{2}\right] \cdots\left[t_{n}, x_{n}\right]\right)=|G|^{2 n} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)^{2 n-1}} . \tag{9}
\end{equation*}
$$

Suppose that G is an n-commutator group. We now deduce from the first equality in (9) that if $g \in G^{\prime}$, then since g can be represented as a product of n commutators, we have

$$
|G|^{2 n-1} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)^{2 n-1}}=f_{n}(g)
$$

where $f_{n}(g)$ is the number of representations of g as a product of n commutators. Since, $f_{n}(g) \geq 1$ for any $g \in G^{\prime}$,

$$
|G|^{2 n-1} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)^{2 n-1}}
$$

is a natural number for any $g \in G^{\prime}$. If $|G|^{2 n-1} \sum_{\chi \in \operatorname{Irr}(G)} \frac{\chi(g)}{\chi(1)^{2 n-1}}$ is a natural number for all $g \in G^{\prime}$, where n is the smallest natural number with this property, then we deduce from the equality (9) that if $g \in G^{\prime}$, then g can be represented as a product of n commutators, and n is the smallest natural number with this property. Thus, G is an n-commutator group.

Remark 1: Let G be a finite group. Then by using the character table of G one can say that whether G is an n-commutator group or not, an observation that follows immediately from Theorem 1.

Gallagher proved in [1] that:
Theorem 2. (Gallagher) Let $\left\{x_{1}, \cdots, x_{n}\right\}$ be a complete system of representatives of the sets $T(\chi)\left(\chi \in \operatorname{Irr}_{1}(G)\right)$. Then any element of G^{\prime} can be represented as

$$
\left[g_{1}, x_{1}\right]\left[g_{2}, x_{2}\right] \cdots\left[g_{n}, x_{n}\right]
$$

where $g_{i} \in G, i \in\{1,2, \cdots, n\}$.
Corollary. For any finite group $G, c(G) \leq\left|\operatorname{Irr}_{1}(G)\right|$.
Proof. Proof is obvious by Theorem 2.
Proposition. Let G be a finite group. Then $\frac{\ln \left(\left|G^{\prime}\right|\right)}{\ln (|G: Z(G)|)} \leq 2 c(G)$. In particular, if $c(G)=1$, then $\left|G^{\prime}\right| \leq|G: Z(G)|^{2}$.
Proof. If T is a transversal for $Z(G)$ in G, an easy calculation shows that every commutator in G actually has the form $[s, t]$ for elements $s, t \in T$. Thus, by definition of $c(G)$ we have $\left|G^{\prime}\right| \leq(|T|)^{2 c(G)}=(|G: Z(G)|)^{2 c(G)}$. Thus, $\frac{\ln \left(\left|G^{\prime}\right|\right)}{\ln (|G: Z(G)|)} \leq 2 c(G)$.

Question: Let n be a natural number. Does there exist a finite group G such that $c(G)=n$?

Remark 2: Generalize this for some class of simple groups see attached paper. From Theorem 1 we have $c\left(A_{5}\right)=1$. But A_{5} is not solvable. Thus, it is not true that if $c(G)=1$, then G is solvable.

Conjecture: Let G be a finite solvable group. Then $c(G) \leq$ derived length of G.

References

[1] P. Gallagher, Group characters and commutators, Math. Z., 79 (1962), pp. 122-126.
[2] I. M. Isaacs, Character Theory of finite groups, Academic Press, New York, 1976.
A. A. MEHRVARZ and K. AZIZI

Department of Pure Mathematics
Tabriz University, Tabriz-IRAN
\&
Research Institute of Fundamental
Sciences Tabriz-IRAN

[^0]: ${ }^{1}$ Correspondence should be addressed to mehrvarz@tabrizu.ac.ir.
 ${ }^{2}$ This research is supported by the Research Institute for Fundamental Sciences, Tabriz, Iran.

