C–Closed Sets in L–Fuzzy Topological Spaces and Some of its Applications

Ali Ahmed Nouh

Abstract

We introduce and study the notion of C-closed sets in L-fuzzy topological spaces. Then, C-convergence theory for nets and ideals is established in terms of C-closedness. Finally, we give a new concept of C-continuity on L-fuzzy topological space by means of L-fuzzy C-closedness and investigate some of its properties and its relationships with other L-fuzzy mappings introduced previously. Then we systematically study the characterizations of this notion with the aid of the C-convergence of L-fuzzy nets and L-fuzzy ideals.

Keywords and phrases. L-fuzzy topology, Q_{α} -compactness, L-fuzzy C-closed set, L-fuzzy C-continuous mappings, L-fuzzy net, L-fuzzy ideal, C-convergence.

1. Introduction

Continuity and its weaker forms constitute an important and intensely investigated area in the field of general topological spaces. For example, the notions of almost continuous, N-continuous, H-continuous, C-continuous, weakly continuous and semicontinuous have been introduced by different authors, and their inter-relationships with other topological notions have been established. Most of these notions turn out to be local properties; hence the pointwise approach is generally preferred in their studies and definitions. The concept of C-continuity in general topology was introduced by Gentry and Hoyle [5] in 1970. The class of C-closed sets (compact and closed) was defined by Garg and Kumar [4] in 1989. Then several characterizations of C-continuous mappings in terms of C-closed sets are given. Recently, Dang, Behera and Nanda [3] extended the concept to fuzzy topology, and introduced the notion of fuzzy C-continuous function using the fuzzy compactness given by Mukherjee and Sinha [8]. However, the fuzzy compactness has some shortcomings, such as the Tychonoff product theorem does not

AMS Subject Classification 2000: 54A20, 54A40, 54C08, 54H12.

hold, and it is contradicts some kinds of separation axioms. Hence, the notion of fuzzy C-continuous function in [3] is unsatisfactory. In this paper, we first define the concept of L-fuzzy C-closed sets by means of the concept of L-fuzzy Q_{α} -compactness in the sense of Wang [11]. Then by making use of L-fuzzy C-closed sets we introduce and study the C-convergence theory of L-fuzzy nets and L-fuzzy ideals. Finally, we give a new definition of fuzzy C-closedness in L-fuzzy topology, and systematically discuss its characterizations and properties by making use of C-converges theory of L-fuzzy nets and L-fuzzy ideals.

2. Preliminaries

Throughout this paper, L denotes a complete, completely distributive lattice; M(L) denotes the set of all nonzero irreducible elements of L; and 0 and 1 denote the least and greatest element in L, respectively. L^X and L^Y denote the set of all L-fuzzy sets on crisp sets X and Y, respectively. Write $M(L^X) = \{x_\alpha \in L^X : x \in X, \alpha \in M(L)\}$, and call the elements in $M(L^X)$ molecules or L-fuzzy points on X. For $\varphi \subset L^X$, put $\varphi' = \{\mu' : \mu \in \varphi\}$.

Let (L^X, τ) be an L-fuzzy topological space, briefly L-fts. For each $\mu \in L^X$, $c\ell(\mu)$, $int(\mu)$ and μ' will denote the closure, interior and the complement of μ , respectively. 0_X and 1_X denote, respectively, the least and the greatest element of L^X . If $\mu \in L^X$ and $\mu = int(c\ell(\mu))$, then it is called regular open. The complement of regular open is called regular closed. The class of all L-fuzzy regular open (resp. regular closed) sets will be denoted by $RO(L^X, \tau)$ (resp. $RC(L^X, \tau)$). Let (X, T) be a crisp topological space and $\mu \in L^X$, if $\forall \alpha \in L$, $\{x \in X : \mu(x) \leq \alpha\} \in T'$, then we call μ a lower semi-continuous function. The set of all these functions is denoted by $\omega_L(T)$ and is an L-fuzzy topology on X generated by T.

Definition 2.1 [10]: Let (L^X, τ) be an L-fts and $x_{\alpha} \in M(L^X)$. $\lambda \in \tau'$ is called a remoted neighbourhood (R-nbd, for short) of x_{α} if $x_{\alpha} \not\leq \lambda$. The set of all R-nbds of x_{α} is denoted by $R_{x_{\alpha}}$.

Definition 2.2 [1,10]: Let (L^X, τ) be an L-fts and $\mu \in L^X$. $\Psi \subset \tau'$ (resp. $\Psi \subseteq RC(L^X, \tau)$) is called an α -remoted (resp. α -regular closed remoted) neighbourhood family of μ , briefly α -RF (resp. α -rcRF) of μ , if for each L-fuzzy point $x_{\alpha} \leq \mu$, there is $\eta \in \Psi$ such that $\eta \in R_{x_{\alpha}}$.

Definition 2.3 [9,10]: Let (L^X, τ) be an L-fts. Then $\mu \in L^X$ is called:

- (i) Q_α-compact (resp. nearly Q_α-compact) if for any α ∈ M(L) and every α-RF (resp. α-rcRF) Ψ of μ there exists a finite subfamily Ψ₀ of Ψ such that Ψ₀ is an α-RF of μ.
- (ii) Strong Q-compact (resp. Strong nearly Q-compact) if it is Q_{α} -compact (resp. nearly Q-compact) for all $\alpha \in M(L)$.

If 1_X is Q_{α} -compact (resp. nearly Q_{α} -compact, strong Q-compact, strong nearly Qcompact), then we say that (L^X, τ) is a Q_{α} -compact (resp. nearly Q_{α} -compact, strong Q-compact, strong nearly Q-compact) space.

Definition 2.4 [7]: An (L^X, τ) is said to be :

- (i) LFT₂-space (L-fuzzy Hausdorff space) iff $(\forall x_{\alpha}, y_{\gamma} \in M(L^X), x \neq y)$ $(\exists \eta \in R_{x_{\alpha}})(\exists \lambda \in R_{y_{\gamma}})(\eta \lor \lambda = 1_X).$
- (ii) LFR₂-space (L-fuzzy regular space) iff $(\forall x_{\alpha} \in M(L^X))(\forall \eta \in R_{x_{\alpha}})$ $(\exists \lambda \in R_{x_{\alpha}})(\exists \rho \in \tau')(\lambda \lor \rho = 1_X \text{ and } \eta \land \rho = 0_X).$
- (iii) Fully stratified if $\underline{\alpha} \in \tau$ for all $\alpha \in L$.
- (iv) Weakly induced if each nonempty element of τ is a lower semi-continuous mapping from $(X, [\tau])$ to L.
- (v) Induced if it is both fully stratified and weakly induced.

The family of all crisp open (resp. closed) sets in τ is denoted by $[\tau]$ (resp. $[\tau']$). Obviously, $(X, [\tau])$ is a crisp topological space.

Theorem 2.5 [7]: A topological space (X, T) is a T_2 -space iff an L-fts $(L^X, \omega_L(T))$ is a LF T_2 -space.

Theorem 2.6 [6]: For fully stratified L-fts (L^X, τ) and $\mu \in L^X$, if for each $\alpha \in M(L)$, $\mu_{w\alpha} \in [\tau']$, then $\mu \in \tau'$, where $\mu_{w\alpha} = \{x \in X : \mu(x) \ge \alpha \text{ and } \alpha \in M(L)\}.$

Theorem 2.7 [9]: Each strong Q-compact L-fuzzy set in a fully stratified LFT_2 -space is L-fuzzy closed.

Theorem 2.8 [9]: Every L-fuzzy closed set of a Q_{α} -compact (resp., strong Q-compact) L-fts is Q_{α} -compact (resp., strong Q-compact).

Theorem 2.9 [9]: Let (X,T) be a topological space. Then L-fuzzy set $\mu \in L^X$ is Q_{α} -compact in $(L^X, \omega_L(T))$ iff $\mu_{w\alpha}$ is compact in (X,T), for all $\alpha \in M(L)$.

Theorem 2.10 [9]: Let (L^Y, Δ) be an LFT_2 -space and $f : (L^X, \tau) \to (L^Y, \Delta)$ be an L-fuzzy continuous mapping [12] and $\mu \in L^X$ be a strong Q-compact in (L^X, τ) , then $f(\mu)$ is a strong Q-compact L-fuzzy set in (L^Y, Δ) .

Theorem 2.11 [9]: Let (L^X, τ) be an LFR_2 -space. Then every strong nearly Q-compact set is strong Q-compact.

Theorem 2.12 [9]: Let (L^X, τ) be an induced L-fts. Then the concepts of N-compactness and strong Q-compactness are equivalent.

Definition 2.13 [12,15]: Let (L^X, τ) be an L-fts. An L-fuzzy net in (L^X, τ) is a mapping $S: D \to M(L^X)$ denoted by $S = \{S(n), n \in D\}$, where D is a directed set. S is said to be in $\mu \in L^X$ if $\forall n \in D, S(n) \leq \mu$.

Definition 2.14 [12,13]: The non empty family $\mathcal{L} \subset L^X$ is called an L-fuzzy ideal if, for each $\mu_1, \mu_2 \in L^X$ the following satisfies:

- (i) If $\mu_1 \leq \mu_2$ and $\mu_2 \in \mathcal{L}$, then $\mu_1 \in \mathcal{L}$.
- (ii) If $\mu_1, \mu_2 \in \mathcal{L}$, then $\mu_1 \vee \mu_2 \in \mathcal{L}$.
- (iii) $1_X \notin \mathcal{L}$.

Theorem 2.15 [12,13]: Let (L^X, τ) be an L-fts, $\mu \in L^X$ and $x_\alpha \in M(L^X)$. Then $x_\alpha \leq c\ell(\mu)$ iff there exists an L-fuzzy net in μ (resp., an L-fuzzy ideal \mathcal{L} not containing μ) which converges to x_α (see Definitions 3.9 and 3.11).

Other unexplained notations and definitions in this paper can be found in [1,2,9,12,13].

3. L-fuzzy C-closure and C-interior operators.

In this section, we introduce and study the concepts of C–closure operator and C– interior operator by having the aid of the notion of Q_{α} –compactness and discuss their properties. Then we present the concepts of C–limit and C–cluster points of L–fuzzy nets and L–fuzzy ideals.

Definition 3.1: Let (L^X, τ) be an L-fts and $\mu \in L^X$. An L-fuzzy point $x_\alpha \in M(L^X)$ is called an C-adherent (resp. N^* -adherent) point of μ , written as $x_\alpha \leq C.c\ell(\mu)$ (resp. $x_\alpha \leq N^*.c\ell(\mu)$) iff $\mu \not\leq \lambda$ for each $\lambda \in CR_{x_\alpha}$ (resp. $\lambda \in N^*R_{x_\alpha}$), where CR_{x_α} (resp. $N^*R_{x_\alpha}$) is the family of all strong Q-compact (resp. strong nearly Q-compact) R-nbds of x_α . $C.c\ell(\mu)$ (resp. $N^*.c\ell(\mu)$) is said to be C-closure (resp. N^* -closure) of μ . If $C.c\ell(\mu) \leq \mu$ (resp. $N^*.c\ell(\mu) \leq \mu$), then μ is called L-fuzzy C-closed (resp. N^* -closed). The complement of an L-fuzzy C-closed (resp. N^* -closed) set is called L-fuzzy C-open (resp. N^* -open) set.

In [1], Chen and Wang have introduced the concept of L-fuzzy N-closed sets by using N-compactness due to Zhao [14]. It is easy to see that every L-fuzzy N^* -closed set is N-closed. So the properties and characterizations of N^* -closed set and its related notions are similar to those of N-closed set.

Theorem 3.2: Let (L^X, τ) be an L-fts and $\mu, \eta \in L^X$. Then the following statements hold:

- (i) $\mu \leq c\ell(\mu) \leq N^*.c\ell(\mu) \leq C.c\ell(\mu).$
- (ii) If $\mu \leq \eta$, then $C.c\ell(\mu) \leq C.c\ell(\eta)$.
- (iii) $C.c\ell(C.c\ell(\mu)) = C.c\ell(\mu).$
- (iv) $C.c\ell(\mu) = \wedge \{ \rho \in L^X : \rho \text{ is a C-closed set containing } \mu \}.$

Proof: It is similar to that of Theorem 3.1 in [2].

Theorem 3.3: Let (L^X, τ) be an L-fts. The following statements hold:

- (i) 1_X and 0_X are both C-closed.
- (ii) Every strong *Q*-compact closed set is C-closed.
- (iii) The union of finite C-closed sets is C-closed.
- (iv) The intersection of arbitrary C-closed sets is C-closed.
- (v) $\mu \in L^X$ is C-closed iff there exists $\eta \in CR_{x_\alpha}$ such that $\mu \leq \eta$ for each $x_\alpha \in M(L^X)$ with $x_\alpha \nleq \mu$.

Proof: It is similar to that of Theorem 3.2 in [2].

Theorem 3.4: Let (L^X, τ) be an L-fts and $\mu \in L^X$. Then the families

$$\tau_C = \{\mu \in L^X : \mu' = C.c\ell(\mu')\} \text{ and } \tau_{N^*} = \{\mu \in L^X : \mu' = N^*.c\ell(\mu')\}$$

of all L-fuzzy C-open and N^* -open sets in X are L-fuzzy topologies on X associated with τ . We call (L^X, τ_C) and (L^X, τ_{N^*}) L-fuzzy C-space and L-fuzzy N^* -space, respectively, induced by (L^X, τ) .

Proof: It is an immediate consequece of Definition 3.1 and Theorems 3.2 and 3.3.

Theorem 3.5: Let (L^X, τ) be an L-fts. Then

- (i) $\tau_C \leq \tau_{N^*} \leq \tau$.
- (ii) If (L^X, τ) is strong Q-compact (resp. strong nearly Q-compact), then $\tau = \tau_C$ (resp. $\tau = \tau_{N^*}$).
- (iii) If (L^X, τ) is LFR_2 -space, then $\tau_C = \tau_{N^*}$.
- (iv) If (L^X, τ) is induced L-fts, then $\tau_{N^*} = \tau_N[1]$.

Proof: Follows from Theorems 2.11, 2.12 and 3.4.

Definition 3.6: Let (L^X, τ) be an L-fts, $\mu \in L^X$ and $C.int(\mu) = \lor \{\rho \in L^X : \rho \text{ is an } L$ -fuzzy C-open set contained in μ }. We say that $C.int(\mu)$ is the C-interior of μ .

The following theorem shows the relationships between C–closure operator and C–interior operator.

Theorem 3.7: Let (L^X, τ) be an L-fts and $\mu \in L^X$. Then the following are true.

- (i) μ is C-open iff $\mu = C.int(\mu)$.
- (ii) $C.int(\mu) \leq int(\mu) \leq \mu$.
- (iii) $C.int(\mu) = (C.c\ell(\mu'))'.$
- (iii) If $\eta \in L^X$ and $\mu \leq \eta$, then $C.int(\mu) \leq C.int(\eta)$.
- (iv) $C.int(C.int(\mu)) = C.int(\mu)$.

Dually, we have the following results.

Theorem 3.8: Let (L^X, τ) be an L-fts. The following statements hold:

- (i) 1_X and 0_X are both C-open.
- (ii) The intersection of finite C-open sets is C-open.
- (iii) The union of arbitrary C-open sets is C-open.

Definition 3.9: Let S be an L-fuzzy net in an L-fts (L^X, τ) and $x_{\alpha} \in M(L^X)$. Then x_{α} is said to be a:

- (i) limit point of S [12] or S converges to x_{α} , in symbol $S \to x_{\alpha}$, if $(\forall \lambda \in R_{x_{\alpha}})(\exists n \in D)(\forall m \in D, m \ge n)(S(m) \not\le \lambda).$
- (ii) C-limit point of S or S C-converges to x_{α} , in symbol $\mathcal{S} \xrightarrow{C} x_{\alpha}$, if $(\forall \lambda \in CR_{x_{\alpha}})(\exists n \in D)(\forall m \in D, m \ge n)(S(m) \not\le \lambda).$

The union of all limit (resp. C-limit) points of S is denoted by lim(S) (resp. C.lim(S)).

Proposition 3.10: Suppose that S is an L-fuzzy net in (L^X, τ) , $\mu \in L^X$ and $x_{\alpha} \in M(L^X)$. Then the following results are true:

- (i) $x_{\alpha} \leq C.lim(S)$ iff $\mathcal{S} \xrightarrow{C} x_{\alpha}$.
- (ii) $lim(S) \leq C.lim(S)$.
- (iii) $x_{\alpha} \leq C.c\ell(\mu)$ iff there is an L-fuzzy net in μ which C-converges to x_{α} .
- (iv) C.lim(S) is an L-fuzzy C-closed set in L^X .

Proof: (i) Let $\mathcal{S} \xrightarrow{C} x_{\alpha}$, so by definition $x_{\alpha} \leq C.lim(S)$. Conversely, let $x_{\alpha} \leq C.lim(S)$ and $\lambda \in CR_{x_{\alpha}}$. Since $x_{\alpha} \not\leq \lambda$, so we have $C.lim(S) \geq \alpha > \lambda(x)$. Thus $C.lim(S) \not\leq \lambda$. Therefore there exists $y_{\beta} \in M(L^X)$ such that $\mathcal{S} \xrightarrow{C} y_{\beta}$, but $y_{\beta} \not\leq \lambda$ and so $\lambda \in CR_{y_{\beta}}$. Hence $(\exists n \in D)(\forall m \in D, m \geq n)(S(m) \not\leq \lambda)$. Thus $\mathcal{S} \xrightarrow{C} x_{\alpha}$.

(ii) Let $x_{\alpha} \leq lim(S)$ and $\eta \in CR_{x_{\alpha}}$. Since $CR_{x_{\alpha}} \leq R_{x_{\alpha}}$, then $\eta \in R_{x_{\alpha}}$. And since $x_{\alpha} \leq lim(S)$, then $(\forall \lambda \in R_{x_{\alpha}})(\exists n \in D)(\forall m \in D, m \geq n)(S(m) \not\leq \lambda)$ and so $S(m) \not\leq \eta$. Hence $x_{\alpha} \leq C.lim(S)$. So $lim(S) \leq C.lim(S)$.

(iii) Let $x_{\alpha} \leq C.c\ell(\mu)$. Then $(\forall \lambda \in CR_{x_{\alpha}})(\mu \not\leq \lambda)$ and so there exists $\alpha(\mu, \lambda) \in L \setminus \{0\}$ such that $x_{\alpha(\mu,\lambda)} \leq \mu$ and $x_{\alpha(\mu,\lambda)} \not\leq \lambda$. Since the pair $(CR_{x_{\alpha}}, \geq)$ is a directed set, we can define an L-fuzzy net $S: CR_{x_{\alpha}} \to M(L^X)$ given by $S(\lambda) = x_{\alpha(\mu,\lambda)}, \forall \lambda \in CR_{x_{\alpha}}$. Then S is an L-fuzzy net in μ . Now let $\rho \in CR_{x_{\alpha}}$ such that $\rho \geq \lambda$, so we have the situation in which there exists $S(\rho) = x_{\alpha(\mu,\rho)} > \rho \geq \lambda$. Then $x_{\alpha(\mu,\rho)} \not\leq \lambda$. So $\mathcal{S} \xrightarrow{C} x_{\alpha}$. Conversely, let S be an L-fuzzy net in μ with $\mathcal{S} \xrightarrow{C} x_{\alpha}$. Then $(\forall \lambda \in CR_{x_{\alpha}})(\exists n \in D)(\forall m \in D, m \geq n)(S(m) \not\leq \lambda)$. Since S is an L-fuzzy net in μ , then $\mu \geq S(m) > \lambda$. Hence $(\mu \not\leq \lambda)(\forall \lambda \in CR_{x_{\alpha}})$. So $x_{\alpha} \leq C.c\ell(\mu)$.

(iv) Let $x_{\alpha} \leq C.c\ell(C.lim(S))$ and $\lambda \in CR_{x_{\alpha}}$. Then $C.lim(S) \not\leq \lambda$. So there exists $y_{\beta} \in M(L^X)$ such that $y_{\beta} \leq C.lim(S)$ and $y_{\beta} \not\leq \lambda$. Then $(\forall \rho \in CR_{y_{\beta}})(\exists n \in D)(\forall m \in D, m \geq n)(S(m) \not\leq \rho)$ and so $S(m) \not\leq \lambda$. Hence $x_{\alpha} \leq C.lim(S)$. Thus $C.c\ell(C.lim(S)) \leq C.lim(S)$ and so C.lim(S) is a L-fuzzy C-closed set.

Definition 3.11: Let \mathcal{L} be an L-fuzzy ideal in an L-fts (L^X, τ) and $x_{\alpha} \in M(L^X)$. Then x_{α} is said to be:

- (i) a limit point of \mathcal{L} [13] or \mathcal{L} converges to x_{α} , in symbol $\mathcal{L} \to x_{\alpha}$, if $R_{x_{\alpha}} \subseteq \mathcal{L}$.
- (ii) C-limit point of \mathcal{L} or \mathcal{L} C-converges to x_{α} , in symbol $\mathcal{L} \xrightarrow{C} x_{\alpha}$, if $CR_{x_{\alpha}} \subseteq \mathcal{L}$.

The union of all limit points (resp., C-limit points) of \mathcal{L} is denoted by $lim(\mathcal{L})$ (resp. $C.lim(\mathcal{L})$).

Proposition 3.12: Suppose that \mathcal{L} is an L-fuzzy ideal in (L^X, τ) , $\mu \in L^X$ and $x_\alpha \in M(L^X)$. Then the following results are true:

- (i) $x_{\alpha} \leq C.lim(\mathcal{L})$ iff $\mathcal{L} \xrightarrow{C} x_{\alpha}$.
- (ii) $lim(\mathcal{L}) \leq C.lim(\mathcal{L}).$
- (iii) $x_{\alpha} \leq C.c\ell(\mu)$ iff there is an L-fuzzy ideal \mathcal{L} which C-converges to x_{α} and $\mu \not\leq \mathcal{L}$.
- (iv) $C.lim(\mathcal{L})$ is an L-fuzzy C-closed set in L^X .

Proof: The proof of the statements (i), (ii) and (iv) are similar to the correspondence statements of Proposition 3.10.

(iii) Let $x_{\alpha} \leq C.c\ell(\mu)$. Let $\mathcal{L}(CR_{x_{\alpha}}) = \{\rho \in L^X : \exists \lambda \in CR_{x_{\alpha}} \ni \rho \leq \lambda\}$. It easy to show that $\mathcal{L}(CR_{x_{\alpha}})$ is an L-fuzzy ideal. Now we show that $\mu \notin \mathcal{L}(CR_{x_{\alpha}})$. Since $x_{\alpha} \leq C.c\ell(\mu)$, then for each $\lambda \in CR_{x_{\alpha}}, \mu \not\leq \lambda$. So by definition of $\mathcal{L}(CR_{x_{\alpha}})$ we have $\mu \notin \mathcal{L}(CR_{x_{\alpha}})$. Finally, we show that $\mathcal{L} \xrightarrow{C} x_{\alpha}$. Let $\lambda \in CR_{x_{\alpha}}$ and since $\lambda \leq \lambda$, then $\lambda \in \mathcal{L}(CR_{x_{\alpha}})$. So $CR_{x_{\alpha}} \subseteq \mathcal{L}(CR_{x_{\alpha}})$. Thus $\mathcal{L} \xrightarrow{C} x_{\alpha}$. Conversely, let \mathcal{L} be an L-fuzzy ideal, $\mu \notin \mathcal{L}$ and $\mathcal{L} \xrightarrow{C} x_{\alpha}$. Then for each $\lambda \in CR_{x_{\alpha}}, \lambda \in \mathcal{L}$. Since $\lambda \in \mathcal{L}, \mu \notin \mathcal{L}$, then $\mu \not\leq \lambda$ and so $x_{\alpha} \leq C.c\ell(\mu)$.

4. L-fuzzy C-continuous mappings.

Definition 4.1: An L-fuzzy mapping $f: (L^X, \tau) \to (L^Y, \Delta)$ is said to be :

- (i) An L-fuzzy C-continuous if $f^{-1}(\eta) \in \tau'$ for each strong Q-compact L-fuzzy closed set η in L^Y .
- (ii) An L-fuzzy C-continuous at L-fuzzy point $x_{\alpha} \in M(L^X)$ if $f^{-1}(\lambda) \in R_{x_{\alpha}}$ for each $\lambda \in CR_{f(x_{\alpha})}$.

Theorem 4.2: A mapping $f : (X, T_1) \to (Y, T_2)$ is C-continuous iff an L-fuzzy mapping $f : (L^X, \omega_L(T_1)) \to (L^Y, \omega_L(T_2))$ is L-fuzzy C-continuous.

Proof: Let $f : (L^X, T_1) \to (L^Y, T_2)$ be C-continuous and let $\mu \in L^Y$ be strong Q-compact L-fuzzy closed. Then by Theorem 3.2 in [6] and Theorem 2.9, we have $\mu_{w_{\alpha}} \subseteq Y$ is compact and closed in (Y, T_2) , $\forall \alpha \in M(L)$. Since $f^{-1}(\mu_{w_{\alpha}}) = (f^{-1}(\mu))_{w_{\alpha}}$, then $f^{-1}(\mu_{w_{\alpha}}) \in T_1'$ for each $\alpha \in M(L)$ and so $f^{-1}(\mu) \in \omega_L(T_1') = (\omega_L(T_1))'$. Thus $f : (L^X, \omega_L(T_1)) \to (L^Y, \omega_L(T_2))$ is L-fuzzy C-continuous. Conversely; let $f : (L^X, \omega_L(T_1)) \to (L^Y, \omega_L(T_2))$ be L-fuzzy C-continuous and let $A \subseteq Y$ be compact and closed. Then, by Theorem 2.9, $1_A \in L^Y$ is Q_{α} -compact and L-fuzzy closed in $(L^Y, \omega_L(T_2))$. Since $1_{f^{-1}(A)} = f^{-1}(1_A) \in \omega_L(T_1')$ so $f^{-1}(A) \in T_1'$. Hence $f : (X, T_1) \to (Y, T_2)$ is C-continuous.

Theorem 4.3: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be an L-fuzzy mapping. Then the following are equivalent:

- (i) f is L-fuzzy C-continuous;
- (ii) f is L-fuzzy C-continuous at x_{α} for each L-fuzzy point $x_{\alpha} \in M(L^X)$;

- (iii) For each $\eta \in \Delta$ with η' is strong Q-compact, then $f^{-1}(\eta) \in \tau$. These statements are implied by
- (iv) If $\eta \in L^Y$ is strong Q-compact, then $f^{-1}(\eta) \in \tau'$.

Moreover, if (L^Y, Δ) is fully stratified LFT_2 -space, all the statements are equivalent.

Proof: (i) \implies (ii) Suppose that f is L-fuzzy C-continuous, $x_{\alpha} \in M(L^X)$ and $\lambda \in CR_{f(x_{\alpha})}$, then $f^{-1}(\lambda) \in \tau'$. Since $f(x_{\alpha}) \not\leq \lambda$ is equivalent to $x_{\alpha} \not\leq f^{-1}(\lambda)$, so $f^{-1}(\lambda) \in R_{x_{\alpha}}$, and hence f is L-fuzzy C-continuous at x_{α} .

(ii) \implies (i) Let f be an L-fuzzy C-continuous at x_{α} for each $x_{\alpha} \in M(L^X)$. If f is not L-fuzzy C-continuous, then there is C-closed L-fuzzy set $\eta \in L^Y$ with $c\ell(f^{-1}(\eta)) \not\leq f^{-1}(\eta)$. Then there exists $x_{\alpha} \in M(L^X)$ such that $x_{\alpha} \leq c\ell(f^{-1}(\eta))$ and $x_{\alpha} \not\leq f^{-1}(\eta)$. Since $x_{\alpha} \not\leq f^{-1}(\eta)$ implies that $f(x_{\alpha}) \not\leq \eta$, so $\eta \in CR_{f(x_{\alpha})}$. But $f^{-1}(\eta) \notin R_{x_{\alpha}}$, a contradiction. Therefore, f must be L-fuzzy C-continuous.

 $(i) \Leftrightarrow (iii)$ Follows straightforward from Definition 4.1.

 $(iv) \implies (iii)$ Let $\eta \in \Delta$ with η' is strong *Q*-compact. By (iv), we have $f^{-1}(\eta') \in \tau'$. Thus, $f^{-1}(\eta) = (f^{-1}(\eta'))' \in \tau$.

Now suppose that (L^Y, Δ) is fully stratified LFT_2 -space.

(*iii*) \implies (*iv*) Let $\eta \in L^Y$ be strong *Q*-compact set. Since (L^Y, Δ) is fully stratified LFT_2 -space, then $\eta \in \Delta'$ and so $\eta' \in \Delta$. By (iii), $f^{-1}(\eta') \in \tau$. Thus $f^{-1}(\eta) = (f^{-1}(\eta'))' \in \tau'$.

By view of Theorems 4.2 and 4.3 the following example shows that LFT_2 is necessary when showing (i) implies (iii) in the above Theorem.

Example 4.4: Let $X = \{1, 2, 3\}, Y = R, \tau = \omega_L(S)$, where $S = \{X, \emptyset, \{3\}, \{2, 3\}\}$ and $\Delta = \omega_L(T)$, where T be a topology on Y generated by $\{(-\infty, -r) \cup (r, \infty) : r \in Y\}$. Then the mapping $f : (X, S) \to (Y, T)$ defined by f(x) = x for each $x \in X$ is C-continuous (See, Example 1 in [5]). Hence by Theorem 4.2, the mapping $f : (L^X, \omega_L(S)) \to (L^Y, \omega(L(T)))$ is L-fuzzy C-continuous but does not satisfy statement (iii) in Theorem 4.3.

Theorem 4.5: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be an surjective L-fuzzy mapping. Then the following conditions are equivalent:

(i) f is L-fuzzy C-continuous;

- (ii) For each $\mu \in L^X$, $f(c\ell(\mu)) \leq C.c\ell(f(\mu))$.
- (iii) For each $\eta \in L^Y$, $c\ell(f^{-1}(\eta)) \leq f^{-1}(C.c\ell(\eta))$.
- (iv) For each $\eta \in L^Y$, $f^{-1}(C.int(\eta)) \leq int(f^{-1}(\eta))$.
- (v) $f^{-1}(\rho)$ is L-fuzzy open in L^X , for each L-fuzzy C-open set ρ in L^Y .
- (vi) $f^{-1}(\lambda)$ is L-fuzzy closed in L^X , for each L-fuzzy C-closed set λ in L^Y .

Proof: (i) \implies (ii) Let $\mu \in L^X$ and $x_\alpha \in M(L^X)$ with $x_\alpha \leq c\ell(\mu)$. Then $f(x_\alpha) \leq f(c\ell(\mu))$. Let $\lambda \in CR_{f(x_\alpha)}$. So by (i), $f^{-1}(\lambda) \in R_{x_\alpha}$. Since $x_\alpha \leq c\ell(\mu)$ and $f^{-1}(\lambda) \in R_{x_\alpha}$, then $\mu \not\leq f^{-1}(\lambda)$. Thus $f(\mu) \not\leq \lambda$ and $\lambda \in CR_{f(x_\alpha)}$ and so $f(x_\alpha) \leq C.c\ell(f(\mu))$. Hence $f(c\ell(\mu)) \leq C.c\ell(f(\mu))$.

 $\begin{array}{ll} (ii) \implies (iii) \ \mathrm{Let} \ \eta \in L^Y. \ \mathrm{Then} \ f^{-1}(\eta) \in L^X. \ \mathrm{By} \ (ii), \ \mathrm{we} \ \mathrm{have} \ f(c\ell(f^{-1}(\eta)) \leq C.c\ell(f^{-1}(\eta))) \leq C.c\ell(\eta) \ \mathrm{and} \ \mathrm{so} \ f(c\ell(f^{-1}(\eta))) \leq C.c\ell(\eta) \ \mathrm{Thus} \ f^{-1}f(c\ell(f^{-1}(\eta))) \leq f^{-1}(C.c\ell(\eta)). \ \mathrm{Since} \ c\ell(f^{-1}(\eta)) \leq f^{-1}f(c\ell(f^{-1}(\eta))), \ \mathrm{then} \ c\ell(f^{-1}(\eta)) \leq f^{-1}(C.c\ell(\eta)). \end{array}$

 $\begin{array}{l} (iii) \implies (iv) \ \text{Let} \ \eta \in L^Y. \ \text{By} \ (iii), \ c\ell(f^{-1}(\eta')) \leq f^{-1}(C.c\ell(\eta')). \ \text{Since} \ c\ell(f^{-1}(\eta')) = \\ c\ell(f^{-1}(\eta)') = (int(f^{-1}(\eta)))' \ \text{and} \ f^{-1}(C.c\ell(\eta')) = (f^{-1}(C.int(\eta)))'. \ \text{So}, \ (int(f^{-1}(\eta)))' \leq \\ (f^{-1}(C.int(\eta)))' \ \text{and} \ \text{by the complement}, \ int(f^{-1}(\eta)) \geq f^{-1}(C.int(\eta)). \end{array}$

 $(iv) \implies (v)$ Let ρ be C-open in L^Y . Then $f^{-1}(\rho) = f^{-1}(C.int(\rho))$ and by (iv), $f^{-1}(C.int(\rho)) \leq int(f^{-1}(\rho))$, so $f^{-1}(\rho) \leq int(f^{-1}(\rho))$. Thus $f^{-1}(\rho) \in \tau$.

 $(v) \implies (vi)$ Let λ be C-closed in L^Y . By (v), $f^{-1}(\lambda') \in \tau$. Then $(f^{-1}(\lambda))' = f^{-1}(\lambda') \in \tau$. So $f^{-1}(\lambda) \in \tau'$.

 $(vi) \implies (i)$ Let η be strongly Q-compact and closed set in L^Y . Then by Theorem 3.3 (ii), we have η is C-closed set in L^Y . Hence by (vi), $f^{-1}(\eta) \in \tau'$. Hence f is L-fuzzy C-continuous.

Theorem 4.6: Every L-fuzzy continuous mapping in the sense of Wang [12] is L-fuzzy C-continuous.

Proof : Straightforward.

By view of Theorems 4.2 and 4.6 the following example shows that not every L–fuzzy C–continuous mapping is L–fuzzy continuous.

Example 4.7: Let R be the set of reals with the usual topology T_U and define f:

 $(R, T_U) \rightarrow (R, T_U)$ by

$$f(x) = \begin{cases} \frac{1}{x} & : & x \neq 0\\ \frac{1}{2} & : & x = 0. \end{cases}$$

Then f is C-continuous but not continuous (See, Example 2 in [5]). Hence by Theorem 4.2, $f : (L^R, \omega_L(T_U)) \to (L^R, \omega_L(T_U))$ is L-fuzzy C-continuous but not L-fuzzy continuous.

In the following two Theorems we discuss the conditions which the L–fuzzy C–continuity is equivalent to the L–fuzzy continuity.

Theorem 4.8: A mapping $f : (L^X, \tau) \to (L^Y, \Delta_C)$ is L-fuzzy continuous iff it is L-fuzzy C-continuous.

Proof: Since $\Delta'_C \leq \Delta'$, then necessity is evident. Now, suppose that f is L-fuzzy C-continuous and $\eta \in \Delta'_C$. Then by Theorem 4.5 (iii) we have $f^{-1}(\eta) = f^{-1}(C.c\ell(\eta)) \geq c\ell(f^{-1}(\eta))$ and so $f^{-1}(\eta) \in \tau'$.

Theorem 4.9: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be an L-fuzzy mapping and (L^Y, Δ) be strong Q-compact space. Then f is L-fuzzy continuous iff f is L-fuzzy C-continuous.

Proof: By Theorem 4.6 we need only to investigate the sufficiency. Let $\eta \in \Delta'$. Since (L^Y, Δ) is strong *Q*-compact then, by Theorem 2.8, η is strong *Q*-compact and so η is L-fuzzy C-closed set. By L-fuzzy C-continuity of f, we have $f^{-1}(\eta) \in \tau'$. Hence f is L-fuzzy continuous.

In [1] Chen and Wang have introduced and studied the concept of L-fuzzy Ncontinuous mapping by using nearly N-compactness due to Chen and Wang [1]. Here we redefine this concept by using strong nearly Q-compactness due to Nouh [9]. However, its detailed treatment is beyond the scope of this paper and will be dealt elsewhere.

Definition 4.10: An L-fuzzy mapping $f: (L^X, \tau) \to (L^Y, \Delta)$ is said to be :

- (i) An L-fuzzy N^* -continuous if $f^{-1}(\eta) \in \tau'$ for each strong nearly Q-compact L-fuzzy closed set η in L^Y .
- (ii) An L-fuzzy N^* -continuous at L-fuzzy point $x_{\alpha} \in M(L^X)$ if $f^{-1}(\lambda) \in R_{x_{\alpha}}$ for each $\lambda \in N^* R_{f(x_{\alpha})}$.

Theorem 4.11: Every L-fuzzy N^* -continuous mapping is L-fuzzy N-continuous in the sense of Chen and Wang [1].

Proof: Follows from the fact that every N-compact L-fuzzy set is strong Q-compact.

The converse of Theorem 4.11 is not true in general as can be seen from Example 1 in [15]. However, we have the following result.

Theorem 4.12: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be an L-fuzzy mapping and (L^Y, Δ) be induced L-fts. Then f is L-fuzzy N^{*}-continuous iff f is L-fuzzy N-continuous.

Proof: Follows from Theorems 2.12 and 4.11.

Theorem 4.13: Every L-fuzzy N^* -continuous mapping is L-fuzzy C-continuous.

Proof: Follows from the fact that every strong Q-compact set is strong nearly Q-compact.

Theorem 4.14: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be an L-fuzzy mapping and (L^Y, Δ) be LF R_2 -space. Then f is L-fuzzy N^* -continuous iff f is L-fuzzy C-continuous.

Proof: Follows from Theorems 2.11 and 4.13.

Remark 4.15: For an L-fuzzy mapping $f : (L^X, \tau) \to (L^Y, \Delta)$, we obtain the following implications:

L–fuzzy continuity \Rightarrow L–fuzzy $N^*-{\rm continuity}$ \Rightarrow L–fuzzy C–continuity.

The following counterexample shows that none of these implications are reversible.

Counterexample 4.16: Let (L^X, τ) and (L^X, Δ) be two L-fts's, where (L^X, τ) is fully stratified LFT_2 and (L^X, Δ) is not LFR_2 . Let $f : (L^X, \tau) \to (L^X, \Delta)$ be the identity mapping. Then :

- (i) If Δ is strictly finer than τ and (L^X, τ) is LFR_2 , then f is L-fuzzy N*-continuous but not L-fuzzy continuous.
- (ii) If $\tau \neq \Delta$ and (L^X, τ) is not LFR_2 , then f is L-fuzzy C-continuous but not L-fuzzy N^* -continuous.

However, if (L^Y, Δ) is strong Q-compact (resp. LFR_2) space, then Theorem 4.9 (resp. Theorem 4.14) implies that the concepts of L-fuzzy continuity (resp. N^* -continuity) and L-fuzzy C-continuity are equivalent.

Definition 4.17 [1]: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be an L-fuzzy mapping and $A \subseteq X$. Define an L-fuzzy mapping $f|_A : L^A \to L^Y$ as follows:

 $(f|_A)(\mu) = f(\mu) \wedge 1_A = f(\mu^*)$, for each $\mu \in L^A$

And call $f|_A$ the restriction of f on A. Where μ^* denote the extension of μ in L^X , that is for each $x \in X$,

$$\mu^*(x) = \begin{cases} \mu(x) & : & x \in A \\ 0 & : & x \notin A \end{cases}$$

Theorem 4.18: If $f: (L^X, \tau) \to (L^Y, \Delta)$ is an L-fuzzy C-continuous and $A \subseteq X$, then $f|_A: (L^A, \tau_A) \to (L^Y, \Delta)$ is an L-fuzzy C-continuous mapping.

Proof: Let $\mu \in L^Y$ be C-closed. Since f is L-fuzzy C-continuous, so $f^{-1}(\mu) \in \tau'$ and $(f|_A)^{-1}(\mu) = f^{-1}(\mu) \wedge 1_A \in \tau'_A$. Hence $f|_A : (L^A, \tau_A) \to (L^Y, \Delta)$ is L-fuzzy Ccontinuous.

The composition of two L-fuzzy C-continuous mappings need not be L-fuzzy C-continuous (See, Example 3.14 in [3]). However, we have the following result.

Theorem 4.19: If $f : (L^X, \tau_1) \to (L^Y, \tau_2)$ is L-fuzzy continuous mapping and $g : (L^Y, \tau_2) \to (L^Z, \tau_3)$ is L-fuzzy C-continuous mapping, then $g \circ f : (L^X, \tau_1) \to (L^Z, \tau_3)$ is L-fuzzy C-continuous.

Proof: Obvious.

Theorem 4.20: If $(L^X, \tau), (L^Y, \Delta)$ are L-fts's and $1_X = 1_A \vee 1_B$, where 1_A and 1_B are closed of L^X and $f: (L^X, \tau) \to (L^Y, \Delta)$ is L-fuzzy mapping such that $f|_A$ and $f|_B$ are L-fuzzy C-continuous, then f is L-fuzzy C-continuous.

Proof: Let $1_A, 1_B \in \tau'$. Let $\mu \in L^Y$ be C-closed. Then $(f|_A)^{-1}(\mu) \vee (f|_B)^{-1}(\mu) = (f^{-1}(\mu) \wedge 1_A) \vee (f^{-1}(\mu) \wedge 1_B) = f^{-1}(\mu) \wedge (1_A \vee 1_B) = f^{-1}(\mu) \wedge 1_X = f^{-1}(\mu)$. Hence $f^{-1}(\mu) = (f|_A)^{-1}(\mu) \vee (f|_B)^{-1}(\mu) \in \tau'$. So $f : (L^X, \tau) \to (L^Y, \Delta)$ is L-fuzzy C-continuous.

5. More Characterizations of L-fuzzy C-continuous mappings

Theorem 5.1: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be L-fuzzy C-continuous and (L^Y, Δ) be a fully stratified LFT_2 -space. If $f(1_X)$ is contained in some strong Q-compact set of L^Y , then f is L-fuzzy continuous.

Proof: Let $\mu \in L^Y$ be a strong Q-compact containing $f(1_X)$ and let $\rho \in \Delta'$. Since μ is strong Q-compact in (L^Y, Δ) which is fully stratified LFT_2 -space, so $\mu \in \Delta'$. Thus $\mu \wedge \rho \in \Delta'$. Hence by Theorem 2.8, $\mu \wedge \rho \in L^Y$ is strong Q-compact. Thus

 $\mu \wedge \rho \in L^Y$ is C-closed. Since f is L-fuzzy C-continuous, then $f^{-1}(\mu \wedge \rho) \in \tau'$. But, $f^{-1}(\mu \wedge \rho) = f^{-1}(\mu) \wedge f^{-1}(\rho) = f^{-1}(\rho) \wedge 1_X = f^{-1}(\rho)$. So $f^{-1}(\rho) \in \tau'$. Hence f is L-fuzzy continuous.

Theorem 5.2: Let (L^X, τ) be an L-fts and (L^Y, Δ) be fully stratified LFT_2 -space. If $f : (L^X, \tau) \to (L^Y, \Delta)$ is a bijective and L-fuzzy continuous, then $f^{-1} : (L^Y, \Delta) \to (L^X, \tau)$ is L-fuzzy C-continuous.

Proof: Let $\eta \in L^X$ be strong *Q*-compact. Since *f* is L-fuzzy continuous, then by Theorem 2.10, $f(\eta)$ is strong *Q*-compact. Since (L^Y, Δ) is fully stratified *LFT*₂-space, then $f(\eta) \in \Delta'$. Hence by Theorem 4.3, f^{-1} is L-fuzzy C-continuous.

Corollary 5.3: Let (L^X, τ) be a strong Q-compact space and (L^Y, Δ) be fully stratified LFT_2 -space. If $f: (L^X, \tau) \to (L^Y, \Delta)$ is a bijective and L-fuzzy continuous, then f is an L-fuzzy homeomorphism.

Proof: Follows from Theorems 5.1 and 5.2.

Theorem 5.4: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be an surjective L-fuzzy mapping. Then the following conditions are equivalent:

(i) f is L-fuzzy C-continuous;

(ii) For each $x_{\alpha} \in M(L^X)$ and each L-fuzzy net S in L^X , $f(\mathcal{S}) \xrightarrow{C} f(x_{\alpha})$ if $S \to x_{\alpha}$.

(iii) $f(lim(S)) \leq C.lim(f(S))$, for each L-fuzzy net S in L^X .

Proof: (i) \implies (ii) Let $x_{\alpha} \in M(L^X)$ and $S = \{x_{\alpha_n}^n : n \in D\}$ be an L-fuzzy net in L^X which converges to x_{α} . Let $\eta \in CR_{f(x_{\alpha})}$, by (i) $f^{-1}(\eta) \in R_{x_{\alpha}}$. Since $S \to x_{\alpha}$, then $(\exists n \in D)(\forall m \in D, m \ge n)(S(m) \not\le f^{-1}(\eta))$. Then $f(S(m)) \not\le ff^{-1}(\eta) = \eta$. Thus $f(S(m)) \not\le \eta$. Hence $f(S) \xrightarrow{C} f(x_{\alpha})$.

(*ii*) \implies (*iii*) Let $x_{\alpha} \leq lim(S)$, then $f(x_{\alpha}) \leq f(lim(S))$, by (*ii*) $f(x_{\alpha}) \leq C.lim(f(S))$. Thus $f(lim(S)) \leq C.lim(f(S))$.

 $(iii) \implies (i) \text{ Let } \eta \in L^Y \text{ be L-fuzzy C-closed and } x_\alpha \in M(L^X) \text{ with } x_\alpha \leq c\ell(f^{-1}(\eta)),$ by Theorem 2.15, there exists an L-fuzzy net S in $f^{-1}(\eta)$ which converges to x_α . Thus $x_\alpha \leq lim(S)$ and so $f(x_\alpha) \leq f(lim(S))$. By (iii), $f(x_\alpha) \leq f(lim(S)) \leq C.limf(S)$ and so, $f(S) \xrightarrow{C} f(x_\alpha)$. Since S is L-fuzzy net in $f^{-1}(\eta)$, then for each $n \in D$, $S(n) \leq f^{-1}(\eta)$

and so $f(S(n)) \leq ff^{-1}(\eta) \leq \eta$. Hence $f(S(n)) \leq \eta$ for each $n \in D$. Thus f(S) is L-fuzzy net in η . So we have $f(\mathcal{S}) \xrightarrow{C} f(x_{\alpha})$ and $f(\mathcal{S})$ is L-fuzzy net in η so by Proposition 3.10 (iii), $f(x_{\alpha}) \leq C.c\ell(\eta)$. But since η is C-closed, so $\eta = C.c\ell(\eta)$. Thus $f(x_{\alpha}) \leq \eta$. Hence $x_{\alpha} \leq f^{-1}(\eta)$. So $c\ell(f^{-1}(\eta)) \leq f^{-1}(\eta)$. Hence $f^{-1}(\eta) \in \tau'$. Then f is L-fuzzy C-continuous.

Theorem 5.5: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be an L-fuzzy mapping. Then the following conditions are equivalent:

- (i) f is L-fuzzy C-continuous;
- (ii) For each $x_{\alpha} \in M(L^X)$ and each L-fuzzy ideal \mathcal{L} in L^X which converges to x_{α} in L^X , $f^*(\mathcal{L})$ C-converges to $f(x_{\alpha})$, where $f^*(\mathcal{L}) = \{\eta \in L^Y : \exists \mu \in \mathcal{L} \text{ such that for any } x_{\alpha} \in M(L^X), f(x_{\alpha}) \not\leq \eta \text{ if } x_{\alpha} \not\leq \mu\}$ is an L-fuzzy ideal in L^Y .
- (iii) $f(lim(\mathcal{L})) \leq C.lim(f^*(\mathcal{L}))$, for each L-fuzzy ideal \mathcal{L} in L^X .

Proof: The proof is similar to that of Theorem 5.4.

Similarly, we have the following result.

Theorem 5.6: Let $f : (L^X, \tau) \to (L^Y, \Delta)$ be an L-fuzzy mapping. Then the following conditions are equivalent:

- (i) f is L-fuzzy C-continuous;
- (ii) For each $x_{\alpha} \in M(L^X)$ and each L-fuzzy ideal \mathcal{L} in L^X which converges to x_{α} in L^X , then $(f(\mathcal{L}'))'$ C-converges to $f(x_{\alpha})$.
- (iii) $f(lim(\mathcal{L})) \leq C.lim((f(\mathcal{L}'))')$, for each L-fuzzy ideal \mathcal{L} in L^X .

References

- Chen, S.L., Wang, X.G.: L-fuzzy N-continuous mappings. J. Fuzzy Math., 4 (3). 621–629 (1996).
- [2] Chen, S.L., Chen, S.T.: A new extension of fuzzy convergence. Fuzzy Sets and Systems, 109, 199–204 (2000).
- [3] Dang, S., Behera, A., Nanda, S.: Fuzzy C-continuous functions. J. Fuzzy Math., 2 (1), 187–196 (1994).

- [4] Garg, G. L., Kumar, B.: C-closed functions. Math. Vesnik, 41, 233-238 (1989).
- [5] Gentry, K. R., Hoyle, H. B.: III, C-continuous functions. Yokohama Math. J., 18 (2), 71–76 (1970).
- [6] Liu, Y. M., Luo, M. K.: Fuzzy Stone–Cech–type compactifications. *Fuzzy Sets and Systems*, 33, 355–372 (1989).
- [7] Liu, Y. M., Luo, M. K.: Separation in lattice-valued induced spaces. Fuzzy Sets and Systems, 36, 55–66 (1990).
- [8] Mukherjee, M. N., Sinha, S. P.: Almost compact fuzzy sets in fuzzy topological spaces. *Fuzzy Sets and Systems*, 38, 386–396 (1990).
- [9] Nouh, A. A.: On Q_{α} -compactness in L-fuzzy topological spaces. Submitted
- [10] Wang, G. J.: A new fuzzy compactness defined by fuzzy nets. J. Math. Anal. Appl., 94, 59–67 (1983).
- [11] Wang, G. J.: Generalized topological molecular lattices. Scientia Sinica, (Ser. A) 27 (8), 785–793 (1984).
- [12] Wang, G. J.: Theory of L-fuzzy topological spaces. Shaanxi Normal University Press. Xi'an 1988.
- [13] Yang, Z. Q.: Ideal in topological molecular lattices. Acta Mathematica Sinica, 29 (2), 276– 279 (1986).
- [14] Zhao, D. S.: The N-compactness in L-fuzzy topological space. J. Math. Anal. Appl., 128, 64–79 (1987).
- [15] Zhongfu, L.: Compactness in fuzzy topological spaces. Kexue Tongbao, 29(5), 582–585 (1984).

Ali Ahmed NOUH Mathematics Department, Faculty of Science, Mansoura University-EGYPT Received 22.06.2001