Turk J Math 26 (2002) , 263 – 271. © TÜBİTAK

On Locally pre- C^* -Algebra Structures in Locally *m*-Convex H^* -Algebras

A. El Kinani

Abstract

We endow any locally *m*-convex H^* -algebra (E, τ) with a locally pre- C^* -topology weaker than τ . Examples and applications are provided.

Key words and phrases: Locally pre- C^* -algebra, locally *m*-convex H^* -algebra, *Q*-algebra, positive semi-definite inner product.

Introduction

A natural extension of the classical H^* -algebras of W. Ambrose ([1]) was considered in the general contex of locally convex algebras ([4]). In this case, algebras are not necessarily endowed with an algebra involution. Here we consider H^* -algebras in the spirit of F. F. Bonsall and J. Duncan (cf. [2], Definition 6., p. 182). We show that every locally multiplicatively convex H^* -algebra $(l.m.c. \ H^*$ -algebra) $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ can be endowed with a weaker locally convex topology given by a family $(||.||_{\lambda})_{\lambda \in \Lambda}$ of C^* -seminorms such that $|xy|_{\lambda} \leq ||x||_{\lambda} |y|_{\lambda}$, for every $x, y \in E$ and $\lambda \in \Lambda$. If moreover $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is a Qalgebra, then $(E, (||.||_{\lambda})_{\lambda \in \Lambda})$ is (modulo a topological algebra isomorphism) topologically and algebraically isomorphic to a pre- C^* -algebra. This last algebra becomes (modulo a topological algebra isomorphism) a C^* -algebra if and only if $(E, (||.||_{\lambda})_{\lambda \in \Lambda})$ is pseudocomplete (i.e., if every bounded and closed idempotent disk is Banach). We also obtain

¹⁹⁹¹ Mathematics Subject Classification: Primary 46H20. 46C50.

that any unital l.m.c. H^* -algebra which is a Q-algebra is actually isomorphic to the complex field C provided that $|e|_{\lambda} = 1$, for every $\lambda \in \Lambda$, where e is the unit of E. This result remains valid in "Hilbertizable" l.m.c. algebras (l.m.c. H-algebras). Finally, we introduce and study a class of l.m.c. H-algebras which contains, in particular, a concrete example used in the theory of Sobolev spaces.

1. Preliminaries

A locally *m*-convex algebra (l.m.c.a. in short) is a topological algebra (E, τ) whose topology τ is defined by a directed family $(|.|_{\lambda})_{\lambda \in \Lambda}$ of submultiplicative seminorms. Such an algebra will usually be denoted by $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$. If, in addition, E is endowed with an involution $x \mapsto x^*$ such that $|x|_{\lambda} = |x^*|_{\lambda}$, for any $x \in E, \lambda \in \Lambda$, then $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is called an *l.m.c.**-algebra. A locally *m*-convex C*-algebra (*l.m.c.* C*algebra in short) is an *l.m.c.**-algebra $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ such that $|x^*x|_{\lambda} = |x|_{\lambda}^2$, for any $x \in E$ and $\lambda \in \Lambda$. Let $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ be a complex unitary and complete *l.m.c.a.* It is known that $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is the projective limit of the normed algebras $(E_{\lambda}, |.|_{\lambda})$, where $E_{\lambda} = E/N_{\lambda}$ with $N_{\lambda} = \{x \in E : |x|_{\lambda} = 0\}$; and $|\overline{x}|'_{\lambda} = |x|_{\lambda}$. An element x of E is written $x = (x_{\lambda})_{\lambda} = (\pi_{\lambda}(x))_{\lambda}$, where $\pi_{\lambda} : E \longrightarrow E_{\lambda}$ is the canonical surjection. The algebra $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is also the projective limit of the Banach algebras $\widehat{E_{\lambda}}$, the completions of E_{λ} 's. The norm in $\widehat{E_{\lambda}}$ will also be denoted by $|.|'_{\lambda}$ ([6, p. 88, Theorem 3.1] and/or [7, p. 20, Theorem 5.1]). In the case $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is a *l.m.c.**-algebra, each $\widehat{E_{\lambda}}, \lambda \in \Lambda$, becomes an involutive Banach algebra. Concerning involutive *l.m.c.a.*'s, the reader is referred to [3]. In the sequel, all algebras are complex. The spectral radius will be denoted by ρ that is $\rho(x) = \sup \{ |z| : z \in Spx \}$.

2. Pre-C*-algebra structures in *l.m.c.* H*-algebras

The notion of locally convex H^* -algebras was introduced in [4] as a natural extension of the classical H^* -algebras of W. Ambrose ([1]). Here, we consider the case where the algebra is complete and it is endowed with a continuous involution.

Definition 2.1 A locally m-convex H^* -algebra (l.m.c. H^* -algebra in short) is a complete l.m.c.*-algebra $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ on which is defined a family $(\langle ., . \rangle_{\lambda})_{\lambda \in \Lambda}$ of positive semidefinite pseudo-inner products such that the following properties hold for all $x, y, z \in E$ and $\lambda \in \Lambda$:

- (i) $|x|_{\lambda}^2 = \langle x, x \rangle_{\lambda}$,
- (ii) $\langle xy, z \rangle_{\lambda} = \langle y, x^*z \rangle_{\lambda}$,
- (iii) $\langle yx, z \rangle_{\lambda} = \langle y, zx^* \rangle_{\lambda}$.

Remark 2.2 For every $\lambda \in \Lambda$, the quotient space $E_{\lambda} = E/N_{\lambda}$ is an inner product space under $\langle x_{\lambda}, y_{\lambda} \rangle_{\lambda} = \langle x, y \rangle_{\lambda}$. The underlying Banach-space \widehat{E}_{λ} is a Hilbert space. Moreover, the involutive Banach algebra $(\widehat{E}_{\lambda}, \|.\|_{\lambda})$ is an H^* -algebra ([2], Definition 6, p. 182). Thus the algebra $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is the projective limit of the Banach H^* -algebras $(\widehat{E}_{\lambda}, \|.\|_{\lambda})$ ([4, p. 455, Theorem 2.3]).

Consider an *l.m.c.* H^* -algebra E. Since * is an involution (Definition 2.1), E is proper, namely $lan(E) = \{0\}$, where $lan(E) = \{x \in E : xE = \{0\}\}$ is the left annihilator of E, (see [4: p. 452, Theorems 1.2 and 1.3; see also the comments before Theorem 1.2]). Hence [ibid, p. 455, Theorem 2.3] each $\widehat{E}_{\lambda}, \lambda \in \Lambda$, is proper, namely, $lan(\widehat{E}_{\lambda}) = \{0\}$, for every $\lambda \in \Lambda$. In this case,

$$Rad\widehat{E_{\lambda}} = \left\{ x \in \widehat{E_{\lambda}} : x^*x = 0 \right\} = \{0\}$$

by [2, lemma 9. p. 183]. Thus

$$Rad \ E = \bigcap_{\lambda} \pi_{\lambda}^{-1} \left(Rad \ \widehat{E_{\lambda}} \right) = \{0\}$$

(see [7, p. 29, Proposition 7.3]).

Proposition 2.3 Let $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ be an l.m.c. H^* -algebra. Then E can be endowed with an l.m.c. C^* -topology defined by a family of seminorms $(||.||_{\lambda})_{\lambda \in \Lambda}$ such that

- (1) $||x||_{\lambda} \leq |x|_{\lambda}; x \in E, \lambda \in \Lambda,$
- (2) $|xy|_{\lambda} \leq ||x||_{\lambda} |y|_{\lambda}; x, y \in E, \lambda \in \Lambda.$

Proof. Let $\mathcal{B}(E)$ be the involutive algebra of all bounded linear operators on E. For $a \in E$, we define the mapping $L_a : E \longrightarrow E$ by $L_a(b) = ab$, for all $b \in E$. For every $\lambda \in \Lambda$, we have $|L_a(b)|_{\lambda} = |ab|_{\lambda} \leq |a|_{\lambda} |b|_{\lambda}$ and therefore

$$|L_a|_{\lambda} = \sup \{ |ab|_{\lambda} : |b|_{\lambda} \le 1 \} \le |a|_{\lambda}.$$

Hence

$$|L_a|_{\lambda} \leq |a|_{\lambda}, \ a \in E, \ \lambda \in \Lambda.$$

Thus L_a is bounded. Now consider the mapping $L : E \longrightarrow \mathcal{B}(E)$ defined by $L(a) = L_a$. It is easy to verify that L is a faithful *-representation.

(1) We introduce a family $(\|.\|_{\lambda})_{\lambda \in \Lambda}$ of seminorms in E defined by $\|a\|_{\lambda} = |L_a|_{\lambda}$. The algebra $(E, (\|.\|_{\lambda})_{\lambda \in \Lambda})$ is locally *m*-convex. Since $\mathcal{B}(E)$ is an *l.m.c.* C^* -algebra, we have obviously $\|x\|_{\lambda} = \|x^*\|_{\lambda}$ and $\|x^*x\|_{\lambda} = \|x\|_{\lambda}^2$. Moreover, $\|x\|_{\lambda} \leq |x|_{\lambda}$; for all $x \in E$ and $\lambda \in \Lambda$.

(2) For every $x, y \in E$ and $\lambda \in \Lambda$, we have

$$|xy|_{\lambda} = |L_x(y)|_{\lambda} \le |L_x|_{\lambda} |y|_{\lambda} = ||x||_{\lambda} |y|_{\lambda}.$$

This completes the proof.

Proposition 2.4 Let $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ be an l.m.c. H^* -algebra which is a Q-algebra. Then $(E, (||.||_{\lambda})_{\lambda \in \Lambda})$ is topologically and algebraically isomorphic to a pre-C*-algebra.

Proof. Since $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is a *Q*-algebra, there is $\lambda_0 \in \Lambda$ such that $\rho(x) \leq |x|_{\lambda_0}$ for every $x \in E$ ([8, p. 551, Corollary 4.1]). Using (2) of Proposition 2.3, we obtain

$$\rho(xy) \le \|y\|_{\lambda_0} \, |x|_{\lambda_0} \, ; \, x, y \in E$$

([6, p.100, Corollary 6.1]). Writing this for $y = x^k$, with k = 1, 2, ..., and using submultiplicativity of $\|.\|_{\lambda_0}$, it follows that $\rho(x) \leq \|x\|_{\lambda_0}$ for every $x \in E$. Now, for every $x \in E$, we get

$$\|x\|_{\lambda_0}^2 \le \sup_{\lambda \in \Lambda} \|x\|_{\lambda}^2 = \sup_{\lambda \in \Lambda} \|x^*x\|_{\lambda} = \rho(x^*x) \le \|x\|_{\lambda_0}^2.$$

266

Thus the topology of $(E, (\|.\|_{\lambda})_{\lambda \in \Lambda})$ is equivalent to that introduced by the pre-C*-norm

$$\|x\|_{\lambda_0} = \sup_{\lambda \in \Lambda} \|x\|_{\lambda} \, ; x \in E.$$

This completes the proof.

Remark 2.5 In the previous proposition, the algebra $(E, (\|.\|_{\lambda})_{\lambda \in \Lambda})$ is topologically and algebraically isomorphic to a C^* -algebra under the weakest completion notion. More precisely, one has that $(E, (\|.\|_{\lambda})_{\lambda \in \Lambda})$ is a pseudo-complete algebra if and only if $(E, \|.\|_{\lambda_0})$ is a C^* -algebra.

Proposition 2.6 Let $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ be an l.m.c. H^* -algebra. If E has a unit element e such that $|e|_{\lambda} = 1$, for every $\lambda \in \Lambda$, then E is the diagonal of a product whose factors are all isomorphic to C. If moreover $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is a Q-algebra, then it is isomorphic to C.

Proof. The algebra $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is a projective limit of the H^* -algebras $\hat{E_{\lambda}}$. Since E is unital, $\hat{E_{\lambda}}$ is so ([6, p. 91, Theorem 4.1]). Hence, by a result of Hirschfeld ([5]), the algebra $\hat{E_{\lambda}}$ is isomorphic to C, for every $\lambda \in \Lambda$. But, a projective limit whose factors are equal and the relative morphisms all reduce to the identity map is exactly the diagonal of the product of its factors. Now, if moreover $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is a Q-algebra, then

$$||x|| = \sup\left\{|xy|_{\lambda} : |y|_{\lambda} \le 1\right\}$$

is a Banach algebra norm such that

$$||x|| \le ||x||_{\lambda} \, ; \, x \in E, \, \lambda \in \Lambda$$

by (2) of Proposition 2.3. It follows from proposition 2.4 that $\|.\| \leq \|.\|_{\lambda_0} = \sup_{\lambda \in \Lambda} \|.\|_{\lambda}$. But $|.|_{\lambda} \leq \|.\|$ since E is unital, hence $\|.\| = \|.\|_{\lambda_0} = |.|_{\lambda}$, for every $\lambda \in \Lambda$. Thus E is a unital Banach H^* -algebra and so it is isomorphic to C, by a result of Hirschfeld ([5]). This completes the proof.

267

Remark 2.7 The result of Proposition 2.6 remains true in *l.m.c. H*-algebras $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ in the sense that $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is a complete *l.m.c.a.* with the property that $(|.|_{\lambda})_{\lambda \in \Lambda}$ arises from a family $(\langle ., . \rangle_{\lambda})_{\lambda \in \Lambda}$ of positive semi-definite pseudo-inner products such that $|x|_{\lambda}^{2} = \langle x, x \rangle_{\lambda}$, for all $x \in E$ and $\lambda \in \Lambda$.

Scholium 2.8 Notice that the algebras (l.m.c. H-algebras) considered in Remark 2.7 have also been considered in [4, p. 456, Definition 3.1], even *without completeness* and "m", called therein "pseudo-*H*-algebras".

3. The structure of the *l.m.c. H*-algebra $L^2_{\Omega}(R)$

In the sequel, Ω will denote a family of measurable non negative and locally integrable functions ω in R, such that

$$\omega^{-1} \ast \omega^{-1} \le \omega^{-1},\tag{1}$$

we will consider the space $L^2_{\omega}(R)$ of all equivalence classes (under equality almost evreywhere) f such that $|f|^2 \omega$ is a Lebesgue integrable function on R, where the same symbol f is used to denote both a function and its equivalente class. $L^2_{\omega}(R)$ endowed with the norm

$$|f|_{\omega} = \left(\int_{R} |f(t)|^{2} \,\omega(t) dt\right)^{\frac{1}{2}},$$

becomes a Banach space. If f and g are complex functions in R, their convolution f * g is defined by

$$(f * g)(x) = \int_{R} f(x - y)g(y)dy,$$

provided that the integral exists for all (or at least for almost all) $x \in R$. We will also consider the space

$$L_{\Omega}^{2}\left(R\right) = \left\{f: R \longrightarrow C: \left|f\right|^{2} \omega \in L^{1}\left(R\right), \text{ for every } \omega \in \Omega\right\}$$

endowed with the topology τ defined by the norms $(|.|_{\omega})_{\omega \in \Omega}$. Then we have the following proposition.

Proposition 3.1 The space $(L^{2}_{\Omega}(R), (|.|_{\omega})_{\omega \in \Omega})$ endowed with convolution as the product is an l.m.c. *H*-algebra.

Proof. We first prove that $(L^2_{\Omega}(R), (|.|_{\omega})_{\omega \in \Omega})$ is an *l.m.c.* algebra. Since the algebra $\mathcal{K}(R)$ of continuous complex-valued functions with compact support is dense in $(L^2_{\Omega}(R), (|.|_{\omega})_{\omega \in \Omega})$, it suffices to show that

$$|f \ast g|_{\omega} \le |f|_{\omega} \, |g|_{\omega} \, ; \ \ f,g \in \mathcal{K}(R).$$

If $f, g \in \mathcal{K}(R)$ and $h \equiv f * g$, then writing

$$|h(x)| = \left| \int_{R} f(x-y)g(y) \left| \frac{\omega(x-y)\omega(y)}{\omega(x-y)\omega(y)} \right|^{\frac{1}{2}} dy \right|$$

and using Cauchy-Schwarz inequality, we obtain

$$|h(x)| \le \left(\int_{R} |f(x-y)|^{2} \,\omega(x-y) \,|g(y)|^{2} \,\omega(y) dy\right)^{\frac{1}{2}} W^{\frac{1}{2}}(x),$$

where $W = \omega^{-1} * \omega^{-1}$. It follows that

$$\left| \int_{R} \left| h(x) \right|^{2} W^{-1}(x) dx \right| \leq \int_{R} \left| f(x-y) \right|^{2} \omega(x-y) dx \int_{R} \left| g(y) \right|^{2} \omega(y) dy$$
$$\leq \left| f \right|_{\omega}^{2} \left| g \right|_{\omega}^{2}.$$

But $\omega \leq W^{-1}$ by (1). Hence

$$\begin{split} |f * g|_{\omega} &= \left| \left(\int_{R} |h(x)|^{2} \,\omega(x) dx \right)^{\frac{1}{2}} \right| \\ &\leq |f|_{\omega} \, |g|_{\omega} \,. \end{split}$$

It remains to show that $(L^2_{\omega}(R), |.|_{\omega})$ is a Hilbertizable Banach algebra, for every $\omega \in \Omega$. If $f, g \in L^2_{\omega}(R)$, then $f\sqrt{\omega}, g\sqrt{\omega} \in L^2(R)$ and the inner product is defined by

$$\langle f,g\rangle_{\omega}=\int_{R}f(t)\overline{g(t)}\omega(t)dt.$$

It follows that the underlying Banach space of $(L^2_{\omega}(R), |.|_{\omega})$ is a Hilbert space such that $|f|^2_{\omega} = \langle f, f \rangle_{\omega}$, for every $f \in L^2_{\omega}(R)$. This completes the proof. \Box

Remark 3.2 Associate to each $f \in L^2_{\Omega}(R)$ a function $f^{\sharp} \in L^2_{\Omega}(R)$ defined by $f^{\sharp}(x) = \overline{f(-x)}$, for every $x \in R$. Then $f \mapsto f^{\sharp}$ is an algebra involution on $L^2_{\Omega}(R)$. The *l.m.c. H*-algebra $L^2_{\Omega}(R)$ endowed with the involution $f \mapsto f^{\sharp}$ is not an *l.m.c. H**-algebra, otherwise, we will have, by ii) of Definition 2.1, that ω is a constant almost everywhere, for every $\omega \in \Omega$, a contradiction.

Remark 3.3 If $\omega_1, \omega_2 \in \Omega$ with $\omega_1 \leq \omega_2$, then $L^2_{\omega_2}(R) \subset L^2_{\omega_1}(R)$. This implies that

$$\lim_{\omega \longleftarrow} L_{\omega}^{2}\left(R\right) = \bigcap_{\omega \in \Omega} L_{\omega}^{2}\left(R\right) = L_{\Omega}^{2}\left(R\right)$$

Concerning the global spectrum, we have

$$\mathcal{M}\left(L_{\Omega}^{2}\left(R\right)\right)=\lim_{\longrightarrow\omega}\mathcal{M}\left(L_{\omega}^{2}\left(R\right)\right)$$

by [6, p. 172, Lemma 6.3], where $\mathcal{M}(L^2_{\Omega}(R))$ (resp. $\mathcal{M}(L^2_{\omega}(R))$) denote the set of all non zero continuous characters of $L^2_{\Omega}(R)$ (resp. $L^2_{\omega}(R)$). It follows that

$$\mathcal{M}\left(L_{\Omega}^{2}\left(R\right)\right) = \bigcup_{\omega \in \Omega} \mathcal{M}\left(L_{\omega}^{2}\left(R\right)\right).$$

([6, p. 156, Lemma 5.1 and p. 172, Lemma 6.3]).

In the rest of this section, we consider a concrete example used in the theory of Sobolev spaces. For $s > \frac{1}{2}$, put

$$\omega_s(x) = (1 + |x|^2)^s \text{ and } \Omega = \left\{ \omega_s : s > \frac{1}{2} \right\}.$$

By a simple calculation, the reader can prove that

$$\omega_s^{-1} * \omega_s^{-1} \le c_s \ \omega_s^{-1}, \text{ for every } s > \frac{1}{2}, \quad (1)$$

where c_s is a positive constant depending only on s. As in Proposition 3.1, we obtain

$$\left|f \ast g\right|_{\omega_{s}} \leq c_{s} \left|f\right|_{\omega_{s}} \left|g\right|_{\omega_{s}}; f, g \in L^{2}_{\Omega}(R).$$

Therefore, without loss of generality, we may suppose that $\left(L_{\Omega}^{2}(R), \left(|.|_{\omega_{s}}\right)_{s>\frac{1}{2}}\right)$ is an *l.m.c. H*-algebra but not an *l.m.c. H*^{*}-algebra.

Remark 3.4 Since $\mathcal{K}(R)$ is dense in $L^1(R)$ and $\mathcal{K}(R) \subset L^2_{\Omega}(R) \subset L^1(R)$ for $s > \frac{1}{2}$, the global spectrum $\mathcal{M}(L^2_{\Omega}(R))$, of $L^2_{\Omega}(R)$, is homeomorphic to R. Moreover, as in $L^1(R)$, for every non zero continuous character χ of $L^2_{\Omega}(R)$, there exists a unique $t \in R$ such that $\chi(f) = \hat{f}(t)$, where \hat{f} is the Fourier transform of f.

Acknowledgement

The author thanks the referee for his remarks and valuable suggestions.

References

- Ambrose, W.: Structure theorems for a class of Banach algebras, Trans. Amer. Math. Soc. 57, 364-386, (1945).
- [2] Bonsall, F. F. and Duncan, J.: Complete normed algebras, Ergebrise der Mathematik Band 80, Springer Verlag (1973).
- [3] Fragoulopoulou, M.: Symmetric Topological *-Algebras. Applications, Schriftenreihe des Mathematischen Instituts und des Graduiertenkollegs der Universität Münster, 3 serie, Heft 9 (1993).
- [4] Haralampidou, M.: On locally convex H*-algebras, Math. Japonica 38, 451-460, (1993).
- [5] Hirschfeld, R. A.: On Hilbertizable Banach algebras. Bull. Soc. Math. Belg. 25, 331-333, (1973).
- [6] Mallios, A.: Topological Algebras. Selected Topics, North -Holland, Amsterdam, 1986.
- [7] Michael, E. A.: Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11(1952). (Reprinted 1968).
- [8] Tsertos, Y.: Representations and extensions of positive functionals on * -algebras; Boll. UMI 7, 541-555, (1994).

A. EL KINANIEcole Normale Supérieure,B.P.5118-Takaddoum,10105 Rabat-MAROC

Received 13.08.2001