The Fine Spectra of the Rhaly Operators on c_{0}

Mustafa Yuldırım

Abstract

In 1975, Wenger [3] determined the fine spectra of Cesàro operator C_{1} on c, the space of convergent sequences. In [6], the spectrum of the Rhaly operators on c_{0} and c, under the assumption that $\lim _{n \rightarrow \infty}(n+1) a_{n}=L \neq 0$, has been determined. This paper presents the fine spectra of the Rhaly matrix R_{a} as an operator on the space c_{0}, with the same assumption.

Key words and phrases: Rhaly operator, spectrum and point spectrum.

1. Introduction

In this paper, $c_{0}, \ell_{1}, T^{*}, X^{*}, B(X), A^{t}, \pi_{0}(T, X)$ and $\sigma(T, X)$ respectively denote null sequences; sequences such that $\sum_{k}\left|x_{k}\right|<\infty$; the adjoint operator of T; the continuous dual of X; the linear space of all bounded linear operators, say, T on X into itself; the transposed matrix of A; the eigenvalues of T on X; and the spectrum of T on X.

In addition, we assume that given a scalar sequence of $a=\left(a_{n}\right)$, a Rhaly matrix $R_{a}=\left(a_{n k}\right)$ is the lower triangular matrix where $a_{n k}=a_{n}, k \leq n$ and $a_{n k}=0$ otherwise, where
(a) $L=\lim _{n}(n+1) a_{n}$ exists, finite, and is nonzero;
(b) $a_{n}>0$ for all n, and
(c) $a_{i} \neq a_{j}$ for $i \neq j$.

[^0]
YILDIRIM

(d) $a=\left(a_{n}\right)$ is monotone decreasing.

Let S denote the set $\left\{a_{n}: n=0,1,2, \ldots\right\}$.

In 1975, Wenger [3] determined the fine spectra of Cesàro operator C_{1} on c, the space of convergent sequences. In [6], the spectrum of the Rhaly operators on c_{0} and c, under the assumption that $\lim _{n \rightarrow \infty}(n+1) a_{n}=L \neq 0$ has been determined.

Under the above conditions, the purpose of this study is to determine the fine spectra of Rhaly operator R_{a} as an operator on the Banach space c_{0} of convergent sequences normed by $\|x\|=\sup _{n \geq 0}\left|x_{n}\right|$.

If X is a Banach space, $B(X)$ denotes the collection of all bounded linear operators on X and if $T \in B(X)$, then there are three possibilities for $R(T)$, the range of T :
(I) $R(T)=X$,
(II) $\overline{R(T)}=X$, but $R(T) \neq X$,
(III) $\overline{R(T)} \neq X$
and three possibilities for T^{-1} :
(1) T^{-1} exists and is continuous,
(2) T^{-1} exists but is discontinuous,
(3) T^{-1} does not exist.

If these possibilities are combined in all possible ways, nine different states are created. These are labelled by: $I_{1}, I_{2}, I_{3}, I I_{1}, I I_{2}, I I_{3}, I I I_{1}, I I I_{2}, I I I_{3}$. If an operator is in state $I I I_{2}$ for example, then $\overline{R(T)} \neq X$ and T^{-1} exist but is discontinuous (see [1]).

YILDIRIM

Figure1. State diagram for $B(X)$ and $B\left(X^{*}\right)$ for a non-reflective Banach space X

If λ is a complex number such that $A=\lambda I-T \in I_{1}$ or $A=\lambda I-T \in I I_{1}$, then $\lambda \in \rho(T, X)$. All scalar values of λ not in $\rho(T, X)$ comprise the spectrum of T. The further classification of $\sigma(T, X)$ gives rise to the fine spectrum of T. That is, $\sigma(T, X)$ can be divided into the subsets $I_{2} \sigma(T, X), I_{3} \sigma(T, X), I I_{2} \sigma(T, X), I I_{3} \sigma(T, X), I I I_{1} \sigma(T, X)$, $I I I_{2} \sigma(T, X), I I I_{3} \sigma(T, X)$. For example, if $A=\lambda I-T$ is in a given state, $I I I_{2}$ (say), then we write $\lambda \in I I I_{2} \sigma(T, X)$.

Lemma : If $R e \frac{1}{\lambda}=\alpha$, then

$$
\begin{equation*}
\prod_{k=0}^{N-1}\left|1-\frac{a_{k}}{\lambda}\right| \simeq \frac{1}{N^{\alpha L}} \tag{1}
\end{equation*}
$$

as $N \longrightarrow \infty$. We use the notation $a_{n} \simeq b_{n}$ in the sense that $\left(\frac{a_{n}}{b_{n}}\right),\left(\frac{b_{n}}{a_{n}}\right)$ are both bounded. [6]
Theorem 1: If $0<L<\infty$ then $S \cap(2 L, \infty) \subseteq \pi_{0}\left(R_{a}, c_{0}\right) \subseteq S \cap[2 L, \infty)[6]$.

YILDIRIM

Theorem 2: If $0<L<\infty$ then

$$
\begin{aligned}
& \left\{\lambda:\left|\lambda-\frac{L}{2}\right|<\frac{L}{2}\right\} \cup S \cup\{L\} \subseteq \pi_{0}\left(R_{a}^{*}, c_{0}^{*} \cong \ell_{1}\right) \\
& \subseteq\left(\left\{\lambda:\left|\lambda-\frac{L}{2}\right| \leq \frac{L}{2}\right\}-\{0\}\right) \cup S
\end{aligned}
$$

[6].
Theorem 3: If $0<L<\infty$ then $\sigma\left(R_{a}, c_{0}\right)=\left\{\lambda:\left|\lambda-\frac{L}{2}\right| \leq \frac{L}{2}\right\} \cup S[6]$.
Theorem 4: T has a dense range if and only if T^{*} is one-to-one.[1,II.3.7 Theorem]
Theorem 5: $R\left(T^{*}\right)=X^{*}$ if and only if T has a bounded inverse.[1,II.3.11 Theorem]
Theorem 6: R_{a} is a bounded operator on c_{0} if and only if $R_{a}^{*}=R_{a}^{t}[4]$.

Main Results

Theorem A: Let $0<L<\infty$. If $\lambda \notin S$ and $\alpha L>1$ then $\lambda \in I I I_{1} \sigma\left(R_{a}, c_{0}\right)$ where $\alpha=R e \frac{1}{\lambda}$.
Proof. Since $\lambda \notin S, T_{\lambda}=\lambda I-R_{a}$ is a lower triangular matrix. The matrix T_{λ}^{-1} exists.
From Theorem $6, R_{a}^{*}=R_{a}^{t}$ on c_{0}. Then $T_{\lambda}^{*} x=\theta$ implies the following:

$$
\begin{equation*}
x_{n}=\left(1-\frac{a_{n-1}}{\lambda}\right) x_{n-1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n}=\prod_{j=0}^{n-1}\left(1-\frac{a_{j}}{\lambda}\right) x_{0}, \text { for } n \geq 1 \tag{3}
\end{equation*}
$$

Since $\alpha L>1, x=\left(x_{n}\right)_{0}^{\infty} \in \ell_{1}$. Therefore T_{λ}^{*} is not one-to-one. From Theorem 4, $\overline{R\left(T_{\lambda}\right)} \neq c_{0}$. So that $T_{\lambda} \in I I I$.

Let $y=\left(y_{n}\right) \in \ell_{1}$. We want to find $x=\left(x_{n}\right) \in \ell_{1}$ such that $T_{\lambda}^{*} x=y$. Let $x_{0}=0$, then we have

$$
\begin{aligned}
x_{1} & =\frac{1}{\lambda}\left(y_{1}-y_{0}\right)+\frac{1}{\lambda}\left(\lambda-a_{0}\right) x_{0} \\
& =\frac{1}{\lambda}\left(y_{1}-y_{0}\right)
\end{aligned}
$$

YILDIRIM

and for $n>1$,

$$
\begin{aligned}
x_{n} & =\frac{1}{\lambda}\left\{y_{n}-\frac{a_{n-1}}{\lambda} y_{n-1}-\frac{a_{n-2}}{\lambda}\left(1-\frac{a_{n-1}}{\lambda}\right) y_{n-2}\right. \\
& -\frac{a_{n-3}}{\lambda}\left(1-\frac{a_{n-2}}{\lambda}\right)\left(1-\frac{a_{n-1}}{\lambda}\right) y_{n-3}-\ldots-\frac{a_{1}}{\lambda}\left(1-\frac{a_{n-1}}{\lambda}\right)\left(1-\frac{a_{n-2}}{\lambda}\right) \ldots\left(1-\frac{a_{2}}{\lambda}\right) y_{1} \\
& \left.-\prod_{j=1}^{n-1}\left(1-\frac{a_{j}}{\lambda}\right) y_{0}\right\} .
\end{aligned}
$$

This defines the matrix $B=\left(b_{n k}\right)$ with $n \geq 1, k \geq 0$, where $x=B y$ as the following:

$$
\begin{gather*}
b_{n n}=\frac{1}{\lambda} \tag{4}\\
b_{n, n-1}=-\frac{a_{n-1}}{\lambda^{2}} \tag{5}\\
b_{10}=-\frac{1}{\lambda} \quad \text { and } \quad b_{n 0}=-\frac{1}{\lambda} \prod_{j=1}^{n-1}\left(1-\frac{a_{j}}{\lambda}\right), \quad n>1 \tag{6}\\
b_{n k}=-\frac{a_{k}}{\lambda^{2}} \prod_{j=k+1}^{n-1}\left(1-\frac{a_{j}}{\lambda}\right) \tag{7}\\
b_{n k}=0, \quad k>1 \geq n . \tag{8}
\end{gather*}
$$

By the Lemma there are possitive constants A and B such that

$$
\frac{A}{n^{\alpha L}} \leq \prod_{j=1}^{n}\left|1-\frac{a_{j}}{\lambda}\right| \leq \frac{B}{n^{\alpha L}}
$$

So

$$
\begin{align*}
\sum_{n=1}^{\infty}\left|b_{n 0}\right| & =\left|b_{10}\right|+\sum_{n=2}^{\infty}\left|b_{n 0}\right| \\
& =\frac{1}{|\lambda|}+\frac{1}{|\lambda|} \sum_{n=2}^{\infty} \prod_{j=1}^{n-1}\left|1-\frac{a_{j}}{\lambda}\right| \tag{9}\\
& =\frac{1}{|\lambda|}+\frac{B}{|\lambda|} \sum_{n=2}^{\infty} \frac{1}{(n-1)^{\alpha L}}
\end{align*}
$$

and for $k \geq 1$

$$
\begin{align*}
\sum_{n=1}^{\infty}\left|b_{n k}\right| & =\left|b_{k k}\right|+\left|b_{k+1, k}\right|+\sum_{n=k+2}^{\infty}\left|b_{n k}\right| \\
& =\frac{1}{|\lambda|}+\frac{a_{k}}{|\lambda|^{2}}+\frac{a_{k}}{|\lambda|^{2}} \sum_{n=k+2}^{\infty} \prod_{j=k+1}^{n-1}\left|1-\frac{a_{j}}{\lambda}\right| \\
& \leq \frac{1}{|\lambda|}+\frac{C}{|\lambda|^{2}}+\frac{a_{k}}{|\lambda|^{2}} \sum_{n=k+2}^{\infty} \frac{\prod_{j=1}^{n}\left|1-\frac{a_{j}}{\lambda}\right|}{\prod_{j=1}^{n-1}\left|1-\frac{a_{j}}{\lambda}\right|} \\
& \leq \frac{1}{|\lambda|}+\frac{C}{|\lambda|^{2}}+\frac{a_{k}}{|\lambda|^{2}} \sum_{n=k+2}^{\infty} \frac{\frac{B}{(n-1)^{\alpha L}}}{\frac{A}{k^{\alpha L}}} \\
& \leq \frac{1}{|\lambda|}+\frac{C}{|\lambda|^{2}}+\frac{a_{k}}{|\lambda|^{2}} k^{\alpha L} \int_{k}^{\infty} \frac{1}{x^{\alpha L}} d x \\
& \leq \frac{1}{|\lambda|}+\frac{C}{|\lambda|^{2}}+\frac{C}{|\lambda|^{2}(\alpha L-1)} \tag{10}
\end{align*}
$$

where $C=\sup k a_{k}$.

YILDIRIM

Since $\alpha L>1$ we have $\sup _{k} \sum_{n}\left|b_{n k}\right|<\infty$, hence we have $B \in B\left(\ell_{1}\right)$, so that T_{λ}^{*} is shown to be onto. From Theorem $5, T_{\lambda} \in(1)$. As a result, $T_{\lambda} \in I I I_{1}$ and $\lambda \in I I I_{1} \sigma\left(R_{a}, c_{0}\right)$.

Theorem B: Let $0<L<\infty$. If $\lambda \notin S$ and $\alpha L=1$ then $\lambda \in I I_{2} \sigma\left(R_{a}, c_{0}\right)$.
Proof. Since $\lambda \notin S, T_{\lambda}$ is a lower triangular matrix. So T_{λ} is one-to-one; i.e. $T_{\lambda} \in$ $(1) \cup(2)$.

Consider the adjoint operator T_{λ}^{*}. Then if $T_{\lambda}^{*} x=\theta$, then

$$
x_{n}=\prod_{j=0}^{n-1}\left(1-\frac{a_{j}}{\lambda}\right) x_{0} \quad \text { for } n \geq 1
$$

Since $\alpha L=1$, we have

$$
x=\left(x_{0}, x_{1}, \ldots\right) \in \ell_{1} \Longleftrightarrow x_{0}=0 \Longleftrightarrow x=\theta
$$

Hence T_{λ}^{*} is one-to-one; i.e. $T_{\lambda}^{*} \in(1) \cup(2)$. Now if we look at Fig 1, then we obtain $T_{\lambda} \in I_{1} \cup I I_{2}$. From Theorem 3, since $\lambda \in \sigma\left(R_{a}, c_{0}\right)$, we get $T_{\lambda} \notin I_{1}$, so $T_{\lambda} \in I I_{2}$. Hence we obtain $\lambda \in I I_{2} \sigma\left(R_{a}, c_{0}\right)$.

Theorem C: Let $0<L<\infty$. If $\lambda=a_{m}$ for at least one $m(m=0,1, \ldots)$, then $\lambda=a_{m} \in I I I_{3} \sigma\left(R_{a}, c_{0}\right)$.
Proof. Consider the system

$$
\left(\lambda I-R_{a}^{*}\right) x=0
$$

Suppose that $\lambda=a_{0}$. Then we have

$$
\left(\lambda I-R_{a}^{*}\right)_{0} x=0
$$

which yields

$$
\left(a_{0}-a_{0}\right) x_{0}-\sum_{k=1}^{\infty} a_{k} x_{k}=0
$$

or

$$
\sum_{n=1}^{\infty} a_{n} x_{n}=0
$$

This in turn implies that

$$
a_{1} x_{1}=-\sum_{k=2}^{\infty} a_{k} x_{k}
$$

$\left(\lambda I-R_{a}^{*}\right)_{1} x=0$ yields

$$
0=\left(a_{0}-a_{1}\right) x_{1}-\sum_{k=2}^{\infty} a_{k} x_{k}=a_{0} x_{1}-a_{1} x_{1}+a_{1} x_{1}=a_{0} x_{1},
$$

which implies that $x_{1}=0$. By induction one can show that $x_{n}=0$ for all $n>0$.
If $\lambda=a_{m}, m>0$, then

$$
\left(\lambda I-R_{a}^{*}\right)_{m} x=0
$$

which becomes

$$
a_{m} x_{m}-\sum_{k=m+1}^{\infty} a_{k} x_{k}=0
$$

which implies that

$$
\sum_{k=m+1}^{\infty} a_{k} x_{k}=0
$$

or that

$$
\begin{gathered}
a_{m+1} x_{m+1}=-\sum_{k=m+2}^{\infty} a_{k} x_{k} \\
\left(\lambda I-R_{a}^{*}\right)_{m+1} x=0
\end{gathered}
$$

YILDIRIM

becomes

$$
a_{m} x_{m+1}-\sum_{k=m+1}^{\infty} a_{k} x_{k}=0
$$

or

$$
\begin{aligned}
0 & =a_{m} x_{m+1}-a_{m+1} x_{m+1}-\sum_{k=m+1}^{\infty} a_{k} x_{k} \\
& =a_{m} x_{m+1}-a_{m+1} x_{m+1}+a_{m+1} x_{m+1}=a_{m} x_{m+1}
\end{aligned}
$$

which implies that $x_{m+1}=0$. Again by induction it can be shown that $x_{n}=0$ for each $n>m$.

Therefore in each case x is a finite sequence and $x \in \ell_{1}$. Hence $T_{a_{n}}^{*}$ is not 1-1, and thus $T_{a_{n}}$ does not have dense range. Therefore $T_{a_{n}} \in I I I$.

Since $\lambda=a_{n}$ for each $n, T_{a_{n}}^{-1}$ does not exist.

Acknowledgment

The author is grateful to Professor B. E. Rhoades for the generous help during the preparation of this paper.

References

[1] Goldberg, S.: Unbounded Linear Operators, (Mc Graw-Hill Book Comp, 1966).
[2] Leibowitz, G.: 'Rhaly Matrices', J. Math. Analysis and Applications, 128, 272-286 (1987).
[3] Wenger, R. B.: 'The Fine Spectra of Hölder Summability Operators', Indian J. Pure. Appl. Math. 6, 695-712, (1965).
[4] Wilansky, A.: Topological divsors of zero and Tauberian Theorems., Trans. Amer. Math. Soc. 113,240-251, (1964).
[5] Yıldırım, M.: 'On the Spectrum and Fine Spectrum of Compact Rhaly Operators', Indian J. Pure. Appl. Math. 27(8), 779-784, (1996).

YILDIRIM

[6] Yıldırım, M.: 'On the Spectrum of the Rhaly Operators on c_{0} and c', Indian J. Pure. Appl. Math. 29(12), 1301-1309, (1998).

Mustafa YILDIRIM

Received 25.09.2001
Department of Mathematics
Cumhuriyet University
58140 Sivas-TURKEY
e-mail: yildirim@cumhuriyet.edu.tr

[^0]: 1991 Math. Subject Classification: Primary 40G99, Secondary 47B37, 47B38, 47A10

