The Fine Spectra of the Rhaly Operators on c_0

Mustafa Yıldırım

Abstract

In 1975, Wenger [3] determined the fine spectra of Cesàro operator C_1 on c, the space of convergent sequences. In [6], the spectrum of the Rhaly operators on c_0 and c, under the assumption that $\lim_{n\to\infty} (n+1)a_n = L \neq 0$, has been determined. This paper presents the fine spectra of the Rhaly matrix R_a as an operator on the space c_0 , with the same assumption.

Key words and phrases: Rhaly operator, spectrum and point spectrum.

1. Introduction

In this paper, c_0 , ℓ_1 , T^* , X^* , B(X), A^t , $\pi_0(T, X)$ and $\sigma(T, X)$ respectively denote null sequences; sequences such that $\sum_k |x_k| < \infty$; the adjoint operator of T; the continuous dual of X; the linear space of all bounded linear operators, say, T on X into itself; the transposed matrix of A; the eigenvalues of T on X; and the spectrum of T on X.

In addition, we assume that given a scalar sequence of $a = (a_n)$, a Rhaly matrix $R_a = (a_{nk})$ is the lower triangular matrix where $a_{nk} = a_n$, $k \le n$ and $a_{nk} = 0$ otherwise, where

(a) $L = \lim_{n \to \infty} (n+1)a_n$ exists, finite, and is nonzero;

(b) $a_n > 0$ for all n, and

(c) $a_i \neq a_j$ for $i \neq j$.

¹⁹⁹¹ Math. Subject Classification: Primary 40G99, Secondary 47B37, 47B38, 47A10

(d) $a = (a_n)$ is monotone decreasing.

Let S denote the set $\{a_n : n = 0, 1, 2, ... \}$.

In 1975, Wenger [3] determined the fine spectra of Cesàro operator C_1 on c, the space of convergent sequences. In [6], the spectrum of the Rhaly operators on c_0 and c, under the assumption that $\lim_{n\to\infty} (n+1)a_n = L \neq 0$ has been determined.

Under the above conditions, the purpose of this study is to determine the fine spectra of Rhaly operator R_a as an operator on the Banach space c_0 of convergent sequences normed by $||x|| = \sup_{n>0} |x_n|$.

If X is a Banach space, B(X) denotes the collection of all bounded linear operators on X and if $T \in B(X)$, then there are three possibilities for R(T), the range of T:

- (I) R(T) = X,
- (II) $\overline{R(T)} = X$, but $R(T) \neq X$,
- (III) $\overline{R(T)} \neq X$

and three possibilities for T^{-1} :

- (1) T^{-1} exists and is continuous,
- (2) T^{-1} exists but is discontinuous,
- (3) T^{-1} does not exist.

If these possibilities are combined in all possible ways, nine different states are created. These are labelled by: $I_1, I_2, I_3, II_1, II_2, II_3, III_1, III_2, III_3$. If an operator is in state III_2 for example, then $\overline{R(T)} \neq X$ and T^{-1} exist but is discontinuous (see [1]).

Figure1. State diagram for B(X) and $B(X^*)$ for a non-reflective Banach space X

If λ is a complex number such that $A = \lambda I - T \in I_1$ or $A = \lambda I - T \in II_1$, then $\lambda \in \rho(T, X)$. All scalar values of λ not in $\rho(T, X)$ comprise the spectrum of T. The further classification of $\sigma(T, X)$ gives rise to the fine spectrum of T. That is, $\sigma(T, X)$ can be divided into the subsets $I_2\sigma(T, X)$, $I_3\sigma(T, X)$, $II_2\sigma(T, X)$, $II_3\sigma(T, X)$, $III_1\sigma(T, X)$, $III_2\sigma(T, X)$, $III_3\sigma(T, X)$. For example, if $A = \lambda I - T$ is in a given state, III_2 (say), then we write $\lambda \in III_2\sigma(T, X)$.

Lemma : If $Re\frac{1}{\lambda} = \alpha$, then

$$\prod_{k=0}^{N-1} |1 - \frac{a_k}{\lambda}| \simeq \frac{1}{N^{\alpha L}}$$
(1)

as $N \longrightarrow \infty$. We use the notation $a_n \simeq b_n$ in the sense that $\left(\frac{a_n}{b_n}\right)$, $\left(\frac{b_n}{a_n}\right)$ are both bounded. [6]

Theorem 1: If $0 < L < \infty$ then $S \cap (2L, \infty) \subseteq \pi_0(R_a, c_0) \subseteq S \cap [2L, \infty)$ [6].

Theorem 2: If $0 < L < \infty$ then

$$\left\{ \begin{array}{lll} \lambda : & |\lambda - \frac{L}{2}| & < \frac{L}{2} \right\} \cup S \cup \{L\} \subseteq \pi_0(R_a^*, c_0^* \cong \ell_1) \\ \\ \subseteq \left(\left\{ \begin{array}{lll} \lambda : & |\lambda - \frac{L}{2}| & \le \frac{L}{2} \right\} - \{0\} \right) \cup S \end{array} \right.$$

[6].

Theorem 3: If $0 < L < \infty$ then $\sigma(R_a, c_0) = \{\lambda : |\lambda - \frac{L}{2}| \leq \frac{L}{2}\} \cup S[6]$. **Theorem 4:** T has a dense range if and only if T^* is one-to-one.[1,II.3.7 Theorem] **Theorem 5:** $R(T^*) = X^*$ if and only if T has a bounded inverse.[1,II.3.11 Theorem] **Theorem 6:** R_a is a bounded operator on c_0 if and only if $R_a^* = R_a^t[4]$.

Main Results

Theorem A: Let $0 < L < \infty$. If $\lambda \notin S$ and $\alpha L > 1$ then $\lambda \in III_1\sigma(R_a, c_0)$ where $\alpha = Re\frac{1}{\lambda}$.

Proof. Since $\lambda \notin S$, $T_{\lambda} = \lambda I - R_a$ is a lower triangular matrix. The matrix T_{λ}^{-1} exists. From Theorem 6, $R_a^* = R_a^t$ on c_0 . Then $T_{\lambda}^* x = \theta$ implies the following:

$$x_n = \left(1 - \frac{a_{n-1}}{\lambda}\right) x_{n-1} \tag{2}$$

and

$$x_n = \prod_{j=0}^{n-1} (1 - \frac{a_j}{\lambda}) x_0, \text{ for } n \ge 1.$$
(3)

Since $\alpha L > 1$, $x = (x_n)_0^{\infty} \in \ell_1$. Therefore T_{λ}^* is not one-to-one. From Theorem 4, $\overline{R(T_{\lambda})} \neq c_0$. So that $T_{\lambda} \in III$.

Let $y = (y_n) \in \ell_1$. We want to find $x = (x_n) \in \ell_1$ such that $T^*_{\lambda} x = y$. Let $x_0 = 0$, then we have

$$x_{1} = \frac{1}{\lambda}(y_{1} - y_{0}) + \frac{1}{\lambda}(\lambda - a_{0})x_{0}$$
$$= \frac{1}{\lambda}(y_{1} - y_{0})$$

and for n > 1,

$$\begin{aligned} x_n &= \frac{1}{\lambda} \left\{ y_n - \frac{a_{n-1}}{\lambda} y_{n-1} - \frac{a_{n-2}}{\lambda} (1 - \frac{a_{n-1}}{\lambda}) y_{n-2} \\ &- \frac{a_{n-3}}{\lambda} (1 - \frac{a_{n-2}}{\lambda}) (1 - \frac{a_{n-1}}{\lambda}) y_{n-3} - \dots - \frac{a_1}{\lambda} (1 - \frac{a_{n-1}}{\lambda}) (1 - \frac{a_{n-2}}{\lambda}) \dots (1 - \frac{a_2}{\lambda}) y_1 \\ &- \prod_{j=1}^{n-1} (1 - \frac{a_j}{\lambda}) y_0 \right\}. \end{aligned}$$

This defines the matrix $B = (b_{nk})$ with $n \ge 1$, $k \ge 0$, where x = By as the following:

$$b_{nn} = \frac{1}{\lambda} \tag{4}$$

$$b_{n,n-1} = -\frac{a_{n-1}}{\lambda^2} \tag{5}$$

$$b_{10} = -\frac{1}{\lambda}$$
 and $b_{n0} = -\frac{1}{\lambda} \prod_{j=1}^{n-1} (1 - \frac{a_j}{\lambda}), \quad n > 1$ (6)

$$b_{nk} = -\frac{a_k}{\lambda^2} \prod_{j=k+1}^{n-1} (1 - \frac{a_j}{\lambda}), \tag{7}$$

$$b_{nk} = 0, \quad k > 1 \ge n. \tag{8}$$

By the Lemma there are possitive constants ${\cal A}$ and ${\cal B}$ such that

$$\frac{A}{n^{\alpha L}} \le \prod_{j=1}^{n} \mid 1 - \frac{a_j}{\lambda} \mid \le \frac{B}{n^{\alpha L}}.$$

 So

$$\sum_{n=1}^{\infty} |b_{n0}| = |b_{10}| + \sum_{n=2}^{\infty} |b_{n0}|$$
$$= \frac{1}{|\lambda|} + \frac{1}{|\lambda|} \sum_{n=2}^{\infty} \prod_{j=1}^{n-1} |1 - \frac{a_j}{\lambda}|$$
$$= \frac{1}{|\lambda|} + \frac{B}{|\lambda|} \sum_{n=2}^{\infty} \frac{1}{(n-1)^{\alpha L}},$$
(9)

and for $k \ge 1$

$$\begin{split} \sum_{n=1}^{\infty} |b_{nk}| &= |b_{kk}| + |b_{k+1,k}| + \sum_{n=k+2}^{\infty} |b_{nk}| \\ &= \frac{1}{|\lambda|} + \frac{a_k}{|\lambda|^2} + \frac{a_k}{|\lambda|^2} \sum_{n=k+2j=k+1}^{\infty} \prod_{l=1}^{n-1} |1 - \frac{a_j}{\lambda}| \\ &\leq \frac{1}{|\lambda|} + \frac{C}{|\lambda|^2} + \frac{a_k}{|\lambda|^2} \sum_{n=k+2}^{\infty} \frac{\prod_{j=1}^{n-1} |1 - \frac{a_j}{\lambda}|}{\prod_{j=1}^{k} |1 - \frac{a_j}{\lambda}|} \\ &\leq \frac{1}{|\lambda|} + \frac{C}{|\lambda|^2} + \frac{a_k}{|\lambda|^2} \sum_{n=k+2}^{\infty} \frac{\frac{B}{(n-1)^{\alpha L}}}{\frac{A}{k^{\alpha L}}} \\ &\leq \frac{1}{|\lambda|} + \frac{C}{|\lambda|^2} + \frac{a_k}{|\lambda|^2} k^{\alpha L} \int_{k}^{\infty} \frac{1}{x^{\alpha L}} dx \\ &\leq \frac{1}{|\lambda|} + \frac{C}{|\lambda|^2} + \frac{C}{|\lambda|^2} (\alpha L - 1), \end{split}$$
(10)

where $C = \sup ka_k$.

Since $\alpha L > 1$ we have $\sup_k \sum_n |b_{nk}| < \infty$, hence we have $B \in B(\ell_1)$, so that T^*_{λ} is shown to be onto. From Theorem 5, $T_{\lambda} \in (1)$. As a result, $T_{\lambda} \in III_1$ and $\lambda \in III_1 \sigma(R_a, c_0)$.

Theorem B: Let $0 < L < \infty$. If $\lambda \notin S$ and $\alpha L = 1$ then $\lambda \in II_2\sigma(R_a, c_0)$.

Proof. Since $\lambda \notin S$, T_{λ} is a lower triangular matrix. So T_{λ} is one-to-one; i.e. $T_{\lambda} \in (1) \cup (2)$.

Consider the adjoint operator T_{λ}^* . Then if $T_{\lambda}^* x = \theta$, then

$$x_n = \prod_{j=0}^{n-1} (1 - \frac{a_j}{\lambda}) x_0 \quad for \ n \ge 1$$

Since $\alpha L = 1$, we have

$$x = (x_0, x_1, \dots) \in \ell_1 \iff x_0 = 0 \iff x = \theta$$

Hence T_{λ}^* is one-to-one; i.e. $T_{\lambda}^* \in (1) \cup (2)$. Now if we look at Fig 1, then we obtain $T_{\lambda} \in I_1 \cup II_2$. From Theorem 3, since $\lambda \in \sigma(R_a, c_0)$, we get $T_{\lambda} \notin I_1$, so $T_{\lambda} \in II_2$. Hence we obtain $\lambda \in II_2\sigma(R_a, c_0)$.

Theorem C: Let $0 < L < \infty$. If $\lambda = a_m$ for at least one m (m = 0, 1, ...), then $\lambda = a_m \in III_3\sigma(R_a, c_0)$.

Proof. Consider the system

$$(\lambda I - R_a^*)x = 0.$$

Suppose that $\lambda = a_0$. Then we have

$$(\lambda I - R_a^*)_0 x = 0,$$

which yields

$$(a_0 - a_0)x_0 - \sum_{k=1}^{\infty} a_k x_k = 0.$$

or

$$\sum_{n=1}^{\infty} a_n x_n = 0.$$

This in turn implies that

$$a_1 x_1 = -\sum_{k=2}^{\infty} a_k x_k.$$

 $(\lambda I - R_a^*)_1 x = 0$ yields

$$0 = (a_0 - a_1)x_1 - \sum_{k=2}^{\infty} a_k x_k = a_0 x_1 - a_1 x_1 + a_1 x_1 = a_0 x_1,$$

which implies that $x_1 = 0$. By induction one can show that $x_n = 0$ for all n > 0.

If $\lambda = a_m, m > 0$, then

$$(\lambda I - R_a^*)_m x = 0,$$

which becomes

$$a_m x_m - \sum_{k=m+1}^{\infty} a_k x_k = 0,$$

which implies that

$$\sum_{k=m+1}^{\infty} a_k x_k = 0,$$

or that

$$a_{m+1}x_{m+1} = -\sum_{k=m+2}^{\infty} a_k x_k.$$

 $(\lambda I - R_a^*)_{m+1}x = 0$

becomes

$$a_m x_{m+1} - \sum_{k=m+1}^{\infty} a_k x_k = 0,$$

or

$$0 = a_m x_{m+1} - a_{m+1} x_{m+1} - \sum_{k=m+1}^{\infty} a_k x_k$$

= $a_m x_{m+1} - a_{m+1} x_{m+1} + a_{m+1} x_{m+1} = a_m x_{m+1}$

which implies that $x_{m+1} = 0$. Again by induction it can be shown that $x_n = 0$ for each n > m.

Therefore in each case x is a finite sequence and $x \in \ell_1$. Hence $T_{a_n}^*$ is not 1-1, and thus T_{a_n} does not have dense range. Therefore $T_{a_n} \in III$.

Since
$$\lambda = a_n$$
 for each $n, T_{a_n}^{-1}$ does not exist. \Box

Acknowledgment

The author is grateful to Professor B. E. Rhoades for the generous help during the preparation of this paper.

References

- [1] Goldberg, S.: Unbounded Linear Operators, (Mc Graw-Hill Book Comp, 1966).
- [2] Leibowitz, G.: 'Rhaly Matrices', J. Math. Analysis and Applications, 128, 272-286 (1987).
- [3] Wenger, R. B.: 'The Fine Spectra of Hölder Summability Operators', Indian J. Pure. Appl. Math. 6, 695-712, (1965).
- [4] Wilansky, A.: Topological divsors of zero and Tauberian Theorems., Trans. Amer. Math. Soc. 113,240-251, (1964).
- [5] Yıldırım, M.: 'On the Spectrum and Fine Spectrum of Compact Rhaly Operators', Indian J. Pure. Appl. Math. 27(8), 779-784, (1996).

 [6] Yıldırım, M.: 'On the Spectrum of the Rhaly Operators on c₀ and c', Indian J. Pure. Appl. Math. 29(12), 1301-1309, (1998).

Received 25.09.2001

Mustafa YILDIRIM Department of Mathematics Cumhuriyet University 58140 Sivas-TURKEY e-mail: yildirim@cumhuriyet.edu.tr