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The Fine Spectra of the Rhaly Operators on c0

Mustafa Yıldırım

Abstract

In 1975, Wenger [3] determined the fine spectra of Cesàro operator C1 on c, the

space of convergent sequences. In [6], the spectrum of the Rhaly operators on c0

and c, under the assumption that lim
n→∞

(n+ 1)an = L 6= 0, has been determined.

This paper presents the fine spectra of the Rhaly matrix Ra as an operator on the

space c0, with the same assumption.
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1. Introduction

In this paper, c0, `1, T ∗, X∗, B(X), At, π0(T,X) and σ(T,X) respectively denote

null sequences; sequences such that
∑

k | xk |< ∞; the adjoint operator of T ; the

continuous dual of X; the linear space of all bounded linear operators, say, T on X into

itself; the transposed matrix of A; the eigenvalues of T on X; and the spectrum of T on

X.

In addition, we assume that given a scalar sequence of a = (an), a Rhaly matrix

Ra = (ank) is the lower triangular matrix where ank = an, k ≤ n and ank = 0 otherwise,

where

(a) L = limn(n + 1)an exists, finite, and is nonzero;

(b) an > 0 for all n, and

(c) ai 6= aj for i 6= j.

1991 Math. Subject Classification: Primary 40G99, Secondary 47B37, 47B38, 47A10

273



YILDIRIM

(d) a = (an) is monotone decreasing.

Let S denote the set { an : n = 0, 1, 2, ... }.

In 1975, Wenger [3] determined the fine spectra of Cesàro operator C1 on c, the space

of convergent sequences. In [6], the spectrum of the Rhaly operators on c0 and c, under

the assumption that lim
n→∞

(n+ 1)an = L 6= 0 has been determined.

Under the above conditions, the purpose of this study is to determine the fine spectra

of Rhaly operator Ra as an operator on the Banach space c0 of convergent sequences

normed by ‖ x ‖= supn≥0 | xn |.

If X is a Banach space, B(X) denotes the collection of all bounded linear operators

on X and if T ∈ B(X), then there are three possibilities for R(T ), the range of T :

(I) R(T ) = X,

(II) R(T ) = X, but R(T ) 6= X,

(III) R(T ) 6= X

and three possibilities for T−1:

(1) T−1 exists and is continuous,

(2) T−1 exists but is discontinuous,

(3) T−1 does not exist.

If these possibilities are combined in all possible ways, nine different states are created.

These are labelled by: I1, I2, I3, II1 , II2, II3, III1 , III2 , III3 . If an operator is in state

III2 for example, then R(T ) 6= X and T−1 exist but is discontinuous (see [1]).
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Figure1. State diagram for B(X) and B(X∗) for a non-reflective Banach space X

If λ is a complex number such that A = λI − T ∈ I1 or A = λI − T ∈ II1, then

λ ∈ ρ(T,X). All scalar values of λ not in ρ(T,X) comprise the spectrum of T . The

further classification of σ(T,X) gives rise to the fine spectrum of T . That is, σ(T,X) can

be divided into the subsets I2σ(T,X), I3σ(T,X), II2σ(T,X), II3σ(T,X), III1σ(T,X),

III2σ(T,X), III3σ(T,X). For example, if A = λI − T is in a given state, III2 (say),

then we write λ ∈ III2σ(T,X).

Lemma : If Re 1
λ = α, then

N−1∏
k=0

| 1− ak
λ
| ' 1

NαL
(1)

as N −→ ∞. We use the notation an ' bn in the sense that
(
an
bn

)
,
(
bn
an

)
are both

bounded. [6]

Theorem 1: If 0 < L <∞ then S ∩ (2L,∞) ⊆ π0(Ra, c0) ⊆ S ∩ [2L,∞) [6].
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Theorem 2: If 0 < L <∞ then

{
λ : | λ− L

2 | < L
2

}
∪ S ∪ {L} ⊆ π0(R∗a, c∗0 ∼= `1)

⊆
({

λ : | λ − L
2 | ≤

L
2

}
− {0}

)
∪ S

[6].

Theorem 3: If 0 < L <∞ then σ(Ra, c0) =
{
λ : | λ − L

2 | ≤
L
2

}
∪ S[6].

Theorem 4: T has a dense range if and only if T ∗ is one-to-one.[1,II.3.7 Theorem]

Theorem 5: R(T ∗) = X∗ if and only if T has a bounded inverse.[1,II.3.11 Theorem]

Theorem 6: Ra is a bounded operator on c0 if and only if R∗a = Rta[4].

Main Results

Theorem A: Let 0 < L < ∞. If λ /∈ S and αL > 1 then λ ∈ III1σ(Ra, c0) where

α = Re 1
λ .

Proof. Since λ 6∈ S, Tλ = λI−Ra is a lower triangular matrix. The matrix T−1
λ exists.

From Theorem 6, R∗a = Rta on c0. Then T ∗λx = θ implies the following:

xn = (1− an−1

λ
)xn−1 (2)

and

xn =
n−1∏
j=0

(1 − aj
λ

)x0, for n ≥ 1. (3)

Since αL > 1, x = (xn)∞0 ∈ `1. Therefore T ∗λ is not one-to-one. From Theorem 4,

R(Tλ) 6= c0. So that Tλ ∈ III.
Let y = (yn) ∈ `1. We want to find x = (xn) ∈ `1 such that T ∗λx = y. Let x0 = 0,

then we have

x1 =
1
λ

(y1 − y0) +
1
λ

(λ − a0)x0

=
1
λ

(y1 − y0)
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and for n > 1,

xn =
1
λ

{
yn −

an−1

λ
yn−1 −

an−2

λ
(1− an−1

λ
)yn−2

−an−3

λ
(1− an−2

λ
)(1− an−1

λ
)yn−3 − . . .−

a1

λ
(1− an−1

λ
)(1 − an−2

λ
) . . . (1− a2

λ
)y1

−
n−1∏
j=1

(1− aj
λ

)y0

 .

This defines the matrix B = (bnk) with n ≥ 1, k ≥ 0, where x = By as the following:

bnn =
1
λ

(4)

bn,n−1 = −an−1

λ2
(5)

b10 = − 1
λ

and bn0 = − 1
λ

n−1∏
j=1

(1− aj
λ

), n > 1 (6)

bnk = −ak
λ2

n−1∏
j=k+1

(1− aj
λ

), (7)

bnk = 0, k > 1 ≥ n. (8)

By the Lemma there are possitive constants A and B such that

A

nαL
≤

n∏
j=1

| 1− aj
λ
|≤ B

nαL
.
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So
∞∑
n=1

| bn0 | =| b10 | +
∞∑
n=2

| bn0 |

=
1
| λ | +

1
| λ |

∞∑
n=2

n−1∏
j=1

| 1− aj
λ
|

=
1
| λ | +

B

| λ |

∞∑
n=2

1
(n− 1)αL

,

(9)

and for k ≥ 1

∞∑
n=1

| bnk | = | bkk | + | bk+1,k | +
∞∑

n=k+2

| bnk |

=
1
| λ | +

ak
| λ |2 +

ak
| λ |2

∞∑
n=k+2

n−1∏
j=k+1

| 1− aj
λ
|

≤ 1
| λ | +

C

| λ |2 +
ak
| λ |2

∞∑
n=k+2

n−1∏
j=1

| 1− aj
λ
|

k∏
j=1

| 1− aj
λ
|

≤ 1
| λ | +

C

| λ |2 +
ak
| λ |2

∞∑
n=k+2

B

(n− 1)αL
A

kαL

≤ 1
| λ | +

C

| λ |2 +
ak
| λ |2k

αL

∫ ∞
k

1
xαL

dx

≤ 1
| λ | +

C

| λ |2 +
C

| λ |2 (αL− 1)
, (10)

where C = sup kak.
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Since αL > 1 we have supk
∑
n | bnk |< ∞, hence we have B ∈ B(`1), so that

T ∗λ is shown to be onto. From Theorem 5, Tλ ∈ (1). As a result, Tλ ∈ III1 and

λ ∈ III1σ(Ra, c0). 2

Theorem B: Let 0 < L <∞. If λ /∈ S and αL = 1 then λ ∈ II2σ(Ra, c0).

Proof. Since λ 6∈ S, Tλ is a lower triangular matrix. So Tλ is one-to-one; i.e.Tλ ∈
(1) ∪ (2).

Consider the adjoint operator T ∗λ . Then if T ∗λx = θ, then

xn =
n−1∏
j=0

(1− aj
λ

)x0 for n ≥ 1.

Since αL = 1, we have

x = (x0, x1, . . . ) ∈ `1 ⇐⇒ x0 = 0 ⇐⇒ x = θ.

Hence T ∗λ is one-to-one; i.e.T ∗λ ∈ (1) ∪ (2). Now if we look at Fig 1, then we obtain

Tλ ∈ I1 ∪ II2. From Theorem 3, since λ ∈ σ(Ra, c0), we get Tλ 6∈ I1, so Tλ ∈ II2. Hence

we obtain λ ∈ II2σ(Ra, c0). 2

Theorem C: Let 0 < L < ∞. If λ = am for at least one m ( m = 0, 1, . . .), then

λ = am ∈ III3σ(Ra, c0).

Proof. Consider the system

(λI −R∗a)x = 0.

Suppose that λ = a0. Then we have

(λI −R∗a)0x = 0,

which yields

(a0 − a0)x0 −
∞∑
k=1

akxk = 0,
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or

∞∑
n=1

anxn = 0.

This in turn implies that

a1x1 = −
∞∑
k=2

akxk.

(λI −R∗a)1x = 0 yields

0 = (a0 − a1)x1 −
∞∑
k=2

akxk = a0x1 − a1x1 + a1x1 = a0x1,

which implies that x1 = 0. By induction one can show that xn = 0 for all n > 0.

If λ = am, m > 0, then

(λI − R∗a)mx = 0,

which becomes

amxm −
∞∑

k=m+1

akxk = 0,

which implies that

∞∑
k=m+1

akxk = 0,

or that

am+1xm+1 = −
∞∑

k=m+2

akxk.

(λI −R∗a)m+1x = 0
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becomes

amxm+1 −
∞∑

k=m+1

akxk = 0,

or

0 = amxm+1 − am+1xm+1 −
∑∞

k=m+1 akxk

= amxm+1 − am+1xm+1 + am+1xm+1 = amxm+1,

which implies that xm+1 = 0. Again by induction it can be shown that xn = 0 for each

n > m.

Therefore in each case x is a finite sequence and x ∈ `1. Hence T ∗an is not 1-1, and

thus Tan does not have dense range. Therefore Tan ∈ III.
Since λ = an for each n, T−1

an does not exist. 2
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