Turk J Math 26 (2002) , 283 – 293. © TÜBİTAK

On Some Class of Hypersurfaces in \mathbb{E}^{n+1} Satisfying Chen's Equality

Cihan Özgür and Kadri Arslan

Abstract

In this paper we study pseudosymmetry type hypersurfaces in the Euclidean space \mathbb{E}^{n+1} satisfying B. Y. Chen's equality.

Key Words: Chen's equality, semisymmetric, pseudosymmetric manifold, hypersurface.

1. Introduction

Let $(M, g), n \geq 3$, be a connected Riemannian manifold of class C^{∞} . We denote by ∇, R, C, S and κ the Levi-Civita connection, the Riemann-Christoffel curvature tensor, the Weyl conformal curvature tensor, the Ricci tensor and the scalar curvature of (M, g), respectively. The Ricci operator S is defined by g(SX, Y) = S(X, Y), where $X, Y \in \chi(M), \chi(M)$ being Lie algebra of vector fields on M. We next define endomorphisms $X \wedge Y, \mathcal{R}(X, Y)$ and $\mathcal{C}(X, Y)Z$ of $\chi(M)$ by

$$(X \wedge Y)Z = g(Y, Z)X - g(X, Z)Y, \tag{1.1}$$

$$\mathcal{R}(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, \qquad (1.2)$$

M. S. C. Mathematics Subject Classification: 53C40, 53C42, 53C25, 53B50

$$\mathcal{C}(X,Y)Z = \mathcal{R}(X,Y)Z - \frac{1}{n-2}(X \wedge \mathcal{S}Y + \mathcal{S}X \wedge Y - \frac{\kappa}{n-1}X \wedge Y)Z,$$
(1.3)

respectively, where $X, Y, Z \in \chi(M)$.

The Riemannian Christoffel curvature tensor R and the Weyl curvature tensor C of (M, g) are defined by

$$R(X, Y, Z, W) = g(\mathcal{R}(X, Y)Z, W), \qquad (1.4)$$

$$C(X, Y, Z, W) = g(\mathcal{C}(X, Y)Z, W), \qquad (1.5)$$

respectively, where $W \in \chi(M)$.

For a (0, k)-tensor field $T, k \ge 1$, on (M, g) we define the tensors $R \cdot T$ and Q(g, T) by

$$(R(X,Y) \cdot T)(X_1,...,X_k) = -T(\mathcal{R}(X,Y)X_1,X_2,...,X_k)$$

-...-T(X₁,...,X_{k-1}, $\mathcal{R}(X,Y)X_k$), (1.6)

$$Q(g,T)(X_1,...,X_k;X,Y) = (X \wedge Y)T(X_1,...,X_k) - T((X \wedge Y)X_1,X_2,...,X_k)$$

-...-T(X₁,...,X_{k-1}, (X \wedge Y)X_k), (1.7)

respectively.

If the tensors $R \cdot R$ and Q(g, R) are linearly dependent then M is called *pseudosymmetric*. This is equivalent to

$$R \cdot R = L_R Q(g, R) \tag{1.8}$$

holding on the set $U_R = \{x \mid Q(g, R) \neq 0 \text{ at } x\}$, where L_R is some function on U_R . If $R \cdot R = 0$ then M is called *semisymmetric*. (see [11], Section 3.1; [19]).

If the tensors $R \cdot S$ and Q(g, S) are linearly dependent then M is called *Ricci*pseudosymmetric. This is equivalent to

$$R \cdot S = L_S Q(g, S) \tag{1.9}$$

holding on the set $U_S = \{x \mid S \neq \frac{\kappa}{n}g \text{ at } x\}$, where L_S is some function on U_S . Every pseudosymmetric manifold is Ricci pseudosymmetric but the converse statement is not true. If $R \cdot S = 0$ then M is called *Ricci-semisymmetric*. (see [10], [14]).

If the tensors $R \cdot C$ and Q(g, C) are linearly dependent then M is called Weylpseudosymmetric. This is equivalent to

$$R \cdot C = L_C Q(g, C) \tag{1.10}$$

holding on the set $U_C = \{x \mid C \neq 0 \text{ at } x\}$. Every pseudosymmetric manifold is Weyl pseudosymmetric but the converse statement is not true. If $R \cdot C = 0$ then M is called Weyl-semisymmetric. (see [13]).

The manifold M is a manifold with pseudosymmetric Weyl tensor if and only if

$$C \cdot C = L_C Q(g, C) \tag{1.11}$$

holds on the set U_C , where L_C is some function on U_C (see [12]). The tensor $C \cdot C$ is defined in the same way as the tensor $R \cdot R$.

2. Submanifolds Satisfying Chen's Equality

Let M^n be an $n \geq 3$ dimensional connected submanifold immersed isometrically in the Euclidean space \mathbb{E}^m . We denote by $\widetilde{\nabla}$ and ∇ the Levi-Civita connections corresponding to \mathbb{E}^m and M, respectively. Let ξ be a local unit normal vector field on M in \mathbb{E}^m . We can present the Gauss formula and the Weingarten formula of M in \mathbb{E}^m in the form $\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y)$ and $\widetilde{\nabla}_X \xi = -A_{\xi}(X) + D_X \xi$, respectively, where X, Y are vector fields tangent to M and D is the normal connection of M. (see [4]).

Let M^n be a submanifold of \mathbb{E}^m and $\{e_1, ..., e_n\}$ be an orthonormal tangent frame field on M^n . For the plane section $e_i \wedge e_j$ of the tangent bundle TM spanned by the vectors e_i and e_j $(i \neq j)$ the scalar curvature of M is defined by $\kappa = \sum_{i,j=1}^n K(e_i \wedge e_j)$ where Kdenotes the sectional curvature of M. Consider the real function inf K on M^n defined for every $x \in M$ by

$$(\inf K)(x) := \inf\{K(\pi) \mid \pi \text{ is a plane in } T_x M^n\}.$$

Note that since the set of planes at a certain point is compact, this infimum is actually a minimum. Then in [6], B. Y. Chen proved the following basic inequality between the intrinsic scalar invariants inf K and κ of M^n , and the extrinsic scalar invariant |H|, being the length of the mean curvature vector field H of M^n in \mathbb{E}^m .

Lemma 2.1 [6]. Let M^n , $n \ge 2$, be any submanifold of \mathbb{E}^m , m = n + p, $p \ge 1$. Then

$$\inf K \ge \frac{1}{2} \left\{ \kappa - \frac{n^2(n-2)}{n-1} \left| H \right|^2 \right\}.$$
(2.12)

Equality holds in (2.12) at a point x if and only if with respect to suitable local orthonormal frames $e_1,...,e_n \in T_x M^n$, the Weingarten maps A_t with respect to the normal sections $\xi_t = e_{n+t}, t = 1,...,p$ are given by

$$A_{1} = \begin{bmatrix} a & 0 & 0 & 0 & \cdots & 0 \\ 0 & b & 0 & 0 & \cdots & 0 \\ 0 & 0 & \mu & 0 & \cdots & 0 \\ 0 & 0 & 0 & \mu & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \mu \end{bmatrix} , \quad A_{t} = \begin{bmatrix} c_{t} & d_{t} & 0 & \cdots & 0 \\ d_{t} & -c_{t} & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} , \quad (t > 1),$$

where $\mu = a + b$ for any such frame, $\inf K(x)$ is attained by the plane $e_1 \wedge e_2$.

The relation (2.12) is called Chen's inequality. Submanifolds satisfying Chen's inequality have been studied with many authors. For more details see ([18],[8],[15] and recently [2] and [3]).

Remark 2.2 For dimension n = 2 (2.12) is trivially satisfied.

From now on we assume that M^n is a hypersurface in \mathbb{E}^{n+1} . We denote shortly $K_{rs} = K(e_r \wedge e_s)$.

By the use of Lemma 2.1 we get the following corollaries;

Corollary 2.3 Let M be a hypersurface of \mathbb{E}^{n+1} , $n \geq 3$, satisfying Chen's equality then

$$K_{12} = ab, \quad K_{1j} = a\mu, \quad K_{2j} = b\mu, \quad K_{ij} = \mu^2,$$
 (2.13)

where i, j > 2. Furthermore, $\mathcal{R}(e_i, e_j)e_k = 0$ if i, j and k are mutually different.

Corollary 2.4 Let M be a hypersurface of \mathbb{E}^{n+1} , $n \geq 3$, satisfying Chen's equality then

$$S(e_1, e_1) = [(n-2)a\mu + ab],$$

$$S(e_2, e_2) = [(n-2)b\mu + ab],$$

$$S(e_3, e_3) = \dots = S(e_n, e_n) = (n-2)\mu^2,$$
(2.14)

and $S(e_i, e_j) = 0$ if $i \neq j$.

Remark 2.5 Hypersurface M with three distinct principal curvatures, their multiplicities are 1, 1 and n - 2, is said to be 2-quasi umbilical. Therefore hypersurfaces satisfying B. Y. Chen equality is a special type of 2-quasi umbilical hypersurfaces.

Theorem 2.6 [16]. Any 2-quasi-umbilical hypersurface M, $dim M \ge 4$, immersed isometrically in a semi-Riemannian conformally flat manifold N is a manifold with pseudosymmetric Weyl tensor.

Corollary 2.7 [15]. Every hypersurface M immersed isometrically in a Riemannian space of constant curvature $N^{n+1}(c)$, $n \ge 4$, realizing Chen's equality is a hypersurface with pseudosymmetric Weyl tensor.

On the other hand, it is known that in a hypersurface M of a Riemannian space of constant curvature $N^{n+1}(c)$, $n \ge 4$, if M is a Ricci-pseudosymmetric manifold with pseudosymmetric Weyl tensor then it is a pseudosymmetric manifold (see [15]). Moreover from [1], we know that, in a hypersurface M of a Riemannian space of constant curvature $N^{n+1}(c)$, $n \ge 4$, the Weyl pseudosymmetry and the pseudosymmetry conditions are equivalent. So using the previous facts and Theorem 2.6 one can obtain the following corollary.

Corollary 2.8 In the class of 2-quasiumbilical hypersurfaces of the Euclidean space \mathbb{E}^{n+1} , $n \geq 4$, the conditions of the pseudosymmetry, the Ricci-pseudosymmetry and the Weyl pseudosymmetry are equivalent.

In [18] the authors gave the classification of semisymmetric submanifolds satisfying B. Y. Chen equality.

Theorem 2.9 [18]. Let M^n , $n \ge 3$, be a submanifold of \mathbb{E}^m satisfying Chen's equality. Then M^n is semisymmetric if and only if M^n is a minimal submanifold (in which case M^n is (n-2)-ruled), or M^n is a round hypercone in some totally geodesic subspace \mathbb{E}^{n+1} of \mathbb{E}^m .

Now our aim is to give an extension of Theorem 2.9 for the case M is a pseudosymmetric hypersurface in the Euclidean space \mathbb{E}^{n+1} . Since hypersurfaces satisfying Chen's equality is a special type of 2-quasiumbilical hypersurfaces, it is enough to investigate only the pseudosymmetry condition. By Corollary 2.8, this will include all types of the pseudosymmetry (1.8)-(1.10). Firstly we give the following lemmas;

Lemma 2.10 Let $M, n \geq 3$, be a hypersurface of \mathbb{E}^{n+1} satisfying Chen's equality. Then

$$(\mathcal{R}(e_1, e_3) \cdot \mathcal{R})(e_2, e_3)e_1 = a\mu b^2 e_2, \tag{2.15}$$

$$(\mathcal{R}(e_2, e_3) \cdot \mathcal{R})(e_1, e_3)e_2 = b\mu a^2 e_1.$$
(2.16)

Proof. Using (1.6) we have

$$(\mathcal{R}(e_1, e_3) \cdot \mathcal{R})(e_2, e_3)e_1 = \mathcal{R}(e_1, e_3)(\mathcal{R}(e_2, e_3)e_1) - \mathcal{R}(\mathcal{R}(e_1, e_3)e_2, e_3)e_1 - \mathcal{R}(e_2, \mathcal{R}(e_1, e_3)e_3)e_1 - \mathcal{R}(e_2, e_3)(\mathcal{R}(e_1, e_3)e_1)$$
(2.17)

and

$$(\mathcal{R}(e_2, e_3) \cdot \mathcal{R})(e_1, e_3)e_2 = \mathcal{R}(e_2, e_3)(\mathcal{R}(e_1, e_3)e_2) - \mathcal{R}(\mathcal{R}(e_2, e_3)e_1, e_3)e_2 - \mathcal{R}(e_1, \mathcal{R}(e_2, e_3)e_3)e_2 - \mathcal{R}(e_1, e_3)(\mathcal{R}(e_2, e_3)e_2).$$
(2.18)

Since

$$\mathcal{R}(e_i, e_j)e_k = (A_{\xi}e_i \wedge A_{\xi}e_j)e_k$$

then using (2.13) one can get

$$\mathcal{R}(e_1, e_3)e_1 = -K_{13}e_1 \quad , \quad \mathcal{R}(e_1, e_3)e_3 = K_{13}e_1$$

$$\mathcal{R}(e_2, e_1)e_1 = K_{12}e_2 \quad , \quad \mathcal{R}(e_2, e_1)e_2 = -K_{12}e_1$$

$$\mathcal{R}(e_2, e_3)e_2 = -K_{23}e_2 \quad , \quad \mathcal{R}(e_2, e_3)e_3 = K_{23}e_2.$$

(2.19)

Therefore substituting (2.19), (2.13) into (2.17) and (2.18) respectively we get the result. $\hfill \Box$

Lemma 2.11 Let M, $n \geq 3$, be a hypersurface of \mathbb{E}^{n+1} satisfying Chen's equality. Then

$$Q(g,\mathcal{R})(e_2,e_3,e_1;e_1,e_3) = b^2 e_2, \qquad (2.20)$$

$$Q(g,\mathcal{R})(e_1,e_3,e_2;e_2,e_3) = a^2 e_1.$$
(2.21)

Proof. Using the relation (1.7) we obtain

$$Q(g,\mathcal{R})(e_2,e_3,e_1;e_1,e_3) = (e_1 \wedge e_3)\mathcal{R}(e_2,e_3)e_1 - \mathcal{R}((e_1 \wedge e_3)e_2,e_3)e_1 - \mathcal{R}(e_2,(e_1 \wedge e_3)e_3)e_1 - \mathcal{R}(e_2,e_3)((e_1 \wedge e_3)e_1)$$
(2.22)

and

$$Q(g,\mathcal{R})(e_2,e_3,e_2;e_2,e_3) = (e_2 \wedge e_3)\mathcal{R}(e_1,e_3)e_2 - \mathcal{R}((e_2 \wedge e_3)e_1,e_3)e_2 - \mathcal{R}(e_1,(e_2 \wedge e_3)e_3)e_2 - \mathcal{R}(e_1,e_3)((e_2 \wedge e_3)e_2).$$
(2.23)

So substituting respectively (2.19) and (2.13) into (2.22) and (2.23) we obtain (2.20)-(2.21). $\hfill \Box$

Theorem 2.12 Let $M, n \ge 3$, be a hypersurface of \mathbb{E}^{n+1} satisfying Chen's equality. Then M is pseudosymmetric if and only if

- (i) $M = \mathbb{E}^n$, or
- (ii) M is a round hypercone in \mathbb{E}^{n+1} , or
- (iii) M is a minimal hypersurface in \mathbb{E}^{n+1} (in which case M is (n-2)-ruled), or

(iv) The shape operator of M in \mathbb{E}^{n+1} is of the form

$$A_{\xi} = \begin{bmatrix} a & 0 & 0 & 0 & \cdots & 0 \\ 0 & a & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2a & 0 & \cdots & 0 \\ 0 & 0 & 0 & 2a & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2a \end{bmatrix}.$$
 (2.24)

Proof. Let M be a pseudosymmetric hypersurface in \mathbb{E}^{n+1} . Then by definition one can write

$$(\mathcal{R}(e_1, e_3) \cdot \mathcal{R})(e_2, e_3)e_1 = L_R Q(g, \mathcal{R})(e_2, e_3, e_1; e_1, e_3)$$
(2.25)

and

$$(\mathcal{R}(e_2, e_3) \cdot \mathcal{R})(e_1, e_3)e_2 = L_R Q(g, \mathcal{R})(e_1, e_3, e_2; e_2, e_3).$$
(2.26)

Since M satisfies B. Y. Chen equality then by Lemma 2.10 and Lemma 2.11 the equations (2.25) and (2.26) turns, respectively, into

$$(a\mu - L_R)b^2 = 0 (2.27)$$

and

$$(b\mu - L_R)a^2 = 0. (2.28)$$

i) Firstly, suppose that M is semisymmetric, i.e., M is trivially pseudosymmetric then $L_R = 0$. So the equations (2.27) and (2.28) can be written as the following:

$$ab\mu = 0.$$

Now suppose $a = 0, b \neq 0$ then $\mu = b$ and by [9] M is a round hypercone in \mathbb{E}^{n+1} . If $a \neq 0, b = 0$ then $\mu = a$ and similarly M is a round hypercone in \mathbb{E}^{n+1} . If $\mu = 0$ then M is minimal. If a = 0, b = 0 then $\mu = 0$ so $M = \mathbb{E}^n$.

ii) Secondly, suppose M is not semisymmetric, i.e., $R \cdot R \neq 0$. For the subcases $a = b = 0, a = 0, b \neq 0$ or $a \neq 0, b = 0$ we get $R \cdot R = 0$ which contradicts the fact that

 $R \cdot R \neq 0$. Therefore the only remaining possible subcase is $a \neq 0$, $b \neq 0$. So by the use of (2.27) and (2.28) we have $(a - b)\mu = 0$. Since $\mu = a + b \neq 0$ then a = b and by Lemma 2.1 the shape operator of M is of the form (2.24).

This completes the proof of the theorem.

Theorem 2.13 Let M, $n \ge 3$, be a hypersurface of \mathbb{E}^{n+1} satisfying Chen's equality. If M is pseudosymmetric then rankS = 0 or 2 or n - 1 or n.

Proof. Suppose that M is a hypersurface of \mathbb{E}^{n+1} , $n \ge 3$, satisfying Chen equality. If M is semisymmetric then $M = \mathbb{E}^n$ or M is a round hypercone or M is minimal. It is easy to check that if $M = \mathbb{E}^n$ then rankS = 0, if M is a round hypercone then rankS = n - 1, if M is minimal then rankS = 2. Now suppose M is not semisymmetric but it is pseudosymmetric. Then by Theorem 2.12 the principal curvatures of M are a, a, 2a,...,2a. So by Corollary 2.4, $S(e_1, e_1) = S(e_2, e_2) = (2n - 3)a^2$ and $S(e_3, e_3) = ... = S(e_n, e_n) = 2(n - 2)a^2$, which gives rankS = n.

Hence we get the result, as required.

References

- Arslan, K., Deszcz, R. and Yaprak, Ş.: On Weyl pseudosymmetric hypersurfaces, Colloquium Math., 72, 353-360, (1997).
- [2] Arslan, K., Ezentaş, R., Mihai, I., Murathan, C. and Özgür, C.: Certain inequalities for submanifolds in (k,μ)-contact space forms, Bull. Austral. Math. Soc. 64, 201-212, (2001).
- [3] Arslan, K., Ezentaş, R., Mihai, I., Murathan, C. and Özgür, C.: Chen inequalities for submanifolds in locally conformal almost cosymplectic manifolds, Bull. Inst. Math. Acad. Sinica 29, no. 3, 231–242, (2001).
- [4] Chen, B.Y.: Geometry of submanifolds and its applications, Science University of Tokyo 1981.
- [5] Chen, B.Y.: Some pinching and classification theorems for minimal submanifolds, Archiv for Math. 60, 568-578, (1993).

- [6] Chen, B.Y.: A Riemannian invariant for submanifolds in space forms and its applications, in: Geometry and Topology of Submanifolds VI, World Scientific, Singapore, 58-81, 1994.
- [7] Chen, B. Y., Dillen, F., Verstraelen, L. and Vrancken, L.: Totally real submanifolds of CPⁿ satisfying a basic equality, Arc. Math. 63, 553-564, (1994).
- [8] Defever, F., Mihai, I. and Verstraelen, L.: B. Y. Chen's inequality for C-totally real submanifolds in Sasakian space forms, Boll. Un. Mat. Ital. 11, 365-374, (1997).
- [9] Deprez, J.: Semi-parallel hypersurfaces, Rend. Sem. Mat. Univers. Politecn. Torino, 44, 303-316, (1986).
- [10] Deszcz, R.:On Ricci pseudosymmetric warped products, Demonstratio Math., 22, 1053-1065, (1989).
- [11] Deszcz, R.: On pseudosymmetric spaces, Bull. Soc. Belg. Math., Ser. A, 44, 1–34, (1992).
- [12] Deszcz, R. and Grycak, W.: On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica, 15, 311-322, (1987).
- [13] Deszcz, R. and Grycak, W.: On manifolds satisfying some curvature conditions, Colloquium Math., 57, 89-92, (1989).
- [14] Deszcz, R. and Hotlos, M.: Remarks on Riemannian manifolds satisfying a certain curvature condition imposed on the Ricci tensor, Prace Nauk. Pol. Szczec., 11, 23-34, (1989).
- [15] Deszcz, R., Verstraelen, L. and Yaprak, Ş.: On hypersurfaces with pseudosymmetric Weyl tensor, in: Geometry and Topology of Submanifolds, VIII, World Sci. Publishing, River Edge, NJ, 111–120, 1996.
- [16] Deszcz, R., Verstraelen, L. and Yaprak, Ş.: On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta Math. Hungarica, 78, 45-57, (1998).
- [17] Deszcz, R., Verstraelen, L. and Yaprak, Ş.: Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat manifolds, Geometry and Topology of Submanifolds, IX, World Sci. Publishing, River Edge, NJ, 108-117, 1999.
- [18] Dillen, F., Petrovic, M. and Verstraelen, L.: Einstein, conformally flat and semi-symmetric submanifolds satisfying Chen's equality, Israel J. Math. 100, 163-169, (1997).

[19] Verstraelen, L: Comments on pseudo-symmetry in the sense of Ryszard Deszcz, in: Geometry and Topology of Submanifolds, VI, World Sci. Publishing, River Edge, NJ, 199–209, 1994.

Received 28.11.2001

Cihan ÖZGÜR Department of Mathematics Balıkesir University 10100, Balıkesir, TURKEY e-mail: cozgur@balikesir.edu.tr Kadri ARSLAN Department of Mathematics Uludağ University 16059 Bursa, TURKEY e-mail: arslan@uludag.edu.tr