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Abstract

In this paper we study pseudosymmetry type hypersurfaces in the Euclidean

space "1 satisfying B. Y. Chen’s equality.
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1. Introduction

Let (M, g), n > 3, be a connected Riemannian manifold of class C*°. We denote by
V,R,C,S and k the Levi-Civita connection, the Riemann-Christoffel curvature tensor,
the Weyl conformal curvature tensor, the Ricci tensor and the scalar curvature of (M, g),
respectively. The Ricci operator S is defined by ¢(SX,Y) = S(X,Y), where X|Y €
X(M), x(M) being Lie algebra of vector fields on M. We next define endomorphisms
XAY, R(X,Y) and C(X,Y)Z of x(M) by

(X AY)Z = g(Y, 2)X — g(X, 2)Y, (L.1)

R(X,YNZ=VxVyZ —-VyVxZ— V[Xy]Z, (1.2)
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K

C(X,Y)Z =R(X,Y)Z- (X ASY +SX AY- XAY)Z, (1.3)

n—2 n—1

respectively, where XY, Z € x(M).
The Riemannian Christoffel curvature tensor R and the Weyl curvature tensor C' of

(M, g) are defined by

R(X,Y,Z,W) = g(R(X,Y)Z, W), (1.4)

C(X,Y,Z,W)=g(C(X,Y)Z,W), (1.5)

respectively, where W € y(M).
For a (0, k)-tensor field T', k > 1, on (M, g) we define the tensors R-T and Q(g,T) by

(R(X,Y) -T)(X1,....Xx) = —-TR(X,Y)X1,X2,....X%)
- T( X1y ooy X1, R(X,Y) X3, (1.6)
Qlg, T)( X1, Xi; X,Y) = (XAVT(X1,... Xk)-T(XAY)X1, Xo,...,. Xk)
T (X1, X1, (X AY) X)), (1.7)
respectively.

If the tensors R - R and Q(g, R) are linearly dependent then M is called pseudosym-

metric. This is equivalent to
R-R=LzQ(g, R) (1.8)

holding on the set Up = {x | Q(g,R) # 0 at x}, where Lg is some function on Ug. If
R-R =0 then M is called semisymmetric. (see [11], Section 3.1; [19]).
If the tensors R - S and Q(g,S) are linearly dependent then M is called Ricci-

pseudosymmetric. This is equivalent to
R-S=LsQ(g, 9) (L9)

holding on the set Us = {z | S # g at x}, where Lg is some function on Ug. Every
pseudosymmetric manifold is Ricci pseudosymmetric but the converse statement is not

true. If R-S =0 then M is called Ricci-semisymmetric. (see [10], [14]).
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If the tensors R - C and Q(g,C) are linearly dependent then M is called Weyl-

pseudosymmetric. This is equivalent to
R-C=LcQ(g,C) (1.10)

holding on the set Us = {z | C' # 0 at z}. Every pseudosymmetric manifold is Weyl
pseudosymmetric but the converse statement is not true. If R-C = 0 then M is called
Weyl-semisymmetric. (see [13]).

The manifold M is a manifold with pseudosymmetric Weyl tensor if and only if
C-C=LoQ.C) (1.11)

holds on the set Ug, where L¢ is some function on Ue (see [12]). The tensor C - C is

defined in the same way as the tensor R - R.

2. Submanifolds Satisfying Chen’s Equality

Let M™ be an n > 3 dimensional connected submanifold immersed isometrically in the
Euclidean space E™. We denote by V and V the Levi-Civita connections corresponding
to E™ and M, respectively. Let £ be a local unit normal vector field on M in E™. We
can present the Gauss formula and the Weingarten formula of M in E™ in the form
VyY = VxY +h(X,Y) and ﬁxg = —A(X)+ Dx¢, respectively, where X, Y are vector
fields tangent to M and D is the normal connection of M. (see [4]).

Let M™ be a submanifold of E™ and {es,...,e,} be an orthonormal tangent frame field

on M". For the plane section e; A e; of the tangent bundle 7'M spanned by the vectors

n
e; and e; (i # j) the scalar curvature of M is defined by k = >, K(e; Aej) where K
ij=1

denotes the sectional curvature of M. Consider the real function inf K on M™ defined

for every x € M by

(inf K)(z) := inf{K(7) | 7 is a plane in T, M"}.
Note that since the set of planes at a certain point is compact, this infimum is actually
a minimum. Then in [6], B. Y. Chen proved the following basic inequality between the

intrinsic scalar invariants inf K and k of M, and the extrinsic scalar invariant | H|, being

the length of the mean curvature vector field H of M™ in E™.
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Lemma 2.1 [6]. Let M™, n > 2, be any submanifold of E™, m=n+p, p > 1. Then

. 1 nQ(n—2) 2
K> - ———F|H . 2.12
i > 3 fo- =2 (212)

Equality holds in (2.12) at a point x if and only if with respect to suitable local orthonormal
frames eq,....e, € T,M"™, the Weingarten maps A; with respect to the normal sections

& =entt, t=1,...,p are given by

[« 0 0 0 0 | - .
C¢ dt 0 0
0O b 0 O 0
dt —C¢ 0 0
0 0 u O 0 0 0
Ay = , A= , (t>1),
1 0 0 0 & 0 ¢ (t>1)
0 0 0 0
L0 0 0 O W - -

where p=a+b for any such frame, inf K(x) is attained by the plane e1 A ea.

The relation (2.12) is called Chen’s inequality. Submanifolds satisfying Chen’s in-
equality have been studied with many authors. For more details see ([18],[8],[15] and
recently [2] and [3]).

Remark 2.2 For dimension n =2 (2.12) is trivially satisfied.

From now on we assume that M™ is a hypersurface in E"t!. We denote shortly
K,s = K(e, Aesg).

By the use of Lemma 2.1 we get the following corollaries;

Corollary 2.3 Let M be a hypersurface of E"t1, n > 3, satisfying Chen’s equality then
K12 = ab, Klj =au, ng = bu, Kij = MQ, (2.13)

where i,j > 2. Furthermore, R(e;,e;)ex, =0 if i, and k are mutually different.
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Corollary 2.4 Let M be a hypersurface of E"t1, n > 3, satisfying Chen’s equality then

S(er,e1) = [(n—2)ap + ab], (2.14)
S(ez,e2) = [(n— 2)bu + ab],
S(es,e3) = ... = S(en, en) = (n — 2)u?,

and S(e;,ej) =0 if i # j.

Remark 2.5 Hypersurface M with three distinct principal curvatures, their multiplicities
are 1, 1 and n — 2, is said to be 2-quasi umbilical. Therefore hypersurfaces satisfying B.

Y. Chen equality is a special type of 2-quasi umbilical hypersurfaces.

Theorem 2.6 [16]. Any 2-quasi-umbilical hypersurface M, dimM > 4, immersed iso-
metrically in a semi-Riemannian conformally flat manifold N is a manifold with pseu-

dosymmetric Weyl tensor.

Corollary 2.7 [15]. Ewvery hypersurface M immersed isometrically in a Riemannian
space of constant curvature N"*1(c), n > 4, realizing Chen’s equality is a hypersurface

with pseudosymmetric Weyl tensor.

On the other hand, it is known that in a hypersurface M of a Riemannian space
of constant curvature N"*1(c), n > 4, if M is a Ricci-pseudosymmetric manifold with
pseudosymmetric Weyl tensor then it is a pseudosymmetric manifold (see [15]). Moreover
from [1], we know that, in a hypersurface M of a Riemannian space of constant curvature
N"tY(e), n > 4, the Weyl pseudosymmetry and the pseudosymmetry conditions are
equivalent. So using the previous facts and Theorem 2.6 one can obtain the following

corollary.

Corollary 2.8 In the class of 2-quasiumbilical hypersurfaces of the FEuclidean space
E"tl n > 4, the conditions of the pseudosymmetry, the Ricci-pseudosymmetry and the

Weyl pseudosymmetry are equivalent.

In [18] the authors gave the classification of semisymmetric submanifolds satisfying

B. Y. Chen equality.
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Theorem 2.9 [18]. Let M™, n > 3, be a submanifold of E™ satisfying Chen’s equality.
Then M™ is semisymmetric if and only if M™ is a minimal submanifold (in which case
M™ is (n—2)-ruled), or M™ is a round hypercone in some totally geodesic subspace E" !

of E™.

Now our aim is to give an extension of Theorem 2.9 for the case M is a pseudosym-
metric hypersurface in the Euclidean space E"*!. Since hypersurfaces satisfying Chen’s
equality is a special type of 2-quasiumbilical hypersurfaces, it is enough to investigate
only the pseudosymmetry condition. By Corollary 2.8, this will include all types of the
pseudosymmetry (1.8)-(1.10). Firstly we give the following lemmas;

Lemma 2.10 Let M, n > 3, be a hypersurface of E"tsatisfying Chen’s equality. Then

(Rle1,e3) - R)(ea,e3)er = aub’es, (2.15)

(R(ez,e3) - R)(e1,e3)es = bua’e;. (2.16)

Proof. Using (1.6) we have

(R(el, 63) . R)(EQ, 63)61 = R(el, 63)(R(62, 63)61) — R(R(el, 63)62, 63)61
—R(EQ, R(el, 63)63)61 — R(EQ, 63)(R(61, 63)61) (2.17)

and

(R(eg, 63) . R)(el, 63)62 = R(EQ, 63)(R(61, 63)62) — R(R(BQ, 63)61, 63)62
—R(el 5 R(EQ, 63)63)62 — R(el, 63)(R(62, 63)62). (2.18)

Since
R(ei,ej)er = (Age; N Acej)ey
then using (2.13) one can get

Rler,ez)er = —Kizer ,  R(ei,es)es = Kizer
Rez,er)er = Kizea , Rez,e1)es = —Kizeq (2.19)

Rez,e3)ea = —Kazes , R(ez,e3)es = Kagea.
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Therefore substituting (2.19), (2.13) into (2.17) and (2.18) respectively we get the

result. O

Lemma 2.11 Let M, n > 3, be a hypersurface of E"tsatisfying Chen’s equality. Then

Q(9,R)(e2, €3, €13 €1, €3) = bes, (2.20)

Q(g,R)(e1, €3, a3 €2, €3) = a’ey. (2.21)

Proof. Using the relation (1.7) we obtain

Q(g,R)(e2,e3,e15e1,e3) = (e1 Ae3)R(ez,e3)er — R((e1 Aes)ez,ez)er
—R(EQ, (61 VAN 63)63)61 - R(EQ, 63)((61 A\ 63)61) (2.22)

and

Q(g,R)(e2, €3, €e2;e2,e3) = (e2 Aes)R(e1,esz)ea — R((e2 A eg)er, es)es
—R(el, (62 A\ 63)63)62 — R(el, 63)((62 74\ 63)62). (2.23)

So substituting respectively (2.19) and (2.13) into (2.22) and (2.23) we obtain (2.20)-
(2.21). 0

Theorem 2.12 Let M, n > 3, be a hypersurface of E"satisfying Chen’s equality. Then

M is pseudosymmetric if and only if
(i) M =E", or
(ii) M is a round hypercone in E" 1 or

(iii) M is a minimal hypersurface in E"1 (in which case M is (n — 2)-ruled), or
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(iv) The shape operator of M in E"*1 is of the form

[a 0 0 0 0
0 a 0 0 0
0 % 0
A; = 2.94
¢ 0 0 0 2a 0 (2.24)
Lo 00 0 - 2a|

Proof. Let M be a pseudosymmetric hypersurface in E**1. Then by definition one can

write

(R(e1,e3) - R)(e2, e3)er = LrQ(g, R)(e2, €3, e1; €1, €3) (2.25)
and

(R(ez,e3) - R)(e1,e3)ea = LrQ(g, R)(e1, e3, ea; €2, €3). (2.26)

Since M satisfies B. Y. Chen equality then by Lemma 2.10 and Lemma 2.11 the equations
(2.25) and (2.26) turns, respectively, into

(ap — Lr)b*> =0 (2.27)
and
(bp — Lg)a® = 0. (2.28)

i) Firstly, suppose that M is semisymmetric, i.e., M is trivially pseudosymmetric then

Lr = 0. So the equations (2.27) and (2.28) can be written as the following:

abu = 0.

Now suppose a = 0, b # 0 then = b and by [9] M is a round hypercone in E*+1. If
a#0,b=0 then x = a and similarly M is a round hypercone in E**!. If ;1 = 0 then M
is minimal. If a =0, b =0 then =0 so M =E".

ii) Secondly, suppose M is not semisymmetric, i.e., R+ R # 0. For the subcases

a=b=0,a=0,0#0o0ra#0,b=0 we get R-R =0 which contradicts the fact that
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R - R # 0. Therefore the only remaining possible subcase is a # 0, b # 0. So by the use
of (2.27) and (2.28) we have (a — b)u = 0. Since p = a + b # 0 then a = b and by Lemma
2.1 the shape operator of M is of the form (2.24).

This completes the proof of the theorem. O

Theorem 2.13 Let M, n > 3, be a hypersurface of E"'satisfying Chen’s equality. If

M is pseudosymmetric then rankS =0 or 2 orn—1 or n.

Proof. Suppose that M is a hypersurface of E"*1 n > 3. satisfying Chen equality.
If M is semisymmetric then M = E™ or M is a round hypercone or M is minimal.
It is easy to check that if M = E" then rankS = 0, if M is a round hypercone
then rankS = n — 1, if M is minimal then rankS = 2. Now suppose M is not
semisymmetric but it is pseudosymmetric. Then by Theorem 2.12 the principal curvatures

of M are a, a, 2a,...,2a. So by Corollary 2.4, S(e1,e1) = S(ez,e2) = (2n — 3)a? and

S(es,e3) = ... = S(en, en) = 2(n — 2)a?, which gives rankS = n.
Hence we get the result, as required. O
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