On Some Class of Hypersurfaces in \mathbb{E}^{n+1} Satisfying Chen's Equality

Cihan Özgür and Kadri Arslan

Abstract

In this paper we study pseudosymmetry type hypersurfaces in the Euclidean space \mathbb{E}^{n+1} satisfying B. Y. Chen's equality.

Key Words: Chen's equality, semisymmetric, pseudosymmetric manifold, hypersurface.

1. Introduction

Let $(M, g), n \geq 3$, be a connected Riemannian manifold of class C^{∞}. We denote by ∇, R, C, S and κ the Levi-Civita connection, the Riemann-Christoffel curvature tensor, the Weyl conformal curvature tensor, the Ricci tensor and the scalar curvature of (M, g), respectively. The Ricci operator \mathcal{S} is defined by $g(\mathcal{S} X, Y)=S(X, Y)$, where $X, Y \in$ $\chi(M), \chi(M)$ being Lie algebra of vector fields on M. We next define endomorphisms $X \wedge Y, \mathcal{R}(X, Y)$ and $\mathcal{C}(X, Y) Z$ of $\chi(M)$ by

$$
\begin{gather*}
(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y, \tag{1.1}\\
\mathcal{R}(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{1.2}
\end{gather*}
$$

[^0]\[

$$
\begin{equation*}
\mathcal{C}(X, Y) Z=\mathcal{R}(X, Y) Z-\frac{1}{n-2}\left(X \wedge \mathcal{S} Y+\mathcal{S} X \wedge Y-\frac{\kappa}{n-1} X \wedge Y\right) Z \tag{1.3}
\end{equation*}
$$

\]

respectively, where $X, Y, Z \in \chi(M)$.
The Riemannian Christoffel curvature tensor R and the Weyl curvature tensor C of (M, g) are defined by

$$
\begin{align*}
& R(X, Y, Z, W)=g(\mathcal{R}(X, Y) Z, W) \tag{1.4}\\
& C(X, Y, Z, W)=g(\mathcal{C}(X, Y) Z, W) \tag{1.5}
\end{align*}
$$

respectively, where $W \in \chi(M)$.
For a $(0, k)$-tensor field $T, k \geq 1$, on (M, g) we define the tensors $R \cdot T$ and $Q(g, T)$ by

$$
\begin{align*}
(R(X, Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right)= & -T\left(\mathcal{R}(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right) \\
& -\ldots-T\left(X_{1}, \ldots, X_{k-1}, \mathcal{R}(X, Y) X_{k}\right) \tag{1.6}\\
Q(g, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)= & (X \wedge Y) T\left(X_{1}, \ldots, X_{k}\right)-T\left((X \wedge Y) X_{1}, X_{2}, \ldots, X_{k}\right) \\
& -\ldots-T\left(X_{1}, \ldots, X_{k-1},(X \wedge Y) X_{k}\right) \tag{1.7}
\end{align*}
$$

respectively.
If the tensors $R \cdot R$ and $Q(g, R)$ are linearly dependent then M is called pseudosymmetric. This is equivalent to

$$
\begin{equation*}
R \cdot R=L_{R} Q(g, R) \tag{1.8}
\end{equation*}
$$

holding on the set $U_{R}=\{x \mid Q(g, R) \neq 0$ at $x\}$, where L_{R} is some function on U_{R}. If $R \cdot R=0$ then M is called semisymmetric. (see [11], Section 3.1; [19]).

If the tensors $R \cdot S$ and $Q(g, S)$ are linearly dependent then M is called Riccipseudosymmetric. This is equivalent to

$$
\begin{equation*}
R \cdot S=L_{S} Q(g, S) \tag{1.9}
\end{equation*}
$$

holding on the set $U_{S}=\left\{x \left\lvert\, S \neq \frac{\kappa}{n} g\right.\right.$ at $\left.x\right\}$, where L_{S} is some function on U_{S}. Every pseudosymmetric manifold is Ricci pseudosymmetric but the converse statement is not true. If $R \cdot S=0$ then M is called Ricci-semisymmetric. (see [10], [14]).

ÖZGÜR, ARSLAN

If the tensors $R \cdot C$ and $Q(g, C)$ are linearly dependent then M is called Weylpseudosymmetric. This is equivalent to

$$
\begin{equation*}
R \cdot C=L_{C} Q(g, C) \tag{1.10}
\end{equation*}
$$

holding on the set $U_{C}=\{x \mid C \neq 0$ at $x\}$. Every pseudosymmetric manifold is Weyl pseudosymmetric but the converse statement is not true. If $R \cdot C=0$ then M is called Weyl-semisymmetric. (see [13]).

The manifold M is a manifold with pseudosymmetric Weyl tensor if and only if

$$
\begin{equation*}
C \cdot C=L_{C} Q(g, C) \tag{1.11}
\end{equation*}
$$

holds on the set U_{C}, where L_{C} is some function on U_{C} (see [12]). The tensor $C \cdot C$ is defined in the same way as the tensor $R \cdot R$.

2. Submanifolds Satisfying Chen's Equality

Let M^{n} be an $n \geq 3$ dimensional connected submanifold immersed isometrically in the Euclidean space \mathbb{E}^{m}. We denote by $\widetilde{\nabla}$ and ∇ the Levi-Civita connections corresponding to \mathbb{E}^{m} and M, respectively. Let ξ be a local unit normal vector field on M in \mathbb{E}^{m}. We can present the Gauss formula and the Weingarten formula of M in \mathbb{E}^{m} in the form $\widetilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)$ and $\widetilde{\nabla}_{X} \xi=-A_{\xi}(X)+D_{X} \xi$, respectively, where X, Y are vector fields tangent to M and D is the normal connection of M. (see [4]).

Let M^{n} be a submanifold of \mathbb{E}^{m} and $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal tangent frame field on M^{n}. For the plane section $e_{i} \wedge e_{j}$ of the tangent bundle $T M$ spanned by the vectors e_{i} and $e_{j}(i \neq j)$ the scalar curvature of M is defined by $\kappa=\sum_{i, j=1}^{n} K\left(e_{i} \wedge e_{j}\right)$ where K denotes the sectional curvature of M. Consider the real function inf K on M^{n} defined for every $x \in M$ by

$$
(\inf K)(x):=\inf \left\{K(\pi) \mid \pi \text { is a plane in } T_{x} M^{n}\right\}
$$

Note that since the set of planes at a certain point is compact, this infimum is actually a minimum. Then in [6], B. Y. Chen proved the following basic inequality between the intrinsic scalar invariants inf K and κ of M^{n}, and the extrinsic scalar invariant $|H|$, being the length of the mean curvature vector field H of M^{n} in \mathbb{E}^{m}.

ÖZGÜR, ARSLAN

Lemma 2.1 [6]. Let $M^{n}, n \geq 2$, be any submanifold of $\mathbb{E}^{m}, m=n+p, p \geq 1$. Then

$$
\begin{equation*}
\inf K \geq \frac{1}{2}\left\{\kappa-\frac{n^{2}(n-2)}{n-1}|H|^{2}\right\} \tag{2.12}
\end{equation*}
$$

Equality holds in (2.12) at a point x if and only if with respect to suitable local orthonormal frames $e_{1}, \ldots, e_{n} \in T_{x} M^{n}$, the Weingarten maps A_{t} with respect to the normal sections $\xi_{t}=e_{n+t}, t=1, \ldots, p$ are given by

$$
A_{1}=\left[\begin{array}{cccccc}
a & 0 & 0 & 0 & \cdots & 0 \\
0 & b & 0 & 0 & \cdots & 0 \\
0 & 0 & \mu & 0 & \cdots & 0 \\
0 & 0 & 0 & \mu & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \mu
\end{array}\right] \quad, \quad A_{t}=\left[\begin{array}{ccccc}
c_{t} & d_{t} & 0 & \cdots & 0 \\
d_{t} & -c_{t} & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right],(t>1)
$$

where $\mu=a+b$ for any such frame, $\inf K(x)$ is attained by the plane $e_{1} \wedge e_{2}$.
The relation (2.12) is called Chen's inequality. Submanifolds satisfying Chen's inequality have been studied with many authors. For more details see ([18], [8], [15] and recently [2] and [3]).

Remark 2.2 For dimension $n=2$ (2.12) is trivially satisfied.
From now on we assume that M^{n} is a hypersurface in \mathbb{E}^{n+1}. We denote shortly $K_{r s}=K\left(e_{r} \wedge e_{s}\right)$.

By the use of Lemma 2.1 we get the following corollaries;

Corollary 2.3 Let M be a hypersurface of \mathbb{E}^{n+1}, $n \geq 3$, satisfying Chen's equality then

$$
\begin{equation*}
K_{12}=a b, \quad K_{1 j}=a \mu, \quad K_{2 j}=b \mu, \quad K_{i j}=\mu^{2} \tag{2.13}
\end{equation*}
$$

where $i, j>2$. Furthermore, $\mathcal{R}\left(e_{i}, e_{j}\right) e_{k}=0$ if i, j and k are mutually different.

ÖZGÜR, ARSLAN

Corollary 2.4 Let M be a hypersurface of \mathbb{E}^{n+1}, $n \geq 3$, satisfying Chen's equality then

$$
\begin{array}{r}
S\left(e_{1}, e_{1}\right)=[(n-2) a \mu+a b], \tag{2.14}\\
S\left(e_{2}, e_{2}\right)=[(n-2) b \mu+a b], \\
S\left(e_{3}, e_{3}\right)=\ldots=S\left(e_{n}, e_{n}\right)=(n-2) \mu^{2}, \\
\text { and } S\left(e_{i}, e_{j}\right)=0 \text { if } i \neq j \text {. }
\end{array}
$$

Remark 2.5 Hypersurface M with three distinct principal curvatures, their multiplicities are 1, 1 and $n-2$, is said to be 2-quasi umbilical. Therefore hypersurfaces satisfying B. Y. Chen equality is a special type of 2-quasi umbilical hypersurfaces.

Theorem 2.6 [16]. Any 2-quasi-umbilical hypersurface M, $\operatorname{dim} M \geq 4$, immersed isometrically in a semi-Riemannian conformally flat manifold N is a manifold with pseudosymmetric Weyl tensor.

Corollary 2.7 [15]. Every hypersurface M immersed isometrically in a Riemannian space of constant curvature $N^{n+1}(c), n \geq 4$, realizing Chen's equality is a hypersurface with pseudosymmetric Weyl tensor.

On the other hand, it is known that in a hypersurface M of a Riemannian space of constant curvature $N^{n+1}(c), n \geq 4$, if M is a Ricci-pseudosymmetric manifold with pseudosymmetric Weyl tensor then it is a pseudosymmetric manifold (see [15]). Moreover from [1], we know that, in a hypersurface M of a Riemannian space of constant curvature $N^{n+1}(c), n \geq 4$, the Weyl pseudosymmetry and the pseudosymmetry conditions are equivalent. So using the previous facts and Theorem 2.6 one can obtain the following corollary.

Corollary 2.8 In the class of 2-quasiumbilical hypersurfaces of the Euclidean space $\mathbb{E}^{n+1}, n \geq 4$, the conditions of the pseudosymmetry, the Ricci-pseudosymmetry and the Weyl pseudosymmetry are equivalent.

In [18] the authors gave the classification of semisymmetric submanifolds satisfying B. Y. Chen equality.

ÖZGÜR, ARSLAN

Theorem 2.9 [18]. Let $M^{n}, n \geq 3$, be a submanifold of \mathbb{E}^{m} satisfying Chen's equality. Then M^{n} is semisymmetric if and only if M^{n} is a minimal submanifold (in which case M^{n} is ($n-2$)-ruled), or M^{n} is a round hypercone in some totally geodesic subspace \mathbb{E}^{n+1} of \mathbb{E}^{m}.

Now our aim is to give an extension of Theorem 2.9 for the case M is a pseudosymmetric hypersurface in the Euclidean space \mathbb{E}^{n+1}. Since hypersurfaces satisfying Chen's equality is a special type of 2-quasiumbilical hypersurfaces, it is enough to investigate only the pseudosymmetry condition. By Corollary 2.8, this will include all types of the pseudosymmetry (1.8)-(1.10). Firstly we give the following lemmas;

Lemma 2.10 Let $M, n \geq 3$, be a hypersurface of \mathbb{E}^{n+1} satisfying Chen's equality. Then

$$
\begin{align*}
& \left(\mathcal{R}\left(e_{1}, e_{3}\right) \cdot \mathcal{R}\right)\left(e_{2}, e_{3}\right) e_{1}=a \mu b^{2} e_{2}, \tag{2.15}\\
& \left(\mathcal{R}\left(e_{2}, e_{3}\right) \cdot \mathcal{R}\right)\left(e_{1}, e_{3}\right) e_{2}=b \mu a^{2} e_{1} \tag{2.16}
\end{align*}
$$

Proof. Using (1.6) we have

$$
\begin{align*}
\left(\mathcal{R}\left(e_{1}, e_{3}\right) \cdot \mathcal{R}\right)\left(e_{2}, e_{3}\right) e_{1}= & \mathcal{R}\left(e_{1}, e_{3}\right)\left(\mathcal{R}\left(e_{2}, e_{3}\right) e_{1}\right)-\mathcal{R}\left(\mathcal{R}\left(e_{1}, e_{3}\right) e_{2}, e_{3}\right) e_{1} \\
& -\mathcal{R}\left(e_{2}, \mathcal{R}\left(e_{1}, e_{3}\right) e_{3}\right) e_{1}-\mathcal{R}\left(e_{2}, e_{3}\right)\left(\mathcal{R}\left(e_{1}, e_{3}\right) e_{1}\right) \tag{2.17}
\end{align*}
$$

and

$$
\begin{align*}
\left(\mathcal{R}\left(e_{2}, e_{3}\right) \cdot \mathcal{R}\right)\left(e_{1}, e_{3}\right) e_{2}= & \mathcal{R}\left(e_{2}, e_{3}\right)\left(\mathcal{R}\left(e_{1}, e_{3}\right) e_{2}\right)-\mathcal{R}\left(\mathcal{R}\left(e_{2}, e_{3}\right) e_{1}, e_{3}\right) e_{2} \\
& -\mathcal{R}\left(e_{1}, \mathcal{R}\left(e_{2}, e_{3}\right) e_{3}\right) e_{2}-\mathcal{R}\left(e_{1}, e_{3}\right)\left(\mathcal{R}\left(e_{2}, e_{3}\right) e_{2}\right) . \tag{2.18}
\end{align*}
$$

Since

$$
\mathcal{R}\left(e_{i}, e_{j}\right) e_{k}=\left(A_{\xi} e_{i} \wedge A_{\xi} e_{j}\right) e_{k}
$$

then using (2.13) one can get

$$
\begin{array}{ccc}
\mathcal{R}\left(e_{1}, e_{3}\right) e_{1}=-K_{13} e_{1} & , \quad \mathcal{R}\left(e_{1}, e_{3}\right) e_{3}=K_{13} e_{1} \\
\mathcal{R}\left(e_{2}, e_{1}\right) e_{1}=K_{12} e_{2} & , & \mathcal{R}\left(e_{2}, e_{1}\right) e_{2}=-K_{12} e_{1} \tag{2.19}\\
\mathcal{R}\left(e_{2}, e_{3}\right) e_{2}=-K_{23} e_{2} & , \quad \mathcal{R}\left(e_{2}, e_{3}\right) e_{3}=K_{23} e_{2}
\end{array}
$$

ÖZGÜR, ARSLAN

Therefore substituting (2.19), (2.13) into (2.17) and (2.18) respectively we get the result.

Lemma 2.11 Let M, $n \geq 3$, be a hypersurface of \mathbb{E}^{n+1} satisfying Chen's equality. Then

$$
\begin{align*}
& Q(g, \mathcal{R})\left(e_{2}, e_{3}, e_{1} ; e_{1}, e_{3}\right)=b^{2} e_{2} \tag{2.20}\\
& Q(g, \mathcal{R})\left(e_{1}, e_{3}, e_{2} ; e_{2}, e_{3}\right)=a^{2} e_{1} \tag{2.21}
\end{align*}
$$

Proof. Using the relation (1.7) we obtain

$$
\begin{align*}
Q(g, \mathcal{R})\left(e_{2}, e_{3}, e_{1} ; e_{1}, e_{3}\right)= & \left(e_{1} \wedge e_{3}\right) \mathcal{R}\left(e_{2}, e_{3}\right) e_{1}-\mathcal{R}\left(\left(e_{1} \wedge e_{3}\right) e_{2}, e_{3}\right) e_{1} \\
& -\mathcal{R}\left(e_{2},\left(e_{1} \wedge e_{3}\right) e_{3}\right) e_{1}-\mathcal{R}\left(e_{2}, e_{3}\right)\left(\left(e_{1} \wedge e_{3}\right) e_{1}\right) \tag{2.22}
\end{align*}
$$

and

$$
\begin{align*}
Q(g, \mathcal{R})\left(e_{2}, e_{3}, e_{2} ; e_{2}, e_{3}\right)= & \left(e_{2} \wedge e_{3}\right) \mathcal{R}\left(e_{1}, e_{3}\right) e_{2}-\mathcal{R}\left(\left(e_{2} \wedge e_{3}\right) e_{1}, e_{3}\right) e_{2} \\
& -\mathcal{R}\left(e_{1},\left(e_{2} \wedge e_{3}\right) e_{3}\right) e_{2}-\mathcal{R}\left(e_{1}, e_{3}\right)\left(\left(e_{2} \wedge e_{3}\right) e_{2}\right) \tag{2.23}
\end{align*}
$$

So substituting respectively (2.19) and (2.13) into (2.22) and (2.23) we obtain (2.20)(2.21).

Theorem 2.12 Let $M, n \geq 3$, be a hypersurface of \mathbb{E}^{n+1} satisfying Chen's equality. Then M is pseudosymmetric if and only if
(i) $M=\mathbb{E}^{n}$, or
(ii) M is a round hypercone in \mathbb{E}^{n+1}, or
(iii) M is a minimal hypersurface in \mathbb{E}^{n+1} (in which case M is $(n-2)$-ruled), or

ÖZGÜR, ARSLAN

(iv) The shape operator of M in \mathbb{E}^{n+1} is of the form

$$
A_{\xi}=\left[\begin{array}{llllll}
a & 0 & 0 & 0 & \cdots & 0 \tag{2.24}\\
0 & a & 0 & 0 & \cdots & 0 \\
0 & 0 & 2 a & 0 & \cdots & 0 \\
0 & 0 & 0 & 2 a & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 2 a
\end{array}\right]
$$

Proof. Let M be a pseudosymmetric hypersurface in \mathbb{E}^{n+1}. Then by definition one can write

$$
\begin{equation*}
\left(\mathcal{R}\left(e_{1}, e_{3}\right) \cdot \mathcal{R}\right)\left(e_{2}, e_{3}\right) e_{1}=L_{R} Q(g, \mathcal{R})\left(e_{2}, e_{3}, e_{1} ; e_{1}, e_{3}\right) \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathcal{R}\left(e_{2}, e_{3}\right) \cdot \mathcal{R}\right)\left(e_{1}, e_{3}\right) e_{2}=L_{R} Q(g, \mathcal{R})\left(e_{1}, e_{3}, e_{2} ; e_{2}, e_{3}\right) \tag{2.26}
\end{equation*}
$$

Since M satisfies B. Y. Chen equality then by Lemma 2.10 and Lemma 2.11 the equations (2.25) and (2.26) turns, respectively, into

$$
\begin{equation*}
\left(a \mu-L_{R}\right) b^{2}=0 \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(b \mu-L_{R}\right) a^{2}=0 \tag{2.28}
\end{equation*}
$$

i) Firstly, suppose that M is semisymmetric, i.e., M is trivially pseudosymmetric then $L_{R}=0$. So the equations (2.27) and (2.28) can be written as the following:

$$
a b \mu=0
$$

Now suppose $a=0, b \neq 0$ then $\mu=b$ and by [9] M is a round hypercone in \mathbb{E}^{n+1}. If $a \neq 0, b=0$ then $\mu=a$ and similarly M is a round hypercone in \mathbb{E}^{n+1}. If $\mu=0$ then M is minimal. If $a=0, b=0$ then $\mu=0$ so $M=\mathbb{E}^{n}$.
ii) Secondly, suppose M is not semisymmetric, i.e., $R \cdot R \neq 0$. For the subcases $a=b=0, a=0, b \neq 0$ or $a \neq 0, b=0$ we get $R \cdot R=0$ which contradicts the fact that

ÖZGÜR, ARSLAN

$R \cdot R \neq 0$. Therefore the only remaining possible subcase is $a \neq 0, b \neq 0$. So by the use of (2.27) and (2.28) we have $(a-b) \mu=0$. Since $\mu=a+b \neq 0$ then $a=b$ and by Lemma 2.1 the shape operator of M is of the form (2.24).

This completes the proof of the theorem.

Theorem 2.13 Let $M, n \geq 3$, be a hypersurface of \mathbb{E}^{n+1} satisfying Chen's equality. If M is pseudosymmetric then rank $S=0$ or 2 or $n-1$ or n.
Proof. Suppose that M is a hypersurface of $\mathbb{E}^{n+1}, n \geq 3$, satisfying Chen equality. If M is semisymmetric then $M=\mathbb{E}^{n}$ or M is a round hypercone or M is minimal. It is easy to check that if $M=\mathbb{E}^{n}$ then $\operatorname{rank} S=0$, if M is a round hypercone then $\operatorname{rank} S=n-1$, if M is minimal then $\operatorname{rankS}=2$. Now suppose M is not semisymmetric but it is pseudosymmetric. Then by Theorem 2.12 the principal curvatures of M are $a, a, 2 a, \ldots, 2 a$. So by Corollary 2.4, $S\left(e_{1}, e_{1}\right)=S\left(e_{2}, e_{2}\right)=(2 n-3) a^{2}$ and $S\left(e_{3}, e_{3}\right)=\ldots=S\left(e_{n}, e_{n}\right)=2(n-2) a^{2}$, which gives rankS $=n$.

Hence we get the result, as required.

References

[1] Arslan, K., Deszcz, R. and Yaprak, Ş.: On Weyl pseudosymmetric hypersurfaces, Colloquium Math., 72, 353-360, (1997).
[2] Arslan, K., Ezentaş, R., Mihai, I., Murathan, C. and Özgür, C.: Certain inequalities for submanifolds in (k, μ)-contact space forms, Bull. Austral. Math. Soc. 64, 201-212, (2001).
[3] Arslan, K., Ezentaş, R., Mihai, I., Murathan, C. and Özgür, C.: Chen inequalities for submanifolds in locally conformal almost cosymplectic manifolds, Bull. Inst. Math. Acad. Sinica 29, no. 3, 231-242, (2001).
[4] Chen, B.Y.: Geometry of submanifolds and its applications, Science University of Tokyo 1981.
[5] Chen, B.Y.: Some pinching and classification theorems for minimal submanifolds, Archiv for Math. 60, 568-578, (1993).

ÖZGÜR, ARSLAN

[6] Chen, B.Y.: A Riemannian invariant for submanifolds in space forms and its applications, in: Geometry and Topology of Submanifolds VI, World Scientific, Singapore, 58-81, 1994.
[7] Chen, B. Y., Dillen, F., Verstraelen, L. and Vrancken, L.: Totally real submanifolds of $C P^{n}$ satisfying a basic equality, Arc. Math. 63, 553-564, (1994).
[8] Defever, F., Mihai, I. and Verstraelen, L.: B. Y. Chen's inequality for C-totally real submanifolds in Sasakian space forms, Boll. Un. Mat. Ital. 11, 365-374, (1997).
[9] Deprez, J.: Semi-parallel hypersurfaces, Rend. Sem. Mat. Univers. Politecn. Torino, 44, 303-316, (1986).
[10] Deszcz, R.:On Ricci pseudosymmetric warped products, Demonstratio Math., 22, 10531065, (1989).
[11] Deszcz, R.: On pseudosymmetric spaces, Bull. Soc. Belg. Math., Ser. A, 44, 1-34, (1992).
[12] Deszcz, R. and Grycak, W.: On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica, 15, 311-322, (1987).
[13] Deszcz, R. and Grycak, W.: On manifolds satisfying some curvature conditions, Colloquium Math., 57, 89-92, (1989).
[14] Deszcz, R. and Hotlos, M.: Remarks on Riemannian manifolds satisfying a certain curvature condition imposed on the Ricci tensor, Prace Nauk. Pol. Szczec., 11, 23-34, (1989).
[15] Deszcz, R., Verstraelen, L. and Yaprak, Ş.: On hypersurfaces with pseudosymmetric Weyl tensor, in: Geometry and Topology of Submanifolds, VIII, World Sci. Publishing, River Edge, NJ, 111-120, 1996.
[16] Deszcz, R., Verstraelen, L. and Yaprak, Ş.: On 2-quasi-umbilical hypersurfaces in conformally flat spaces, Acta Math. Hungarica, 78, 45-57, (1998).
[17] Deszcz, R., Verstraelen, L. and Yaprak, S.: Hypersurfaces with pseudosymmetric Weyl tensor in conformally flat manifolds, Geometry and Topology of Submanifolds, IX, World Sci. Publishing, River Edge, NJ, 108-117, 1999.
[18] Dillen, F., Petrovic, M. and Verstraelen, L.: Einstein, conformally flat and semi-symmetric submanifolds satisfying Chen's equality, Israel J. Math. 100, 163-169, (1997).

ÖZGÜR, ARSLAN

[19] Verstraelen, L: Comments on pseudo-symmetry in the sense of Ryszard Deszcz, in: Geometry and Topology of Submanifolds, VI, World Sci. Publishing, River Edge, NJ, 199-209, 1994.

Cihan ÖZGÜR
Received 28.11.2001
Department of Mathematics
Balıkesir University
10100, Balikesir, TURKEY
e-mail: cozgur@balikesir.edu.tr
Kadri ARSLAN
Department of Mathematics
Uludağ University
16059 Bursa, TURKEY
e-mail: arslan@uludag.edu.tr

[^0]: M. S. C. Mathematics Subject Classification: 53C40, 53C42, 53C25, 53B50

