One Sided Banach Algebras

A. El Kinani, A. Najmi, M. Oudadess

Abstract

Many properties of two-sided algebras remain valid for one-sided algebras. Namely, any one sided Banach algebra is commutative modulo its Jacobson radical.

Key Words: Right-sidedness, two-sidedness, commutativity, Banach algebra.

Introduction

In [1], the authors have proceeded to a study of algebras said to be two-sided by E. Hille and R. S. Philips ([3]). We consider here the left (or right) sidedness, where the notions of two-sidedness and one-sidedness are distinct (Example I-3). Many algebraic properties of [1] are still true.

In the case of normed algebras, the one-sidedness is not inherited by a sub-algebra, nor by the completion of a normed algebra. About the structure of these algebras, every rightsided finite dimensional algebra A (and, more generally every, Artinian Banach algebra) is written as $A=\operatorname{Rad}(A) \oplus \mathbf{C}^{n}$, where $\operatorname{Rad}(A)$ is the (Jacobson) radical. It is two-sided if, and only if, $\operatorname{Rad}(A)$ is two-sided. We examine the case of a right-sided Banach algebra A such that $\operatorname{Rad}(A)$ is finite dimensional and $A / \operatorname{Rad}(A)$ is a $B(\infty)$ direct sum of total matrix algebras. We prove also that a right-sided Banach algebra is commutative modulo the Jacobson radical like in the two-sided case ([1]). Some conditions for the converse to be true are equally given. For example, if $\operatorname{Rad}(A)$ is right-sided and $A / \operatorname{Rad}(A)$ is a

[^0]C^{*}-algebra or an l_{1}-algebra, then A is right-sided. Recall that $\operatorname{Rad} A$ is the intersection of all regular right (or all regular left) ideals of A.

1. Algebraic properties

All algebras considered here are complex. In the sequel, we put $A^{2}=\{x y: x, y \in A\}$. A zero-algebra is an algebra A such that $A^{2}=\{0\}$. For every fixed $x \in A$, we write $A n n_{d}(x)$ for the right annihilator of x and B_{x} for an algebraic complementary of $A n n_{d}(x)$ in A.

Definition 1.1 . A complex algebra A, is said to be right-sided if

$$
(\forall x, y \in A)(\exists u \in A): x y=y u
$$

It is said to be left-sided if

$$
(\forall x, y \in A)(\exists v \in A): x y=v x
$$

Remark 1.2 . (1) Let A be a right-sided algebra. Then, endowed with the reversed product, A is left-sided. Consequently, we will study only right-sided algebras.
(2) From the definition, an algebra A is right-sided if, and only if, $A x \subset x A$ for every $x \in A$. This is also equivalent to the existence of an application g, vanishing on

$$
\bigcup_{s \in A}\left(A n n_{d}(s)\right)
$$

(called the function of right-sidedness) such that $x y=y g(x, y)$, for every $x, y \in A$.
Every two-sided algebra ([1]) is right-sided. We give now some examples of right-sided algebras that are not two-sided.

Example 1.3. Let $\left\{e_{i}: i \in N^{*}\right\}$ be a sequence of symbols such that
(a) $e_{i} e_{j}=0$ when $j \neq i+1$; and $e_{i} e_{i+1} \neq 0$ for every i.
(b) $e_{i} e_{i+1}=2 e_{i+1} e_{i+2}$ for all $i \in N^{*}$,
(c) $e_{i} e_{j} e_{k}=0$ for all $i, j, k \in N^{*}$.

Let A be the algebra spanned by $\left\{e_{i}: i \in N^{*}\right\}$. It is associative, because $A^{3}=\{0\}$. It is a right-sided algebra. For every $x \in A$, we have

$$
x=\lambda(x, 0) e_{1} e_{2}+\sum_{i=1}^{\infty} \lambda(x, i) e_{i}
$$

where just a finite number of coefficients $\lambda(x, i)$ are different from zero. For $x, y \in A$, one has

$$
x y=\sum_{i=1}^{\infty} \lambda(x, i) \lambda(y, i+1) e_{i} e_{i+1}=\sum_{i=1}^{\infty} 2^{-i+1} \lambda(x, i) \lambda(y, i+1) e_{1} e_{2}
$$

If $x y \neq 0$, there is $i_{0} \geq 0$ such that $\lambda\left(x, i_{0}\right) \lambda\left(y, i_{0}+1\right) \neq 0$. The equation $x y=y z$ admits a solution z such that

$$
\begin{aligned}
\lambda\left(z, i_{0}+2\right) & =2^{-i_{0}+2}\left(\lambda\left(y, i_{0}+1\right)\right)^{-1} \sum_{i=1}^{\infty} 2^{-i+1} \lambda(x, i) \lambda(y, i+1) \\
\lambda(z, i) & =0, \text { for } i \neq i_{0}+2
\end{aligned}
$$

Then z is written as $z=\lambda\left(z, i_{0}+2\right) e_{i_{0}+2}$. So A is right-sided. The algebra A is not leftsided because the equation $e_{1} e_{2}=x e_{1}$, with the unknown $x=\lambda(x, 0) e_{1} e_{2}+\sum_{i=1}^{\infty} \lambda(x, i) e_{i}$, is equivalent to $e_{1} e_{2}=0$; and that contradicts (a).

Example 1.4. Let A be a right but not two-sided algebra and B a two-sided one. Then the Cartesian product $A \times B$ is a right-sided, but not two-sided algebra.

Now we give an interesting property of right ideals.

Proposition 1.5 . Let A be a complex algebra. If A is right-sided, then every right ideal is two-sided. The converse is true in the unitary case.

Proof. We will use (2) of Remark I-2. Let I be a right ideal of A. By $A x \subset x A$ for every $x \in A$, we have $A I=\bigcup_{x \in I}(A x) \subset \bigcup_{x \in I}(x A)=I A \subset I$. Now, suppose that A is unitary and every right ideal of A is two-sided. For every $x \in A$, we have

EL KINANI, NAJMI, OUDADESS

$A x \subset(A x) A=A(x A) \subset x A$. So A is right sided.

Remark 1.6 In proposition I-5, the existence of a unit in the converse is necessary as it is shown by the following example.

Let

$$
A=\left\{\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right): a, b \in \mathbf{C}\right\}
$$

Then

$$
\operatorname{Rad}(A)=\left\{\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right): b \in \mathbf{C}\right\}
$$

The algebra A is not unitary, not right-sided and its Jacobson radical is the unique right ideal of A. Since A is two-dimensional, every proper ideal I of A is one-dimensional. So $I=\mathbf{C}\left(\begin{array}{ll}i & j \\ 0 & 0\end{array}\right)$ where i and j are fixed elements of \mathbf{C}. But I is a right ideal only if $i=0$. Indeed, if $i \neq 0$ the equation $\left(\begin{array}{ll}i & j \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right)=\lambda\left(\begin{array}{ll}i & j \\ 0 & 0\end{array}\right)$, where a and b are not equal to zero and $b \neq \frac{a j}{i}$, is equivalent to $\lambda=a$ and $b=\frac{a j}{i}$: a contradiction.

Remark 1.7 Let A be an algebra such that $A I \subset I A$ for every right ideal I of A. If $A^{2} x \subset A x A$ for every $x \in A$, then $A^{2} x \subset x A^{2}$ for any $x \in A$. Then A is right-sided when $A^{2}=A$. Indeed, for $x \in A$ and $J=x A$, we have by hypothesis $A J \subset J A$. Hence $A^{2} x \subset A(x A) \subset x A^{2}$.

The right-sidedness is preserved by Cartesian products, inductive limits, tensor products, unitization and quotients by right ideals. So, if A is right-sided, then this is so for the algebra $A / \operatorname{Rad}(A)$. The converse is false in general as we can see from the following examples.

Example 1.8 Let x and y be two symbols such that $x^{2}=0, y^{2}=0$ and $x y x=y x y=0$; and consider $A=[x, y]$ the algebra spanned by the two symbols x and y. It is a radical
algebra, of dimension 4 and admits $\{x, y, x y, y x\}$ as a basis. It is not right-sided because $A x=[y x] \not \subset[x y]=x A$.

Example 1.9 Let $A=\left\{\left(\begin{array}{ll}a & b \\ 0 & 0\end{array}\right): a, b \in \mathbf{C}\right\}$. It is a non unitary algebra, but satisfies $A^{2}=A . \quad$ Also $\operatorname{Rad}(A)=\left\{\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right): b \in \mathbf{C}\right\}$ and $A / \operatorname{Rad}(A)$ is right-sided. As $\operatorname{Rad}(A) A=\{0\}$, the algebra A is not right-sided because $\{0\} \neq \operatorname{Rad}(A)=\operatorname{ARad}(A) \not \subset$ $\operatorname{Rad}(A) A=\{0\}$.

Here is a condition that makes of a right-sided algebra a two-sided one (see page 2, for notations).

Proposition 1.10 Let A be a right-sided algebra. The following propositions are equivalent.
(i) A is two-sided.
(ii) There exists a function g of right-sidedness such that for every $x \in A$, the partial application $t \mapsto g_{x}(t)=g(t, x)$, from $A \mapsto A$, is onto B_{x}.
Proof. $\quad(i) \Rightarrow(i i)$ Let $x \in A$ be fixed and $y \in B_{x}$. As A is left-sided, there exists $v \in A$ such that $x y=v x$. Let g be a function of right-sidedness. Then $v x=x g(v, x)$ and $x(y-g(v, x))=0$. So $y-g(v, x) \in \operatorname{Ann}_{d}(x) \cap B_{x}$. But $A n n_{d}(x) \cap B_{x}=\{0\}$. Then for every $y \in B_{x}$, there exists $v \in A$ such that $y=g_{x}(v)$.
(ii) $\Rightarrow(i)$. Let $x \in A$ be fixed. Every $z \in A$ is written as $z=z_{1}+z_{2}$, with $z_{1} \in A n n_{d}(x)$ and $z_{2} \in B_{x}$. Then there exists $y \in A$ such that $z_{2}=g_{x}(y)$. As $y x=x g(y, x)$, we have $x z=x g_{x}(y)=y x$. So, there exists $y \in A$ such that $x z=y x$. And so A left-sided.

Remark 1.11 (i) In a right-sided algebra that satisfies $A^{2}=A$, every right maximal ideal is also left maximal.
(ii) We know ([1]) that, in a unitary two-sided algebra, an element is invertible if, and only if, it does not belong to any maximal ideal. If now A is unitary, right-sided,

EL KINANI, NAJMI, OUDADESS

then by (i), an element is invertible if, and only if, it does not belong to any right maximal ideal.
(iii) In a unitary (resp. not unitary), right-sided algebra, the set $X^{*}(A)$ of non zero characters of A, can be identified with the set $m(A)\left(r e s p . m_{r}(A)\right)$ of right ideals (resp. regular right ideals) of codimension 1.

The following result will be useful.

Proposition 1.12 Let A be a unitary, finite dimensional algebra such that $A=\operatorname{Rad}(A) \oplus$ $\mathrm{C} \varepsilon$, with ε an idempotent element of A. Then A is right-sided if, and only if, ε is the unit of A and $\operatorname{Rad}(A)$ is right-sided.
Proof. The sufficient condition is a particular case of the unitization of a right-sided algebra. For the necessary condition it is easy to see that ε is the unit of A. We show now that $\operatorname{Rad}(A)$ is right -sided. Let $r, s \in \operatorname{Rad}(A)$ such that $r s \neq 0$. There is $t \in \operatorname{Rad}(A)$ and $\lambda \in \mathbf{C}$ such that $r s-s t=\lambda$. Suppose that $\lambda \neq 0$. Putting $u=\frac{r}{\lambda}$ and $v=\frac{t}{\lambda}$, the precedent equation is equivalent to $u s-s v=s$. For the resolution of this equation recall that there is $n \in N^{*}$ such that

$$
\{0\}=(\operatorname{Rad}(A))^{n}=\left\{u_{1} u_{2} \ldots u_{n}: u_{1}, u_{2}, \ldots, u_{n} \in \operatorname{Rad}(A)\right\} .
$$

Multiplying the equation $u s-s v=s$ by $u_{1} u_{2} \ldots u_{m}$ successively for $m=n-2, n-3, \ldots, 1$, and for any $u_{1}, u_{2}, \ldots u_{m} \in \operatorname{Rad}(A)$, we obtain that $s u_{1} u_{2} \ldots u_{m}=0$ for $m=n-3, \ldots, 1$. So, we have $s=0$: a contradiction. So $\lambda=0$.

Remark 1.13 If we replace in the previous proposition, the condition "finite dimensional", by "Artinian ", the result is also valid; because the essential in the proof, is that $\operatorname{Rad}(A)$ is nilpotent.

2. Right-sided Banach algebras

First, some examples of right but not two-sided Banach algebras.

EL KINANI, NAJMI, OUDADESS

Example 2.1 Let

$$
l^{1}(A)=\left\{x=\lambda(x, 0) e_{1} e_{2}+\sum_{i=1}^{\infty} \lambda(x, i) e_{i} \in A: \sum_{i=1}^{\infty}|\lambda(x, i)|<\infty\right\}
$$

where A is the algebra of Example I-3. It is clear that $l^{1}(A)$ is a Banach space for the norm

$$
x \mapsto\|x\|=\sum_{i \in N}|\lambda(x, i)| .
$$

Furthermore, for every $x, y \in l^{1}(A)$, we have

$$
\|x y\|=\sum_{i \in N} 2^{-i}|\lambda(x, i)||\lambda(y, i+1)| \leq \sum_{i \in N}|\lambda(x, i)||\lambda(y, i+1)| \leq\|x\|\|y\|
$$

So $l^{1}(A)$ is a Banach algebra containing A. The same proof as that of Example I-3, shows that $l^{1}(A)$ is right but no left-sided.

Example 2.2 Every product of a right but not left-sided Banach algebra and of a twosided Banach algebra is right but not two-sided.

Recall that a sub-algebra and the completion of a normed right-sided algebra are not necessarily of the same type ([1], p. 23). But as in [1], we have the following proposition.

Proposition 2.3 Let A be a normed right-sided algebra, \hat{A} its completion and g a function of right-sidedness. For every fixed $y \in A$, let g_{y} be the partial function $x \mapsto g_{y}(x)=$ $g(x, y)$ from $A \mapsto A$. Then
(i) For every $y \in A$, the application g_{y} is linear from A into B_{y}.
(ii) For every $y \in A$, the application $x \mapsto y g_{y}(x)$ is linear and continuous.
(iii) $x y=y g(x, y)$, for every $x \in \hat{A}$ and every $y \in A$.
(iv) If for every $x \in \hat{A}$, the application $y \mapsto y g(x, y)$ is continuous or locally bounded, then \hat{A} is right-sided.

Now we give some structure results.
Proposition 2.4 Every Artinian (in particular, of finite dimension) is right-sided but not a radical Banach algebra A, is written as $A=\operatorname{Rad}(A) \oplus B$, where B is isomorphic to \mathbf{C}^{n}, for a certain $n \in N^{*}$; where the sum is taken relatively to vector spaces.

EL KINANI, NAJMI, OUDADESS

Proof. By ([4], theorem 27, p. 315), the Artinian algebra $A / \operatorname{Rad}(A)$, is isomorphic to a product $\prod_{i=1}^{i=n} A_{i}$ of Banach algebras, where A_{i} is simple for every $i=1, \ldots, n$. The algebra A_{i} is right-sided and so all of its right-sided ideals are two-sided. Hence it admits no proper right ideals. Consequently, A_{i} is a field, or a zero-algebra of dimension 1, for every i. As the algebra A_{i} is not radical, A_{i} is a field, for every i. By the Gelfand-Mazur theorem, it is isomorphic to \mathbf{C}. So $A / \operatorname{Rad}(A)$ is of finite dimension. We conclude by theorem 1 of [2].

As a consequence, we obtain the following.

Corollary 2.5 Let A be an Artinian right-sided but not a radical Banach algebra. Then, it is isomorphic to a finite product of algebras as follows:
(1) $A \simeq \prod_{i=1}^{i=n}\left(\operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}\right)$, if A is unitary.
(2) $A \simeq\left(\prod_{i=1}^{i=n} \operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}\right) \times R_{n+1}$, if A is not unitary; where R_{n+1} is a radical right-sided algebra.

In both cases, e_{i} is idempotent and $\operatorname{Rad}\left(A_{i}\right)$ is right-sided for every $i=1, \ldots, n$.
Proof. By proposition II-4, the algebra A is isomorphic to $\operatorname{Rad}(A) \oplus \prod_{i=1}^{i=n} \mathbf{C} e_{i}$, where e_{i} is idempotent for every i. If A is unitary, then, arguing as in remark I13, the unit e of A is nothing else than $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and we have $e=\sum_{i=1}^{i=n} e_{i}^{*}$, with $e_{i}^{*}=\left(0, \ldots, 0, e_{i}, 0, \ldots, 0\right)$. Let $A_{i}=A e_{i}^{*}$. Then $\operatorname{Rad}(A)=\prod_{i=1}^{i=n} \operatorname{Rad}\left(A_{i}\right)$ and A_{i} is isomorphic to $\operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}$. So the algebra A is isomorphic to the product $\prod_{i=1}^{i=n} \operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}$. As A is right-sided, any $\operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}$ is right-sided. By proposition I-12, any $\operatorname{Rad}\left(A_{i}\right)$ is right-sided. If A is not unitary, the unitization $B=A \oplus \mathbf{C e}$ of A, is right-sided. Let $e_{n+1}=e-\sum_{i=1}^{i=n} e_{i}$. Then $e_{n+1} e_{i}=e_{i} e_{n+1}=0$ and $e_{n+1}^{2}=e_{n+1}$. Consequently we have $B=B e=B e_{1} \oplus B e_{2} \oplus \ldots \oplus B e_{n}$, and so any algebra $B e_{i}=\operatorname{Rad}(A) e_{i} \oplus \mathbf{C} e_{n+1}$ is right-sided for every $i=1, \ldots, n$. On the other hand, we have $B e_{n+1}=\operatorname{Rad}(A) e_{n+1} \oplus \mathbf{C} e_{n+1}$, because $\left(\prod_{i=1}^{i=n} \mathbf{C} e_{i}\right) e_{n+1}=\{0\}$. By proposition I-12, the algebra $\operatorname{Rad}(A) e_{n+1}$ is right-sided. Consequently the algebra B is isomorphic to the product $\prod_{i=1}^{i=n+1}\left(\operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}\right)$, where $\operatorname{Rad}\left(A_{i}\right)=\operatorname{Rad}(A) e_{i}$, for every $i=1, \ldots, n+1$. But A is isomorphic to $A e$. And with the fact that $\mathbf{C}^{n} e_{n+1}=\{0\}$, we have $e A=\sum_{i=1}^{i=n+1}\left(\operatorname{Rad}(A) \oplus \mathbf{C}^{n}\right) e_{i}=\left(\prod_{i=1}^{i=n}\left(\operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}\right)\right)\left(\operatorname{Rad}\left(A_{n+1}\right)\right.$.

EL KINANI, NAJMI, OUDADESS

Using corollary II-5 and proposition II-8 of [1], we obtain the following consequence.

Corollary 2.6 Let A be an Artinian and right-sided Banach algebra. Then A is twosided if, and only if, $\operatorname{Rad}(A)$ is two-sided.

Right-sidedness is sufficient to imply commutativity modulo the Jacobson radical, and then we have an improvement of proposition II-9 of [1].

Proposition 2.7 Let A be a right-sided Banach algebra.
(1) When M is a regular right maximal ideal of A. We have just two possibilities.
(i) M is a kernel of a continuous character of A.
(ii) M is a hyperplane, of A, of codimension 1 and contains A^{2}. In particular, this is the case when M is closed but not regular.
(2) $A / \operatorname{Rad}(A)$ is commutative.

Proof. (1) As A is right-sided, this is also so for $B=A / M$. Furthermore B admits no proper right ideal. We have $B^{2}=\{0\}$ with $\operatorname{dim}(B)=1$ or B is a field. The first case is nothing else than (ii). If now M is regular, then B is unitary. So $B^{2} \neq\{0\}$. Consequently, B is a field. By the Gelfand-Mazur theorem, it is isomorphic to \mathbf{C}. So, by (iii) of remark I-11, there exists a character χ of A such that $M=\operatorname{Ker}(\chi)$. So, we have (i).
(2) If $A=\operatorname{Rad}(A)$, the conclusion is trivial. If $A \neq \operatorname{Rad}(A)$, then A admits regular ideals. Let M a right maximal ideal of A. By (i) of (1), we have $x y-y x \in M$ for every $x, y \in A$. So we have $x y-y x \in \operatorname{Rad}(A)$ for every $x, y \in A$.

Remark 2.8 Example I-9 shows that the converse of (2) of the precedent proposition is false. Indeed, in this case $A / \operatorname{Rad}(A)$ is isomorphic to \mathbf{C}. In the following we are going to give conditions that make it valid.

Definition 2.9 ([2]). $A B(\infty)$ direct sum of a sequence of algebras $\left\{B_{i}: i \in N\right\}$, is the
completion of the algebra

$$
B=\left\{b=\left(b_{i}\right)_{i \in N} \in \prod_{i=0}^{i=\infty} B_{i}:\left(\left(\exists i_{b} \geq 0\right): b_{i}=0, i \geq i_{b}\right)\right\}
$$

for a specific algebra norm.

Lemma 2.10 Let A be a unitary right-sided Banach algebra such that $\operatorname{Rad}(A)$ is of finite dimension and $A / \operatorname{Rad}(A)$ is a $B(\infty)$ direct sum of total matrix and finite dimensional B_{i} 's. Then A is isomorphic to the Cartesian product $B \times C$ of two right-sided algebras B and C, with B of finite dimension.

Proof. Denote by 1 the unit element of A. By theorem 2 of [2], there exists an idempotent e of A and three algebras B, C and D such that $A=B \oplus C \oplus D$, with $B C=C B=\{0\}, D=(1-e) A e \oplus e A(1-e) \subset \operatorname{Rad}(A), B=e A e$ is of finite dimension and $C=(1-e) A(1-e)$. By right-sidedness of A, we have $D=\{0\}$. So A is isomorphic to the cartesien product $B \times C$. Consequently B and C are right-sided and B is of finite dimension.

Lemma 2.11 Let A be a unitary right-sided Banach algebra such that Rad (A) is of finite dimension and $A / \operatorname{Rad}(A)$ is a completely continuous C^{*}-algebra. Then A is isomorphic to the Cartesian product $B \times(S \oplus R)$ of a right-sided algebra of finite dimension $B=$ $\operatorname{Rad}(B) \oplus \mathbf{C}^{n}$ and a right-sided (vector sum) $S \oplus R$ with S commutative and R radical.
Proof. It is proved in [5], that a completely continuous C^{*}-algebra is a $B(\infty)$ direct sum of finite dimensional and total matrix algebras. By lemma II-10, the algebra A is isomorphic to the a Cartesian product $B \times C$ of a finite dimensional right-sided algebra B and a right-sided algebra. By proposition II-4, the algebra B is isomorphic to $\operatorname{Rad}(B) \oplus \mathbf{C}^{n}$, where $\operatorname{Rad}(B)$ is right-sided algebra. On the other hand, by theorem 3 of [2], the algebra C is isomorphic to the vector sum $S \oplus \operatorname{Rad}(C)$. But as $B C=C B=\{0\}$, we have $\mathbf{C}^{n} S=S \mathbf{C}^{n}=\{0\}$. By theorem 3 of [2], we know that the Cartesian product $\mathbf{C}^{n} \times S$ is isomorphic to $A / \operatorname{Rad}(A)$. Finally, as by proposition II-7, the algebra $A / \operatorname{Rad}(A)$ is commutative, it is also so of S.

Recall that two sub-algebras E and F of the same algebra G are said to be transcommutative if

$$
(\forall a \in E)(\forall b \in F): a b=b a .
$$

Proposition 2.12 Let A be a unitary Banach algebra such that $\operatorname{Rad}(A)$ is right-sided and of finite dimension. If in addition $A / \operatorname{Rad}(A)$ is a commutative completely continuous C^{*}-algebra such that $A / \operatorname{Rad}(A)$ is transcommutative with $\operatorname{Rad}(A)$, then A is right-sided.

Proof. By theorem 2 of [2], we have $A=B \oplus C \oplus D$, with $B C=C B=\{0\}$. By the right-sidedness of $\operatorname{Rad}(A)$, the definition of D and the fact that $D \subset R$, we have $D=\{0\}$. Consequently, the algebra A is isomorphic to $A=B \times C$. By theorem 3 of [2], there exists two algebras T and S such that the product $B \times C$ is isomorphic to $(T+\operatorname{Rad}(B)) \times(S+\operatorname{Rad}(C))$. As $\operatorname{Rad}(A)=\operatorname{Rad}(B) \times \operatorname{Rad}(C)$ is right-sided, $\operatorname{Rad}(B)$ and $\operatorname{Rad}(C)$ are right-sided. On the other hand, $T \times S$ is isomorphic to $A / \operatorname{Rad}(A)$. So, T and S are commutative. As $A / \operatorname{Rad}(A)$ is transcommutative with $\operatorname{Rad}(A)$, it is also so for S and $\operatorname{Rad}(C)$. Consequently $S \oplus \operatorname{Rad}(C)$ is right-sided. The algebra T is commutative, semi-simple and finite dimensional. So it is isomorphic to \mathbf{C}^{n}. And then B is isomorphic to $\operatorname{Rad}(B) \oplus \mathbf{C}^{n}$. A decomposition as that in the proof of (1) of corollary II- 5 shows that B is isomorphic to a product $\prod_{i=1}^{i=n}\left(\operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}\right)$. As $\operatorname{Rad}\left(A_{i}\right)=\operatorname{Rad}(A) e_{i}$, it is easy to see that $\operatorname{Rad}\left(A_{i}\right)$ is right-sided; and it is true also for $\operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}$. Consequently B is right-sided. But A is isomorphic to the Cartesian product $B \times(S \oplus \operatorname{Rad}(C))$; so it is right-sided.

Proposition 2.13 ([2], p. 776). An l_{1}-algebra is the commutative Banach algebra of all sums $\sum_{i=0}^{i=\infty} \alpha_{i} e_{i}$, with the $\alpha_{i} \in \mathbf{C}$,

$$
\left\|\sum_{i=0}^{i=\infty} \alpha_{i} e_{i}\right\|=\sum_{i=0}^{i=\infty}\left|\alpha_{i}\right|<\infty
$$

where $\left(e_{i}\right)_{i}$ is a family of orthogonal, primitive and idempotent elements.

Proposition 2.14 Let A be a Banach algebra such that $A / \operatorname{Rad}(A)$ is an l_{1}-algebra and $\operatorname{Rad}(A)$ is right-sided and of finite dimension. Then A is right-sided.
Proof. If A is unitary, the unit e of A is $e=\sum_{i \in N} e_{i}$. By theorem 4 of [2], $A=S \oplus \operatorname{Rad}(A)$ with S isomorphic to $A / \operatorname{Rad}(A)$. But, for every $i \in N$, the algebra $\operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}$ is right-sided as unitization of a right-sided algebra. Consequently A is isomorphic to the product $\prod_{i=0}^{i=\infty}\left(\operatorname{Rad}\left(A_{i}\right) \oplus \mathbf{C} e_{i}\right)$. It is then right-sided. For the non unitary case, we use the same arguments and the proof of (2) of corollary II-5.

References

[1] El Kinani, A., Najmi, A., Oudadess, M.: Algèbres de Banach Bilatérales. Bull. Greek. Math. Soc. 45, 17-29 (2001).
[2] Feldman, C.: The Wedderburn principal theorem in Banach algebras. Proc. Amer. Math. Soc. 2, 771-772 (1951).
[3] Hille, E., Philips, R. S.: Functional analysis and semi-groups. In: Colloquium Publications. Amer. Math. Soc. 31 (1957).
[4] Jacobson, N.: The radical and semi-simplicity for arbitrary rings. Amer. J. Math. 67, 320333 (1945).
[5] Kaplansky, I.: Normed algebras. Duke Math. J. 16, 399-418 (1949).
A. El KINANI, A. NAJMI, M. OUDADESS

Received 19.12.2001
Ecole Normale Supérieure
B. P. 5118, Takaddoum.

10105 Rabat (Maroc).
e-mail: anajmi@ens-rabat.ac.ma

[^0]: 1991 Mathematics Subject Classification: 46H05, 46H20

