One Sided Banach Algebras

A. El Kinani, A. Najmi, M. Oudadess

Abstract

Many properties of two-sided algebras remain valid for one-sided algebras. Namely, any one sided Banach algebra is commutative modulo its Jacobson radical.

Key Words: Right-sidedness, two-sidedness, commutativity, Banach algebra.

Introduction

In [1], the authors have proceeded to a study of algebras said to be two-sided by E. Hille and R. S. Philips ([3]). We consider here the left (or right) sidedness, where the notions of two-sidedness and one-sidedness are distinct (Example I-3). Many algebraic properties of [1] are still true.

In the case of normed algebras, the one-sidedness is not inherited by a sub-algebra, nor by the completion of a normed algebra. About the structure of these algebras, every right-sided finite dimensional algebra A (and, more generally every, Artinian Banach algebra) is written as $A = Rad(A) \oplus \mathbb{C}^n$, where Rad(A) is the (Jacobson) radical. It is two-sided if, and only if, Rad(A) is two-sided. We examine the case of a right-sided Banach algebra A such that Rad(A) is finite dimensional and A/Rad(A) is a $B(\infty)$ direct sum of total matrix algebras. We prove also that a right-sided Banach algebra is commutative modulo the Jacobson radical like in the two-sided case ([1]). Some conditions for the converse to be true are equally given. For example, if Rad(A) is right-sided and A/Rad(A) is a

1991 Mathematics Subject Classification: 46H05, 46H20

 C^* -algebra or an l_1 -algebra, then A is right-sided. Recall that RadA is the intersection of all regular right (or all regular left) ideals of A.

1. Algebraic properties

All algebras considered here are complex. In the sequel, we put $A^2 = \{xy : x, y \in A\}$. A zero-algebra is an algebra A such that $A^2 = \{0\}$. For every fixed $x \in A$, we write $Ann_d(x)$ for the right annihilator of x and B_x for an algebraic complementary of $Ann_d(x)$ in A.

Definition 1.1 . A complex algebra A, is said to be right-sided if

$$(\forall x, y \in A)(\exists u \in A) : xy = yu.$$

It is said to be left-sided if

$$(\forall x, y \in A)(\exists v \in A) : xy = vx.$$

Remark 1.2 . (1) Let A be a right-sided algebra. Then, endowed with the reversed product, A is left-sided. Consequently, we will study only right-sided algebras.

(2) From the definition, an algebra A is right-sided if, and only if, $Ax \subset xA$ for every $x \in A$. This is also equivalent to the existence of an application g, vanishing on

$$\bigcup_{s \in A} (Ann_d(s))$$

(called the function of right-sidedness) such that xy = yg(x, y), for every $x, y \in A$.

Every two-sided algebra ([1]) is right-sided. We give now some examples of right-sided algebras that are not two-sided.

Example 1.3 . Let $\{e_i : i \in N^*\}$ be a sequence of symbols such that

- (a) $e_i e_j = 0$ when $j \neq i + 1$; and $e_i e_{i+1} \neq 0$ for every i.
- (b) $e_i e_{i+1} = 2e_{i+1} e_{i+2}$ for all $i \in N^*$,

306

(c) $e_i e_j e_k = 0$ for all $i, j, k \in N^*$.

Let A be the algebra spanned by $\{e_i : i \in N^*\}$. It is associative, because $A^3 = \{0\}$. It is a right-sided algebra. For every $x \in A$, we have

$$x = \lambda(x, 0)e_1e_2 + \sum_{i=1}^{\infty} \lambda(x, i)e_i,$$

where just a finite number of coefficients $\lambda(x,i)$ are different from zero. For $x,y \in A$, one has

$$xy = \sum_{i=1}^{\infty} \lambda(x,i)\lambda(y,i+1)e_i e_{i+1} = \sum_{i=1}^{\infty} 2^{-i+1}\lambda(x,i)\lambda(y,i+1)e_1 e_2.$$

If $xy \neq 0$, there is $i_0 \geq 0$ such that $\lambda(x, i_0)\lambda(y, i_0 + 1) \neq 0$. The equation xy = yz admits a solution z such that

$$\lambda(z, i_0 + 2) = 2^{-i_0 + 2} (\lambda(y, i_0 + 1))^{-1} \sum_{i=1}^{\infty} 2^{-i+1} \lambda(x, i) \lambda(y, i + 1)$$
$$\lambda(z, i) = 0, \text{ for } i \neq i_0 + 2.$$

Then z is written as $z = \lambda(z, i_0+2)e_{i_0+2}$. So A is right-sided. The algebra A is not left-sided because the equation $e_1e_2 = xe_1$, with the unknown $x = \lambda(x, 0)e_1e_2 + \sum_{i=1}^{\infty} \lambda(x, i)e_i$, is equivalent to $e_1e_2 = 0$; and that contradicts (a).

Example 1.4 . Let A be a right but not two-sided algebra and B a two-sided one. Then the Cartesian product $A \times B$ is a right-sided, but not two-sided algebra.

Now we give an interesting property of right ideals.

Proposition 1.5 . Let A be a complex algebra. If A is right-sided, then every right ideal is two-sided. The converse is true in the unitary case.

Proof. We will use (2) of Remark I-2. Let I be a right ideal of A. By $Ax \subset xA$ for every $x \in A$, we have $AI = \bigcup_{x \in I} (Ax) \subset \bigcup_{x \in I} (xA) = IA \subset I$. Now, suppose that A is unitary and every right ideal of A is two-sided. For every $x \in A$, we have

 $Ax \subset (Ax)A = A(xA) \subset xA$. So A is right sided.

Remark 1.6 In proposition I-5, the existence of a unit in the converse is necessary as it is shown by the following example.

Let

$$A = \left\{ \left(\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right) : a, b \in \mathbf{C} \right\}.$$

Then

$$Rad(A) = \left\{ \left(\begin{array}{cc} 0 & b \\ 0 & 0 \end{array} \right) : b \in \mathbf{C} \right\}.$$

The algebra A is not unitary, not right-sided and its Jacobson radical is the unique right ideal of A. Since A is two-dimensional, every proper ideal I of A is one-dimensional. So

$$I = \mathbf{C} \begin{pmatrix} i & j \\ 0 & 0 \end{pmatrix}$$
 where i and j are fixed elements of \mathbf{C} . But I is a right ideal only if

$$i=0. \ \, \textit{Indeed}, \, \textit{if} \, i\neq 0 \, \, \textit{the equation} \, \left(\begin{array}{cc} i & j \\ 0 & 0 \end{array} \right) \left(\begin{array}{cc} a & b \\ 0 & 0 \end{array} \right) = \lambda \left(\begin{array}{cc} i & j \\ 0 & 0 \end{array} \right), \, \textit{where} \, \, a \, \, \textit{and} \, \, b$$

are not equal to zero and $b \neq \frac{aj}{i}$, is equivalent to $\lambda = a$ and $b = \frac{aj}{i}$: a contradiction.

Remark 1.7 Let A be an algebra such that $AI \subset IA$ for every right ideal I of A. If $A^2x \subset AxA$ for every $x \in A$, then $A^2x \subset xA^2$ for any $x \in A$. Then A is right-sided when $A^2 = A$. Indeed, for $x \in A$ and J = xA, we have by hypothesis $AJ \subset JA$. Hence $A^2x \subset A(xA) \subset xA^2$.

The right-sidedness is preserved by Cartesian products, inductive limits, tensor products, unitization and quotients by right ideals. So, if A is right-sided, then this is so for the algebra A/Rad(A). The converse is false in general as we can see from the following examples.

Example 1.8 Let x and y be two symbols such that $x^2 = 0$, $y^2 = 0$ and xyx = yxy = 0; and consider A = [x, y] the algebra spanned by the two symbols x and y. It is a radical

algebra, of dimension 4 and admits $\{x, y, xy, yx\}$ as a basis. It is not right-sided because $Ax = [yx] \not\subset [xy] = xA$.

Example 1.9 Let $A = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} : a, b \in \mathbf{C} \right\}$. It is a non unitary algebra, but satisfies

$$A^2 = A$$
. Also $Rad(A) = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in \mathbf{C} \right\}$ and $A/Rad(A)$ is right-sided. As

 $Rad(A)A = \{0\}$, the algebra A is not right-sided because $\{0\} \neq Rad(A) = ARad(A) \not\subset Rad(A)A = \{0\}$.

Here is a condition that makes of a right-sided algebra a two-sided one (see page 2, for notations).

Proposition 1.10 Let A be a right-sided algebra. The following propositions are equivalent.

- (i) A is two-sided.
- (ii) There exists a function g of right-sidedness such that for every $x \in A$, the partial application $t \mapsto g_x(t) = g(t, x)$, from $A \mapsto A$, is onto B_x .
- **Proof.** (i) \Rightarrow (ii) Let $x \in A$ be fixed and $y \in B_x$. As A is left-sided, there exists $v \in A$ such that xy = vx. Let g be a function of right-sidedness. Then vx = xg(v, x) and x(y g(v, x)) = 0. So $y g(v, x) \in Ann_d(x) \cap B_x$. But $Ann_d(x) \cap B_x = \{0\}$. Then for every $y \in B_x$, there exists $v \in A$ such that $y = g_x(v)$.
- $(ii) \Rightarrow (i)$. Let $x \in A$ be fixed. Every $z \in A$ is written as $z = z_1 + z_2$, with $z_1 \in Ann_d(x)$ and $z_2 \in B_x$. Then there exists $y \in A$ such that $z_2 = g_x(y)$. As yx = xg(y,x), we have $xz = xg_x(y) = yx$. So, there exists $y \in A$ such that xz = yx. And so A left-sided.

Remark 1.11 (i) In a right-sided algebra that satisfies $A^2 = A$, every right maximal ideal is also left maximal.

(ii) We know ([1]) that, in a unitary two-sided algebra, an element is invertible if, and only if, it does not belong to any maximal ideal. If now A is unitary, right-sided,

then by (i), an element is invertible if, and only if, it does not belong to any right maximal ideal.

(iii) In a unitary (resp. not unitary), right-sided algebra, the set $X^*(A)$ of non zero characters of A, can be identified with the set m(A) (resp. $m_r(A)$) of right ideals (resp. regular right ideals) of codimension 1.

The following result will be useful.

Proposition 1.12 Let A be a unitary, finite dimensional algebra such that $A = Rad(A) \oplus \mathbf{C}\varepsilon$, with ε an idempotent element of A. Then A is right-sided if, and only if, ε is the unit of A and Rad(A) is right-sided.

Proof. The sufficient condition is a particular case of the unitization of a right-sided algebra. For the necessary condition it is easy to see that ε is the unit of A. We show now that Rad(A) is right-sided. Let $r, s \in Rad(A)$ such that $rs \neq 0$. There is $t \in Rad(A)$ and $\lambda \in \mathbf{C}$ such that $rs - st = \lambda s$. Suppose that $\lambda \neq 0$. Putting $u = \frac{r}{\lambda}$ and $v = \frac{t}{\lambda}$, the precedent equation is equivalent to us - sv = s. For the resolution of this equation recall that there is $n \in N^*$ such that

$$\{0\} = (Rad(A))^n = \{u_1u_2...u_n : u_1, u_2, ..., u_n \in Rad(A)\}.$$

Multiplying the equation us - sv = s by $u_1u_2...u_m$ successively for m = n - 2, n - 3, ..., 1, and for any $u_1, u_2, ...u_m \in Rad(A)$, we obtain that $su_1u_2...u_m = 0$ for m = n - 3, ..., 1. So, we have s = 0: a contradiction. So $\lambda = 0$.

Remark 1.13 If we replace in the previous proposition, the condition "finite dimensional", by "Artinian", the result is also valid; because the essential in the proof, is that Rad(A) is nilpotent.

2. Right-sided Banach algebras

First, some examples of right but not two-sided Banach algebras.

Example 2.1 Let

$$l^{1}(A) = \left\{ x = \lambda(x, 0)e_{1}e_{2} + \sum_{i=1}^{\infty} \lambda(x, i)e_{i} \in A : \sum_{i=1}^{\infty} |\lambda(x, i)| < \infty \right\},$$

where A is the algebra of Example I-3. It is clear that $l^1(A)$ is a Banach space for the norm

$$x \mapsto ||x|| = \sum_{i \in N} |\lambda(x, i)|.$$

Furthermore, for every $x, y \in l^1(A)$, we have

$$||xy|| = \sum_{i \in N} 2^{-i} |\lambda(x, i)| |\lambda(y, i + 1)| \le \sum_{i \in N} |\lambda(x, i)| |\lambda(y, i + 1)| \le ||x|| ||y||.$$

So $l^1(A)$ is a Banach algebra containing A. The same proof as that of Example I-3, shows that $l^1(A)$ is right but no left-sided.

Example 2.2 Every product of a right but not left-sided Banach algebra and of a two-sided Banach algebra is right but not two-sided.

Recall that a sub-algebra and the completion of a normed right-sided algebra are not necessarily of the same type ([1], p. 23). But as in [1], we have the following proposition.

Proposition 2.3 Let A be a normed right-sided algebra, \hat{A} its completion and g a function of right-sidedness. For every fixed $y \in A$, let g_y be the partial function $x \mapsto g_y(x) = g(x,y)$ from $A \mapsto A$. Then

- (i) For every $y \in A$, the application g_y is linear from A into B_y .
- (ii) For every $y \in A$, the application $x \mapsto yg_y(x)$ is linear and continuous.
- (iii) xy = yg(x, y), for every $x \in \hat{A}$ and every $y \in A$.
- (iv) If for every $x \in \hat{A}$, the application $y \mapsto yg(x,y)$ is continuous or locally bounded, then \hat{A} is right-sided.

Now we give some structure results.

Proposition 2.4 Every Artinian (in particular, of finite dimension) is right-sided but not a radical Banach algebra A, is written as $A = Rad(A) \oplus B$, where B is isomorphic to \mathbb{C}^n , for a certain $n \in N^*$; where the sum is taken relatively to vector spaces.

Proof. By ([4], theorem 27, p. 315), the Artinian algebra A/Rad(A), is isomorphic to a product $\prod_{i=1}^{i=n} A_i$ of Banach algebras, where A_i is simple for every i=1,...,n. The algebra A_i is right-sided and so all of its right-sided ideals are two-sided. Hence it admits no proper right ideals. Consequently, A_i is a field, or a zero-algebra of dimension 1, for every i. As the algebra A_i is not radical, A_i is a field, for every i. By the Gelfand-Mazur theorem, it is isomorphic to \mathbf{C} . So A/Rad(A) is of finite dimension. We conclude by theorem 1 of [2].

As a consequence, we obtain the following.

Corollary 2.5 Let A be an Artinian right-sided but not a radical Banach algebra. Then, it is isomorphic to a finite product of algebras as follows:

- (1) $A \simeq \prod_{i=1}^{i=n} (Rad(A_i) \oplus \mathbf{C}e_i)$, if A is unitary.
- (2) $A \simeq (\prod_{i=1}^{i=n} Rad(A_i) \oplus \mathbf{C}e_i) \times R_{n+1}$, if A is not unitary; where R_{n+1} is a radical right-sided algebra.

In both cases, e_i is idempotent and $Rad(A_i)$ is right-sided for every i = 1, ..., n.

Proof. By proposition II-4, the algebra A is isomorphic to $Rad(A) \oplus \prod_{i=1}^{i=n} Ce_i$, where e_i is idempotent for every i. If A is unitary, then, arguing as in remark I-13, the unit e of A is nothing else than $(e_1, e_2, ..., e_n)$ and we have $e = \sum_{i=1}^{i=n} e_i^*$, with $e_i^* = (0, ..., 0, e_i, 0, ..., 0)$. Let $A_i = Ae_i^*$. Then $Rad(A) = \prod_{i=1}^{i=n} Rad(A_i)$ and A_i is isomorphic to $Rad(A_i) \oplus Ce_i$. So the algebra A is isomorphic to the product $\prod_{i=1}^{i=n} Rad(A_i) \oplus Ce_i$. As A is right-sided, any $Rad(A_i) \oplus Ce_i$ is right-sided. By proposition I-12, any $Rad(A_i)$ is right-sided. If A is not unitary, the unitization $B = A \oplus Ce$ of A, is right-sided. Let $e_{n+1} = e - \sum_{i=1}^{i=n} e_i$. Then $e_{n+1}e_i = e_ie_{n+1} = 0$ and $e_{n+1}^2 = e_{n+1}$. Consequently we have $B = Be = Be_1 \oplus Be_2 \oplus ... \oplus Be_n$, and so any algebra $Be_i = Rad(A)e_i \oplus Ce_{n+1}$ is right-sided for every i = 1, ..., n. On the other hand, we have $Be_{n+1} = Rad(A)e_{n+1} \oplus Ce_{n+1}$, because $(\prod_{i=1}^{i=n} Ce_i)e_{n+1} = \{0\}$. By proposition I-12, the algebra $Rad(A)e_{n+1} \oplus Ce_{n+1}$, because $(\prod_{i=1}^{i=n} Ce_i)e_{n+1} = \{0\}$. By proposition I-12, the algebra $Rad(A)e_{n+1} \oplus Ce_{n+1}$, because $(\prod_{i=1}^{i=n} Ce_i)e_{n+1} = \{0\}$. By is isomorphic to the product $\prod_{i=1}^{i=n+1} (Rad(A_i) \oplus Ce_i)$, where $Rad(A_i) = Rad(A)e_i$, for every i = 1, ..., n+1. But A is isomorphic to Ae. And with the fact that $C^ne_{n+1} = \{0\}$, we have $eA = \sum_{i=1}^{i=n+1} (Rad(A) \oplus C^n)e_i = (\prod_{i=1}^{i=n} (Rad(A_i) \oplus Ce_i))(Rad(A_{n+1})$.

Using corollary II-5 and proposition II-8 of [1], we obtain the following consequence.

Corollary 2.6 Let A be an Artinian and right-sided Banach algebra. Then A is two-sided if, and only if, Rad(A) is two-sided.

Right-sidedness is sufficient to imply commutativity modulo the Jacobson radical, and then we have an improvement of proposition II-9 of [1].

Proposition 2.7 Let A be a right-sided Banach algebra.

- (1) When M is a regular right maximal ideal of A. We have just two possibilities.
- (i) M is a kernel of a continuous character of A.
- (ii) M is a hyperplane, of A, of codimension 1 and contains A^2 . In particular, this is the case when M is closed but not regular.
 - (2) A/Rad(A) is commutative.
- **Proof.** (1) As A is right-sided, this is also so for B=A/M. Furthermore B admits no proper right ideal. We have $B^2=\{0\}$ with $\dim(B)=1$ or B is a field. The first case is nothing else than (ii). If now M is regular, then B is unitary. So $B^2\neq\{0\}$. Consequently, B is a field. By the Gelfand-Mazur theorem, it is isomorphic to C. So, by (iii) of remark I-11, there exists a character χ of A such that $M=Ker(\chi)$. So, we have (i).
- (2) If A = Rad(A), the conclusion is trivial. If $A \neq Rad(A)$, then A admits regular ideals. Let M a right maximal ideal of A. By (i) of (1), we have $xy yx \in M$ for every $x, y \in A$. So we have $xy yx \in Rad(A)$ for every $x, y \in A$.

Remark 2.8 Example I-9 shows that the converse of (2) of the precedent proposition is false. Indeed, in this case A/Rad(A) is isomorphic to C. In the following we are going to give conditions that make it valid.

Definition 2.9 ([2]). A $B(\infty)$ direct sum of a sequence of algebras $\{B_i : i \in N\}$, is the

completion of the algebra

$$B = \left\{ b = (b_i)_{i \in N} \in \prod_{i=0}^{i=\infty} B_i : ((\exists i_b \ge 0) : b_i = 0, i \ge i_b) \right\}$$

for a specific algebra norm.

Lemma 2.10 Let A be a unitary right-sided Banach algebra such that Rad(A) is of finite dimension and A/Rad(A) is a $B(\infty)$ direct sum of total matrix and finite dimensional B_i 's. Then A is isomorphic to the Cartesian product $B \times C$ of two right-sided algebras B and C, with B of finite dimension.

Proof. Denote by 1 the unit element of A. By theorem 2 of [2], there exists an idempotent e of A and three algebras B, C and D such that $A = B \oplus C \oplus D$, with $BC = CB = \{0\}$, $D = (1 - e)Ae \oplus eA(1 - e) \subset Rad(A)$, B = eAe is of finite dimension and C = (1 - e)A(1 - e). By right-sidedness of A, we have $D = \{0\}$. So A is isomorphic to the cartesien product $B \times C$. Consequently B and C are right-sided and B is of finite dimension.

Lemma 2.11 Let A be a unitary right-sided Banach algebra such that Rad(A) is of finite dimension and A/Rad(A) is a completely continuous C^* -algebra. Then A is isomorphic to the Cartesian product $B \times (S \oplus R)$ of a right-sided algebra of finite dimension $B = Rad(B) \oplus \mathbb{C}^n$ and a right-sided (vector sum) $S \oplus R$ with S commutative and R radical. **Proof.** It is proved in [5], that a completely continuous C^* -algebra is a $B(\infty)$ direct sum of finite dimensional and total matrix algebras. By lemma II-10, the algebra A is isomorphic to the a Cartesian product $B \times C$ of a finite dimensional right-sided algebra B and a right-sided algebra. By proposition II-4, the algebra B is isomorphic to $Rad(B) \oplus \mathbb{C}^n$, where Rad(B) is right-sided algebra. On the other hand, by theorem 3 of [2], the algebra C is isomorphic to the vector sum $S \oplus Rad(C)$. But as $BC = CB = \{0\}$, we have $\mathbb{C}^n S = S\mathbb{C}^n = \{0\}$. By theorem 3 of [2], we know that the Cartesian product $\mathbb{C}^n \times S$ is isomorphic to A/Rad(A). Finally, as by proposition II-7, the algebra A/Rad(A) is commutative, it is also so of S. □

Recall that two sub-algebras E and F of the same algebra G are said to be transcommutative if

$$(\forall a \in E)(\forall b \in F) : ab = ba.$$

Proposition 2.12 Let A be a unitary Banach algebra such that Rad(A) is right-sided and of finite dimension. If in addition A/Rad(A) is a commutative completely continuous C^* -algebra such that A/Rad(A) is transcommutative with Rad(A), then A is right-sided. By theorem 2 of [2], we have $A = B \oplus C \oplus D$, with $BC = CB = \{0\}$. By the right-sidedness of Rad(A), the definition of D and the fact that $D \subset R$, we have $D = \{0\}$. Consequently, the algebra A is isomorphic to $A = B \times C$. By theorem 3 of [2], there exists two algebras T and S such that the product $B \times C$ is isomorphic to $(T + Rad(B)) \times (S + Rad(C))$. As $Rad(A) = Rad(B) \times Rad(C)$ is right-sided, Rad(B)and Rad(C) are right-sided. On the other hand, $T \times S$ is isomorphic to A/Rad(A). So, T and S are commutative. As A/Rad(A) is transcommutative with Rad(A), it is also so for S and Rad(C). Consequently $S \oplus Rad(C)$ is right-sided. The algebra T is commutative, semi-simple and finite dimensional. So it is isomorphic to \mathbb{C}^n . And then B is isomorphic to $Rad(B) \oplus \mathbb{C}^n$. A decomposition as that in the proof of (1) of corollary II-5 shows that B is isomorphic to a product $\prod_{i=1}^{i=n} (Rad(A_i) \oplus \mathbf{C}e_i)$. As $Rad(A_i) = Rad(A)e_i$, it is easy to see that $Rad(A_i)$ is right-sided; and it is true also for $Rad(A_i) \oplus \mathbf{C}e_i$. Consequently B is right-sided. But A is isomorphic to the Cartesian product $B \times (S \oplus Rad(C))$; so it is right-sided.

Proposition 2.13 ([2], p. 776). An l_1 -algebra is the commutative Banach algebra of all sums $\sum_{i=0}^{i=\infty} \alpha_i e_i$, with the $\alpha_i \in \mathbf{C}$,

$$\left\| \sum_{i=0}^{i=\infty} \alpha_i e_i \right\| = \sum_{i=0}^{i=\infty} |\alpha_i| < \infty,$$

where $(e_i)_i$ is a family of orthogonal, primitive and idempotent elements.

Proposition 2.14 Let A be a Banach algebra such that A/Rad(A) is an l_1 -algebra and Rad(A) is right-sided and of finite dimension. Then A is right-sided.

Proof. If A is unitary, the unit e of A is $e = \sum_{i \in N} e_i$. By theorem 4 of [2], $A = S \oplus Rad(A)$ with S isomorphic to A/Rad(A). But, for every $i \in N$, the algebra $Rad(A_i) \oplus \mathbf{C}e_i$ is right-sided as unitization of a right-sided algebra. Consequently A is isomorphic to the product $\prod_{i=0}^{i=\infty} (Rad(A_i) \oplus \mathbf{C}e_i)$. It is then right-sided. For the non unitary case, we use the same arguments and the proof of (2) of corollary II-5.

References

- [1] El Kinani, A., Najmi, A., Oudadess, M.: Algèbres de Banach Bilatérales. *Bull. Greek. Math. Soc.* 45, 17-29 (2001).
- [2] Feldman, C.: The Wedderburn principal theorem in Banach algebras. *Proc. Amer. Math. Soc.* 2, 771-772 (1951).
- [3] Hille, E., Philips, R. S.: Functional analysis and semi-groups. In: Colloquium Publications. *Amer. Math. Soc.* 31 (1957).
- [4] Jacobson, N.: The radical and semi-simplicity for arbitrary rings. Amer. J. Math. 67, 320-333 (1945).
- [5] Kaplansky, I.: Normed algebras. Duke Math. J. 16, 399-418 (1949).

A. El KINANI, A. NAJMI, M. OUDADESS

Received 19.12.2001

Ecole Normale Supérieure

B. P. 5118, Takaddoum.

10105 Rabat (Maroc).

e-mail: anajmi@ens-rabat.ac.ma