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One Sided Banach Algebras

A. El Kinani, A. Najmi, M. Oudadess

Abstract

Many properties of two-sided algebras remain valid for one-sided algebras. Namely,

any one sided Banach algebra is commutative modulo its Jacobson radical.
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Introduction

In [1], the authors have proceeded to a study of algebras said to be two-sided by E.

Hille and R. S. Philips ([3]). We consider here the left (or right) sidedness, where the

notions of two-sidedness and one-sidedness are distinct (Example I-3). Many algebraic

properties of [1] are still true.

In the case of normed algebras, the one-sidedness is not inherited by a sub-algebra, nor

by the completion of a normed algebra. About the structure of these algebras, every right-

sided finite dimensional algebra A (and, more generally every, Artinian Banach algebra)

is written as A = Rad(A)⊕Cn, where Rad(A) is the (Jacobson) radical. It is two-sided

if, and only if, Rad(A) is two-sided. We examine the case of a right-sided Banach algebra

A such that Rad(A) is finite dimensional and A/Rad(A) is a B(∞) direct sum of total

matrix algebras. We prove also that a right-sided Banach algebra is commutative modulo

the Jacobson radical like in the two-sided case ([1]). Some conditions for the converse

to be true are equally given. For example, if Rad(A) is right-sided and A/Rad(A) is a
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C∗-algebra or an l1-algebra, then A is right-sided. Recall that RadA is the intersection

of all regular right (or all regular left) ideals of A.

1. Algebraic properties

All algebras considered here are complex. In the sequel, we put A2 = {xy : x, y ∈ A}.
A zero-algebra is an algebra A such that A2 = {0}. For every fixed x ∈ A, we write

Annd(x) for the right annihilator of x and Bx for an algebraic complementary ofAnnd(x)

in A.

Definition 1.1 . A complex algebra A, is said to be right-sided if

(∀x, y ∈ A)(∃u ∈ A) : xy = yu.

It is said to be left-sided if

(∀x, y ∈ A)(∃v ∈ A) : xy = vx.

Remark 1.2 . (1) Let A be a right-sided algebra. Then, endowed with the reversed

product, A is left-sided. Consequently, we will study only right-sided algebras.

(2) From the definition, an algebra A is right-sided if, and only if, Ax ⊂ xA for every

x ∈ A. This is also equivalent to the existence of an application g, vanishing on

⋃
s∈A

(Annd(s))

(called the function of right-sidedness) such that xy = yg(x, y), for every x, y ∈ A.

Every two-sided algebra ([1]) is right-sided. We give now some examples of right-sided

algebras that are not two-sided.

Example 1.3 . Let {ei : i ∈ N∗} be a sequence of symbols such that

(a) eiej = 0 when j 6= i + 1; and eiei+1 6= 0 for every i.

(b) eiei+1 = 2ei+1ei+2 for all i ∈ N∗,
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(c) eiejek = 0 for all i, j, k ∈ N∗.
Let A be the algebra spanned by {ei : i ∈ N∗}. It is associative, because A3 = {0} . It

is a right-sided algebra. For every x ∈ A, we have

x = λ(x, 0)e1e2 +
∞∑
i=1

λ(x, i)ei,

where just a finite number of coefficients λ(x, i) are different from zero. For x, y ∈ A,

one has

xy =
∞∑
i=1

λ(x, i)λ(y, i + 1)eiei+1 =
∞∑
i=1

2−i+1λ(x, i)λ(y, i + 1)e1e2.

If xy 6= 0, there is i0 ≥ 0 such that λ(x, i0)λ(y, i0 + 1) 6= 0. The equation xy = yz

admits a solution z such that

λ(z, i0 + 2) = 2−i0+2(λ(y, i0 + 1))−1
∞∑
i=1

2−i+1λ(x, i)λ(y, i + 1)

λ(z, i) = 0, for i 6= i0 + 2.

Then z is written as z = λ(z, i0+2)ei0+2. So A is right-sided. The algebra A is not left-

sided because the equation e1e2 = xe1, with the unknown x = λ(x, 0)e1e2 +
∑∞

i=1 λ(x, i)ei,

is equivalent to e1e2 = 0; and that contradicts (a).

Example 1.4 . Let A be a right but not two-sided algebra and B a two-sided one. Then

the Cartesian product A× B is a right-sided, but not two-sided algebra.

Now we give an interesting property of right ideals.

Proposition 1.5 . Let A be a complex algebra. If A is right-sided, then every right ideal

is two-sided. The converse is true in the unitary case.

Proof. We will use (2) of Remark I-2. Let I be a right ideal of A. By Ax ⊂ xA

for every x ∈ A, we have AI =
⋃
x∈I(Ax) ⊂

⋃
x∈I (xA) = IA ⊂ I. Now, suppose

that A is unitary and every right ideal of A is two-sided. For every x ∈ A, we have
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Ax ⊂ (Ax)A = A(xA) ⊂ xA. So A is right sided. 2

Remark 1.6 In proposition I-5, the existence of a unit in the converse is necessary as

it is shown by the following example.

Let

A =

{(
a b

0 0

)
: a, b ∈ C

}
.

Then

Rad(A) =

{(
0 b

0 0

)
: b ∈ C

}
.

The algebra A is not unitary, not right-sided and its Jacobson radical is the unique right

ideal of A. Since A is two-dimensional, every proper ideal I of A is one-dimensional. So

I = C

(
i j

0 0

)
where i and j are fixed elements of C. But I is a right ideal only if

i = 0. Indeed, if i 6= 0 the equation

(
i j

0 0

)(
a b

0 0

)
= λ

(
i j

0 0

)
, where a and b

are not equal to zero and b 6= aj
i , is equivalent to λ = a and b = aj

i : a contradiction.

Remark 1.7 Let A be an algebra such that AI ⊂ IA for every right ideal I of A. If

A2x ⊂ AxA for every x ∈ A, then A2x ⊂ xA2 for any x ∈ A. Then A is right-sided

when A2 = A. Indeed, for x ∈ A and J = xA, we have by hypothesis AJ ⊂ JA. Hence

A2x ⊂ A(xA) ⊂ xA2.

The right-sidedness is preserved by Cartesian products, inductive limits, tensor prod-

ucts, unitization and quotients by right ideals. So, if A is right-sided, then this is so for

the algebra A/Rad(A). The converse is false in general as we can see from the following

examples.

Example 1.8 Let x and y be two symbols such that x2 = 0, y2 = 0 and xyx = yxy = 0;

and consider A = [x, y] the algebra spanned by the two symbols x and y . It is a radical
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algebra, of dimension 4 and admits {x, y, xy, yx} as a basis. It is not right-sided because

Ax = [yx] 6⊂ [xy] = xA.

Example 1.9 Let A =

{(
a b

0 0

)
: a, b ∈ C

}
. It is a non unitary algebra, but satisfies

A2 = A. Also Rad(A) =

{(
0 b

0 0

)
: b ∈ C

}
and A/Rad(A) is right-sided. As

Rad(A)A = {0}, the algebra A is not right-sided because {0} 6= Rad(A) = ARad(A) 6⊂
Rad(A)A = {0}.

Here is a condition that makes of a right-sided algebra a two-sided one (see page 2,

for notations).

Proposition 1.10 Let A be a right-sided algebra. The following propositions are equiv-

alent.

(i) A is two-sided.

(ii) There exists a function g of right-sidedness such that for every x ∈ A, the partial

application t 7→ gx(t) = g(t, x), from A 7→ A, is onto Bx.

Proof. (i) ⇒ (ii) Let x ∈ A be fixed and y ∈ Bx. As A is left-sided, there exists

v ∈ A such that xy = vx. Let g be a function of right-sidedness. Then vx = xg(v, x)

and x(y − g(v, x)) = 0. So y − g(v, x) ∈ Annd(x) ∩Bx. But Annd(x) ∩Bx = {0}. Then

for every y ∈ Bx, there exists v ∈ A such that y = gx(v).

(ii) ⇒ (i). Let x ∈ A be fixed. Every z ∈ A is written as z = z1 + z2, with

z1 ∈ Annd(x) and z2 ∈ Bx. Then there exists y ∈ A such that z2 = gx(y). As

yx = xg(y, x), we have xz = xgx(y) = yx . So, there exists y ∈ A such that xz = yx.

And so A left-sided. 2

Remark 1.11 (i) In a right-sided algebra that satisfies A2 = A, every right maximal

ideal is also left maximal.

(ii) We know ([1]) that, in a unitary two-sided algebra , an element is invertible if,

and only if, it does not belong to any maximal ideal. If now A is unitary, right-sided,

309



EL KINANI, NAJMI, OUDADESS

then by (i), an element is invertible if, and only if, it does not belong to any right maximal

ideal.

(iii) In a unitary (resp. not unitary), right-sided algebra, the set X∗(A) of non zero

characters of A, can be identified with the set m(A)(resp. mr(A)) of right ideals (resp.

regular right ideals) of codimension 1.

The following result will be useful.

Proposition 1.12 Let A be a unitary, finite dimensional algebra such that A = Rad(A)⊕
Cε, with ε an idempotent element of A. Then A is right-sided if, and only if, ε is the

unit of A and Rad(A) is right-sided.

Proof. The sufficient condition is a particular case of the unitization of a right-sided

algebra. For the necessary condition it is easy to see that ε is the unit of A. We show now

that Rad(A) is right -sided. Let r, s ∈ Rad(A) such that rs 6= 0. There is t ∈ Rad(A)

and λ ∈ C such that rs− st = λs. Suppose that λ 6= 0. Putting u = r
λ and v = t

λ , the

precedent equation is equivalent to us− sv = s. For the resolution of this equation recall

that there is n ∈ N∗ such that

{0} = (Rad(A))n = {u1u2...un : u1, u2, ..., un ∈ Rad(A)} .

Multiplying the equation us−sv = s by u1u2...um successively for m = n−2, n−3, ..., 1,

and for any u1, u2, ...um ∈ Rad(A), we obtain that su1u2...um = 0 for m = n − 3, ..., 1.

So, we have s = 0: a contradiction. So λ = 0. 2

Remark 1.13 If we replace in the previous proposition, the condition ”finite dimen-

sional”, by ”Artinian ”, the result is also valid; because the essential in the proof, is that

Rad(A) is nilpotent.

2. Right-sided Banach algebras

First, some examples of right but not two-sided Banach algebras.
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Example 2.1 Let

l1(A) =

{
x = λ(x, 0)e1e2 +

∞∑
i=1

λ(x, i)ei ∈ A :
∞∑
i=1

|λ(x, i)| <∞
}
,

where A is the algebra of Example I-3. It is clear that l1(A) is a Banach space for the

norm

x 7→ ‖x‖ =
∑
i∈N
|λ(x, i)| .

Furthermore, for every x, y ∈ l1(A), we have

‖xy‖ =
∑
i∈N

2−i |λ(x, i)| |λ(y, i + 1)| ≤
∑
i∈N
|λ(x, i)| |λ(y, i + 1)| ≤ ‖x‖‖y‖ .

So l1(A) is a Banach algebra containing A. The same proof as that of Example I-3, shows

that l1(A) is right but no left-sided.

Example 2.2 Every product of a right but not left-sided Banach algebra and of a two-

sided Banach algebra is right but not two-sided.

Recall that a sub-algebra and the completion of a normed right-sided algebra are not

necessarily of the same type ([1], p. 23). But as in [1], we have the following proposition.

Proposition 2.3 Let A be a normed right-sided algebra, Â its completion and g a func-

tion of right-sidedness. For every fixed y ∈ A, let gy be the partial function x 7→ gy(x) =

g(x, y) from A 7→ A. Then

(i) For every y ∈ A, the application gy is linear from A into By .

(ii) For every y ∈ A, the application x 7→ ygy(x) is linear and continuous.

(iii) xy = yg(x, y), for every x ∈ Â and every y ∈ A.

(iv) If for every x ∈ Â, the application y 7→ yg(x, y) is continuous or locally bounded,

then Â is right-sided.

Now we give some structure results.

Proposition 2.4 Every Artinian (in particular, of finite dimension) is right-sided but

not a radical Banach algebra A, is written as A = Rad(A) ⊕ B, where B is isomorphic

to Cn, for a certain n ∈ N∗; where the sum is taken relatively to vector spaces.

311



EL KINANI, NAJMI, OUDADESS

Proof. By ([4], theorem 27, p. 315), the Artinian algebra A/Rad(A), is isomorphic

to a product
∏i=n
i=1 Ai of Banach algebras, where Ai is simple for every i = 1, .., n . The

algebra Ai is right-sided and so all of its right-sided ideals are two-sided. Hence it admits

no proper right ideals. Consequently, Ai is a field, or a zero-algebra of dimension 1, for

every i . As the algebra Ai is not radical, Ai is a field, for every i. By the Gelfand-Mazur

theorem, it is isomorphic to C. So A/Rad(A) is of finite dimension. We conclude by

theorem 1 of [2]. 2

As a consequence, we obtain the following.

Corollary 2.5 Let A be an Artinian right-sided but not a radical Banach algebra. Then,

it is isomorphic to a finite product of algebras as follows:

(1) A '
∏i=n
i=1 (Rad(Ai)⊕Cei), if A is unitary.

(2) A ' (
∏i=n
i=1 Rad(Ai)⊕Cei)×Rn+1 , if A is not unitary; where Rn+1 is a radical

right-sided algebra.

In both cases, ei is idempotent and Rad(Ai) is right-sided for every i = 1, ..., n.

Proof. By proposition II-4, the algebra A is isomorphic to Rad(A) ⊕
∏i=n
i=1 Cei,

where ei is idempotent for every i. If A is unitary, then, arguing as in remark I-

13, the unit e of A is nothing else than (e1, e2, ..., en) and we have e =
∑i=n

i=1 e
∗
i ,

with e∗i = (0, ..., 0, ei, 0, ..., 0). Let Ai = Ae∗i . Then Rad(A) =
∏i=n
i=1 Rad(Ai) and

Ai is isomorphic to Rad(Ai) ⊕ Cei. So the algebra A is isomorphic to the product∏i=n
i=1 Rad(Ai) ⊕ Cei. As A is right-sided, any Rad(Ai) ⊕ Cei is right-sided. By propo-

sition I-12, any Rad(Ai) is right-sided. If A is not unitary, the unitization B = A ⊕Ce

of A, is right-sided. Let en+1 = e −
∑i=n
i=1 ei. Then en+1ei = eien+1 = 0 and

e2
n+1 = en+1. Consequently we have B = Be = Be1 ⊕ Be2 ⊕ ... ⊕ Ben , and so any

algebra Bei = Rad(A)ei ⊕ Cen+1 is right-sided for every i = 1, ..., n. On the other

hand, we have Ben+1 = Rad(A)en+1 ⊕ Cen+1, because (
∏i=n
i=1 Cei)en+1 = {0}. By

proposition I-12, the algebra Rad(A)en+1 is right-sided. Consequently the algebra B

is isomorphic to the product
∏i=n+1
i=1 (Rad(Ai) ⊕ Cei), where Rad(Ai) = Rad(A)ei, for

every i = 1, ..., n+ 1. But A is isomorphic to Ae. And with the fact that Cnen+1 = {0},
we have eA =

∑i=n+1
i=1 (Rad(A)⊕Cn)ei = (

∏i=n
i=1 (Rad(Ai)⊕Cei))(Rad(An+1). 2
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Using corollary II-5 and proposition II-8 of [1], we obtain the following consequence.

Corollary 2.6 Let A be an Artinian and right-sided Banach algebra. Then A is two-

sided if, and only if, Rad(A) is two-sided.

Right-sidedness is sufficient to imply commutativity modulo the Jacobson radical, and

then we have an improvement of proposition II-9 of [1].

Proposition 2.7 Let A be a right-sided Banach algebra.

(1) When M is a regular right maximal ideal of A. We have just two possibilities.

(i) M is a kernel of a continuous character of A.

(ii) M is a hyperplane, of A, of codimension 1 and contains A2. In particular, this is

the case when M is closed but not regular.

(2) A/Rad(A) is commutative.

Proof. (1) As A is right-sided, this is also so for B = A/M . Furthermore B admits

no proper right ideal. We have B2 = {0} with dim(B) = 1 or B is a field. The first

case is nothing else than (ii). If now M is regular, then B is unitary. So B2 6= {0} .

Consequently, B is a field. By the Gelfand-Mazur theorem, it is isomorphic to C. So, by

(iii) of remark I-11, there exists a character χ of A such that M = Ker(χ). So, we have

(i).

(2) If A = Rad(A) , the conclusion is trivial. If A 6= Rad(A) , then A admits regular

ideals. Let M a right maximal ideal of A. By (i) of (1), we have xy − yx ∈ M for every

x, y ∈ A. So we have xy − yx ∈ Rad(A) for every x, y ∈ A . 2

Remark 2.8 Example I-9 shows that the converse of (2) of the precedent proposition is

false. Indeed, in this case A/Rad(A) is isomorphic to C. In the following we are going

to give conditions that make it valid.

Definition 2.9 ([2]). A B(∞) direct sum of a sequence of algebras {Bi : i ∈ N}, is the
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completion of the algebra

B =

{
b = (bi)i∈N ∈

i=∞∏
i=0

Bi : ((∃ib ≥ 0) : bi = 0, i ≥ ib)
}

for a specific algebra norm.

Lemma 2.10 Let A be a unitary right-sided Banach algebra such that Rad(A) is of finite

dimension and A/Rad(A) is a B(∞) direct sum of total matrix and finite dimensional

Bi’s. Then A is isomorphic to the Cartesian product B × C of two right-sided algebras

B and C, with B of finite dimension.

Proof. Denote by 1 the unit element of A. By theorem 2 of [2], there exists an

idempotent e of A and three algebras B,C and D such that A = B ⊕ C ⊕ D, with

BC = CB = {0}, D = (1− e)Ae⊕ eA(1 − e) ⊂ Rad(A), B = eAe is of finite dimension

and C = (1− e)A(1− e). By right-sidedness of A, we have D = {0}. So A is isomorphic

to the cartesien product B×C. Consequently B and C are right-sided and B is of finite

dimension. 2

Lemma 2.11 Let A be a unitary right-sided Banach algebra such that Rad(A) is of finite

dimension and A/Rad(A) is a completely continuous C∗-algebra. Then A is isomorphic

to the Cartesian product B × (S ⊕ R) of a right-sided algebra of finite dimension B =

Rad(B) ⊕Cn and a right-sided (vector sum) S ⊕R with S commutative and R radical.

Proof. It is proved in [5], that a completely continuous C∗ -algebra is a B(∞) direct

sum of finite dimensional and total matrix algebras. By lemma II-10, the algebra A is

isomorphic to the a Cartesian product B × C of a finite dimensional right-sided alge-

bra B and a right-sided algebra . By proposition II-4, the algebra B is isomorphic to

Rad(B)⊕Cn, where Rad(B) is right-sided algebra. On the other hand, by theorem 3 of

[2], the algebra C is isomorphic to the vector sum S⊕Rad(C) . But as BC = CB = {0},
we have CnS = SCn = {0}. By theorem 3 of [2], we know that the Cartesian product

Cn×S is isomorphic to A/Rad(A) . Finally, as by proposition II-7, the algebra A/Rad(A)

is commutative, it is also so of S. 2
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Recall that two sub-algebras E and F of the same algebra G are said to be transcom-

mutative if

(∀a ∈ E)(∀b ∈ F ) : ab = ba.

Proposition 2.12 Let A be a unitary Banach algebra such that Rad(A) is right-sided

and of finite dimension. If in addition A/Rad(A) is a commutative completely continuous

C∗ -algebra such that A/Rad(A) is transcommutative with Rad(A) , then A is right-sided.

Proof. By theorem 2 of [2], we have A = B ⊕ C ⊕ D, with BC = CB = {0}. By

the right-sidedness of Rad(A) , the definition of D and the fact that D ⊂ R, we have

D = {0}. Consequently, the algebra A is isomorphic to A = B × C. By theorem 3 of

[2], there exists two algebras T and S such that the product B × C is isomorphic to

(T + Rad(B)) × (S + Rad(C)). As Rad(A) = Rad(B) × Rad(C) is right-sided, Rad(B)

and Rad(C) are right-sided. On the other hand, T ×S is isomorphic to A/Rad(A). So, T

and S are commutative. As A/Rad(A) is transcommutative with Rad(A), it is also so for

S and Rad(C). Consequently S ⊕Rad(C) is right-sided. The algebra T is commutative,

semi-simple and finite dimensional. So it is isomorphic to Cn. And then B is isomorphic

to Rad(B)⊕Cn. A decomposition as that in the proof of (1) of corollary II-5 shows that

B is isomorphic to a product
∏i=n
i=1 (Rad(Ai)⊕Cei). As Rad(Ai) = Rad(A)ei, it is easy

to see that Rad(Ai) is right-sided; and it is true also for Rad(Ai) ⊕Cei. Consequently

B is right-sided. But A is isomorphic to the Cartesian product B × (S ⊕Rad(C)); so it

is right-sided. 2

Proposition 2.13 ([2], p. 776). An l1-algebra is the commutative Banach algebra of all

sums
∑i=∞
i=0 αiei, with the αi ∈ C,

∥∥∥∥∥
i=∞∑
i=0

αiei

∥∥∥∥∥ =
i=∞∑
i=0

|αi| <∞,

where (ei)i is a family of orthogonal, primitive and idempotent elements.
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Proposition 2.14 Let A be a Banach algebra such that A/Rad(A) is an l1-algebra and

Rad(A) is right-sided and of finite dimension. Then A is right-sided.

Proof. If A is unitary, the unit e of A is e =
∑

i∈N ei. By theorem 4 of [2],

A = S ⊕ Rad(A) with S isomorphic to A/Rad(A). But, for every i ∈ N , the alge-

bra Rad(Ai)⊕Cei is right-sided as unitization of a right-sided algebra. Consequently A

is isomorphic to the product
∏i=∞
i=0 (Rad(Ai)⊕Cei). It is then right-sided. For the non

unitary case, we use the same arguments and the proof of (2) of corollary II-5. 2
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