# On Derivations of Prime Gamma Rings 

Mehmet Ali Öztürk, Young Bae Jun and Kyung Ho Kim


#### Abstract

We consider some results in a $\Gamma$-ring $M$ with derivation which is related to $Q$, and the quotient $\Gamma$-ring of $M$.


Key words and phrases: Derivation, gamma ring, prime gamma ring, quotient gamma ring.

## 1. Introduction

Nobusawa [3] introduced the notion of a $\Gamma$-ring, an obiect more general than a ring. Barnes [1] slightly weakened the conditions in the definition of $\Gamma$-ring in the sense of Nobusawa. Öztürk et al. $[4,5]$ studied extended centroid of prime $\Gamma$-rings. In this paper, we consider the main results as follows. (1) Let $M$ be a prime $\Gamma$-ring of characteristic 2, $U$ a non-zero ideal of $M$, and $d_{1}$ and $d_{2}$ two non-zero derivations of $M$. If $d_{1} d_{2}(U)=(0)$, there exists $\lambda \in C_{\Gamma}$ such that $d_{2}=\lambda \alpha d_{1}$ for all $\alpha \in \Gamma$ where $C_{\Gamma}$ is the extended centroid of $M$. (2) Let $M$ be a prime $\Gamma$-ring, $U$ a non-zero right ideal of $M$ and $d$ a non-zero derivation of $M$. If $d(U) \Gamma a=(0)$ where $a$ is a fixed element of $M$, then there exists an element $q$ of $Q$ such that $q \gamma a=0$ and $q \gamma u=0$ for all $u \in U$ and $\gamma \in \Gamma$. (3) Let $M$ be a prime $\Gamma$-ring with char $M \neq 2, U$ a non-zero right ideal of $M$ and $d_{1}$ and $d_{2}$ two non-zero derivations of $M$. If $d_{1} d_{2}(U)=(0)$, then there exists two elements $p, q$ of $Q$ such that $q \Gamma U=(0)$ and $p \Gamma U=(0)$.

[^0]
## ÖZTÜRK, JUN, KIM

## 2. Preliminaries

Let $M$ and $\Gamma$ be (additive) abelian groups. If for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$ the conditions
(1) $a \alpha b \in M$,
(2) $(a+b) \alpha c=a \alpha b+a \alpha c$,
$a(\alpha+\beta) b=a \alpha b+a \beta b$,
$a \alpha(b+c)=a \alpha b+a \alpha c$,
(3) $(a \alpha b) \beta c=a \alpha(b \beta c)$.
are satisfied, then we call $M$ a $\Gamma$-ring. Let $M$ be a $\Gamma$-ring. The subset

$$
Z=\{x \in M \mid x \gamma m=m \gamma x \text { for all } m \in M \text { and } \gamma \in \Gamma\}
$$

is called the center of $M$. By a right (resp. left) ideal of a $\Gamma$-ring $M$ we mean an additive subgroup $U$ of $M$ such that $U \Gamma M \subseteq U$ (resp. $M \Gamma U \subseteq U$ ). If $U$ is both a right and a left ideal, then we say that $U$ is an ideal of $M$. For each $a$ of a $\Gamma$-ring $M$ the smallest right ideal containing $a$ is called the principal right ideal generated by $a$ and is denoted by $\langle a\rangle_{r}$. Similarly we define $\langle a\rangle_{l}$ (resp. $\langle a\rangle$ ), the principal left (resp. two sided) ideal generated by $a$. An ideal $P$ of a $\Gamma$-ring $M$ is is said to be prime if for any ideals $U$ and $V$ of $M$, $U \Gamma V \subseteq P$ implies $U \subseteq P$ or $V \subseteq P$. A $\Gamma$-ring $M$ is said to be prime if the zero ideal is prime.

Theorem 2.1 ([2, Theorem 4]). If $M$ is a $\Gamma$-ring, the following conditions are equivalent:
(i) $M$ is a prime $\Gamma$-ring.
(ii) If $a, b \in M$ and $a \Gamma M \Gamma b=(0)$, then $a=0$ or $b=0$.
(iii) If $\langle a\rangle$ and $\langle b\rangle$ are principal ideals of $M$ such that $\langle a\rangle \Gamma\langle b\rangle=(0)$, then $a=0$ or $b=0$.
(iv) If $U$ and $V$ are right ideals of $M$ such that $U \Gamma V=(0)$, then $U=(0)$ or $V=(0)$.
(v) If $U$ and $V$ are left ideals of $M$ such that $U \Gamma V=(0)$, then $U=(0)$ or $V=(0)$.

Let $M$ be a prime $\Gamma$-ring such that $M \Gamma M \neq M$. Denote

$$
\begin{aligned}
\mathcal{M}:=\{(U, f) \mid & U(\neq 0) \text { is an ideal of } M \text { and } \\
& f: U \rightarrow M \text { is a right } M \text {-module homomorphism }\}
\end{aligned}
$$

## ÖZTÜRK, JUN, KIM

Define a relation $\sim$ on $\mathcal{M}$ by

$$
(U, f) \sim(V, g) \Leftrightarrow \exists W(\neq 0) \subset U \cap V \text { such that } f=g \text { on } W
$$

Since $M$ is a prime $\Gamma$-ring, it is possible to find a non-zero $W$ and so " $\sim$ is an equivalence relation. This gives a chance for us to get a partition of $\mathcal{M}$. We then denote the equivalence class by $C l(U, f)=\hat{f}$, where

$$
\hat{f}:=\{g: V \rightarrow M \mid(U, f) \sim(V, g)\}
$$

and denote by $Q$ the set of all equivalence classes. Then $Q$ is a $\Gamma$-ring, which is called the quotient $\Gamma$-ring of $M$ (see [4]). The set

$$
C_{\Gamma}:=\{g \in Q \mid g \gamma f=f \gamma g \text { for all } f \in Q \text { and } \gamma \in \Gamma\}
$$

is called the extended centroid of $M$ ( See [4]).
Lemma 2.2 ([4, p. 476]). Let $M$ be a prime $\Gamma$-ring such that $M \Gamma M \neq M$ and $C_{\Gamma}$ the extended centroid of $M$. If $a_{i}$ and $b_{i}$ are non-zero elements of $M$ such that $\sum a_{i} \gamma_{i} x \beta_{i} b_{i}=0$ for all $x \in M$ and $\gamma_{i}, \beta_{i} \in \Gamma$, then the $a_{i}$ 's (also $b_{i}$ 's) are linearly dependent over $C_{\Gamma}$. Moreover, if $a \gamma x \beta b=b \gamma x \beta$ a for all $x \in M$ and $\gamma, \beta \in \Gamma$ where $a(\neq 0), b \in M$ are fixed, then there exists $\lambda \in C_{\Gamma}$ such that $b=\lambda \alpha a$ for all $\alpha \in \Gamma$.

Theorem 2.3 ([6, Theorem 3.5]). The $\Gamma$-ring $Q$ satisfies the following properties :
(i) For any element $q \in Q$, there exists an ideal $U_{q} \in F$ such that $q\left(U_{q}\right) \subseteq M$ (or $q \gamma U_{q} \subseteq M$ for all $\gamma \in \Gamma$ ).
(ii) If $q \in Q$ and $q(U)=(0)$ for some $U \in F$ (or $q \gamma U_{q}=(0)$ for some $U \in F$ and for all $\gamma \in \Gamma$ ), then $q=0$.
(iii) If $U \in F$ and $\Psi: U \rightarrow M$ is a right $M$-module homomorphism, then there exists an element $q \in Q$ such that $\Psi(u)=q(u)$ for all $u \in U($ or $\Psi(u)=q \gamma u$ for all $u \in U$ and $\gamma \in \Gamma$ ).
(iv) Let $W$ be a submodule (an ( $M, M$ )-subbimodule) in $Q$ and $\Psi: W \rightarrow Q$ a right $M$ module homomorphism. If $W$ contains the ideal $U$ of the $\Gamma$-ring $M$ such that $\Psi(U) \subseteq M$ and $A n n U=A n n_{r} W$, then there is an element $q \in Q$ such that $\Psi(b)=q(b)$ for any $b \in W$ (or $\Psi(b)=q \gamma b$ for any $b \in W$ and $\gamma \in \Gamma$ ) and $q(a)=0$ for any $a \in A n n_{r} W$ (or $q \gamma a=0$ for any $a \in A n n_{r} W$ and $\gamma \in \Gamma$ ).

Let $M$ be a $\Gamma$-ring. A map $d: M \rightarrow M$ is called a derivation if

$$
d(x+y)=d(x)+d(y) \text { and } d(x \gamma y)=d(x) \gamma y+x \gamma d(y)
$$

for all $x, y \in M$ and $\gamma \in \Gamma$.
Lemma 2.4 ([8, Lemma 3]). Let $M$ be a prime $\Gamma$-ring, $U$ a non-zero ideal of $M$, and $d$ a derivation of $M$. If $a \Gamma d(U)=(0)(d(U) \Gamma a=(0))$ for all $a \in M$, then $a=0$ or $d=0$.

Lemma 2.5 ([8, Lemma 1]). Let $M$ be a prime $\Gamma$-ring and $Z$ the center of $M$.
(i) If $a, b, c \in M$ and $\beta, \gamma \in \Gamma$, then

$$
[a \gamma b, c]_{\beta}=a \gamma[b, c]_{\beta}+[a, c]_{\beta} \gamma b+a \gamma(c \beta b)-a \beta(c \gamma b)
$$

where $[a, b]_{\gamma}$ is a $\sigma-b \gamma$ for all $a, b \in M$ and $\gamma \in \Gamma$.
(ii) If $a \in Z$, then $[a \gamma b, c]_{\beta}=a \gamma[b, c]_{\beta}$ where $[a, b]_{\gamma}$ is $a \gamma b-b \gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Lemma 2.6 ([8, Lemma 2]). Let $M$ be a prime $\Gamma$-ring, $U$ a non-zero right (resp. left) ideal of $M$ and $a \in M$. If $U \Gamma a=(0)($ resp. $a \Gamma U=(0))$, then $a=0$.

## 3. Main results

In what follows, let $M$ denote a prime $\Gamma$-ring such that $M \Gamma M \neq M, Z$ is the center of $M, C_{\Gamma}$ is the extended centroid of $M$ and $[a, b]_{\gamma}=a \gamma b-b \gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Lemma 3.1. Let $M$ be a prime $\Gamma$-ring of characteristic 2 . Let $d_{1}$ and $d_{2}$ two non-zero derivations of $M$ and right $M$-module homomorphisms. If

$$
\begin{equation*}
d_{1} d_{2}(x)=0 \text { for all } x \in M \tag{3.1}
\end{equation*}
$$

then there exists $\lambda \in C_{\Gamma}$ such that $d_{2}(x)=\lambda \alpha d_{1}(x)$ for all $\alpha \in \Gamma$ and $x \in M$
Proof. Let $x, y \in M$ and $\alpha \in \Gamma$. Replacing $x$ by $x \gamma y$ in (3.1), it follows from $\operatorname{char} M=2$ that for all $x, y \in M$ and $\gamma \in \Gamma$

$$
\begin{equation*}
d_{1}(x) \gamma d_{2}(y)=d_{2}(x) \gamma d_{1}(y) \tag{3.2}
\end{equation*}
$$

```
ÖZTÜRK, JUN, KIM
```

Replacing $x$ by $x \beta z$ in (3.2), we get

$$
\begin{equation*}
d_{1}(x) \beta z \gamma d_{2}(y)=d_{2}(x) \beta z \gamma d_{1}(y) \tag{3.3}
\end{equation*}
$$

for all $x, y \in M$ and $\gamma \in \Gamma$. Now, if we replace $y$ by $x$ in (3.3), then we obtain

$$
\begin{equation*}
d_{1}(x) \beta z \gamma d_{2}(x)=d_{2}(x) \beta z \gamma d_{1}(x) \tag{3.4}
\end{equation*}
$$

for all $x \in M$ and $\gamma, \beta \in \Gamma$. If $d_{1}(x) \neq 0$, then there exists $\lambda(x) \in C_{\Gamma}$ such that $d_{2}(x)=\lambda(x) \alpha d_{1}(x)$ for all $x \in M$ and $\alpha \in \Gamma$ by Lemma 2.2. Thus, if $d_{1}(x) \neq 0 \neq d_{1}(y)$, then (3.3) implies that

$$
\begin{equation*}
(\lambda(y)-\lambda(x)) \alpha d_{1}(x) \beta z \gamma d_{2}(x)=0 \tag{3.5}
\end{equation*}
$$

Since $M$ is a prime $\Gamma$-ring, we conclude by using Lemma 2.4 that $\lambda(y)=\lambda(x)$ for all $x, y \in M$. Hence we proved that there exists $\lambda \in C_{\Gamma}$ such that $d_{2}(x)=\lambda \alpha d_{1}(x)$ for all $x \in M$ and $\alpha \in \Gamma$ with $d_{1}(x) \neq 0$. On the other hand, if $d_{1}(x)=0$, then $d_{2}(x)=0$ as well. Therefore, $d_{2}(x)=\lambda \alpha d_{1}(x)$ for all $x \in M$ and $\alpha \in \Gamma$. This completes the proof.

Proposition 3.2. Let $M$ be a prime $\Gamma$-ring of characteristic 2 and $d$ a non-zero derivation of $M$. If

$$
\begin{equation*}
d(x) \in Z \text { for all } x \in M \tag{3.6}
\end{equation*}
$$

then there exists $\lambda(m) \in C_{\Gamma}$ such that $d(m)=\lambda(m) \alpha d(z)$ for all $m, z \in M$ and $\alpha \in \Gamma$ or $M$ is commutative.

Proof. From (3.6), we have

$$
\begin{equation*}
[d(x), y]_{\beta}=0 \text { for all } x, y \in M \text { and } \beta \in \Gamma \tag{3.7}
\end{equation*}
$$

Replacing $x$ by $x \gamma z$ in (3.7), it follows from Lemma 2.5 that

$$
\begin{equation*}
d(x) \gamma[z, y]_{\beta}+d(z) \gamma[x, y]_{\beta}=0 \tag{3.8}
\end{equation*}
$$

for all $x, y, z \in M$ and $\gamma, \beta \in \Gamma$. Replacing $z$ by $d(z)$ in (3.8), we obtain

$$
\begin{equation*}
d^{2}(z) \gamma[x, y]_{\beta}=0 \text { for all } x, y, z \in M \text { and } \gamma, \beta \in \Gamma \tag{3.9}
\end{equation*}
$$

## ÖZTÜRK, JUN, KIM

Now, substituting $z \alpha m$ for $z$ in (3.9), it follows from $\operatorname{char} M=2$ that

$$
\begin{equation*}
d^{2}(z) \alpha m \gamma[x, y]_{\beta}=0 \tag{3.10}
\end{equation*}
$$

for all $x, y, z, m \in M$ and $\gamma, \beta, \alpha \in \Gamma$. Since $M$ is a prime $\Gamma$-ring, we obtain

$$
\begin{equation*}
d^{2}(z)=0 \quad \forall z \in M \text { or }[x, y]_{\beta}=0 \quad \forall x, y \in M \text { and } \forall \beta \in \Gamma . \tag{3.11}
\end{equation*}
$$

From (3.11), if $d^{2}(z)=0$ for all $z \in M$, then replacing $z$ by $z \gamma m$ in this last relation, it follows from $d(x) \in Z$ that

$$
\begin{equation*}
d(z) \gamma d(m)=d(m) \gamma d(z) \text { for all } z, m \in M \text { and } \gamma \in \Gamma \tag{3.12}
\end{equation*}
$$

Replacing $z$ by $z \alpha n$ in (3.12), it follows from (3.6) that for all $z, m, n \in M$ and $\gamma, \alpha \in \Gamma$

$$
\begin{equation*}
d(z) \alpha n \gamma d(m)=d(m) \alpha n \gamma d(z) . \tag{3.13}
\end{equation*}
$$

If $d(z) \neq 0$, then there exists $\lambda(m) \in C_{\Gamma}$ such that $d(m)=\lambda(m) \alpha d(z)$ for all $z, m \in M$ and $\alpha \in \Gamma$ by Lemma 2.2. On the other hand, it follows from (3.11) that if $[x, y]_{\beta}=0$ for all $x, y \in M$ and $\beta \in \Gamma$, then $M$ is commutative. This completes the proof.

Theorem 3.3. Let $M$ be a prime $\Gamma$-ring of characteristic 2 , $d_{1}$ and $d_{2}$ two non-zero derivations of $M$ and $U$ a non-zero ideal of $M$. If

$$
\begin{equation*}
d_{1} d_{2}(u)=0 \text { for all } u \in U \tag{3.14}
\end{equation*}
$$

then there exists $\lambda \in C_{\Gamma}$ such that $d_{2}(x)=\lambda \alpha d_{1}(x)$ for all $\alpha \in \Gamma$ and $x \in M$.
Proof. Let $u, v \in U$ and $\gamma \in \Gamma$. Replacing $u$ by $d_{2}(u) \gamma v$ in (3.14), we get

$$
\begin{equation*}
d_{2}^{2}(u) \gamma d_{1}(v)=0 \text { for all } u, v \in U \text { and } \gamma \in \Gamma . \tag{3.15}
\end{equation*}
$$

Since $d_{1} \neq 0$, it follows from Lemma 2.4 that $d_{2}^{2}(u)=0$ for all $u \in U$, so from char $M=2$ that $d_{2}^{2}=0$. Now, substituting $u \gamma d_{2}(x)$ for $u$ in (3.14), we get

$$
\begin{equation*}
d_{2}(u) \gamma d_{1}\left(d_{2}(x)\right)=0 \text { for all } u \in U, x \in M \text { and } \gamma \in \Gamma . \tag{3.16}
\end{equation*}
$$

## ÖZTÜRK, JUN, KIM

Since $d_{2} \neq 0$, we get $d_{1}\left(d_{2}(x)\right)=0$ for all $x \in M$ by Lemma 2.4. Hence there exists $\lambda \in C_{\Gamma}$ such that $d_{2}=\lambda \alpha d_{1}$ for all $\alpha \in \Gamma$ by Lemma 3.1.

Theorem 3.4. Let $M$ be a prime $\Gamma$-ring, $U$ a non-zero right ideal of $M$ and $d$ a non-zero derivation of $M$. If

$$
\begin{equation*}
d(u) \gamma a=0 \text { for all } u \in U \text { and } \gamma \in \Gamma \tag{3.17}
\end{equation*}
$$

where $a$ is a fixed element of $M$, then there exists an element $q$ of $Q$ such that $q \gamma a=0$ and $q \gamma u=0$ for all $u \in U$ and $\gamma \in \Gamma$.

Proof. Let $u \in U, x \in M$ and $\beta \in \Gamma$. Since $U$ is a right ideal of $M$, we have $u \beta x \in U$. Replacing $u$ by $u \beta x$ in (3.17), we get

$$
\begin{equation*}
d(u) \beta x \gamma a+u \beta d(x) \gamma a=0 \tag{3.18}
\end{equation*}
$$

for all $u \in U, x \in M$ and $\gamma, \beta \in \Gamma$. Hence $d(u) \beta x \gamma a \alpha m+u \beta d(x) \gamma a \alpha m=0$ for any $m \in M$ and $\alpha \in \Gamma$, and so $d(u) \beta\left(\sum x \gamma a \alpha m\right)=-\left(u \beta\left(\sum d(x) \gamma a \alpha m\right)\right)$. Therefore, for any $v \in V=M \Gamma a \Gamma M$ which is a non-zero ideal of $M$, we have

$$
\begin{equation*}
d(u) \beta v=u \beta f(v) \tag{3.19}
\end{equation*}
$$

for all $u \in U . f(v)$ is independent of $u$ but it is dependent on $v$. Since $M$ is a prime $\Gamma$-ring, $f(v)$ is well-defined and unique for all $v \in V$. Note that $v \alpha y \in V$ for any $y \in M$, $v \in V$ and $\alpha \in \Gamma$. Replacing $v$ by $v \alpha y$ in (3.19) we get

$$
\begin{equation*}
d(u) \beta(v \alpha y)=u \beta f(v \alpha y) \text { for all } y \in M \tag{3.20}
\end{equation*}
$$

and so by using (3.19) and (3.20), we have

$$
\begin{aligned}
(d(u) \beta v) \alpha y=u \beta f(v \alpha y) & \Rightarrow(u \beta f(v)) \alpha y=u \beta f(v \alpha y) \\
& \Rightarrow u \beta f(v) \alpha y=u \beta f(v \alpha y) \\
& \Rightarrow u \beta(f(v) \alpha y-f(v \alpha y))=0,
\end{aligned}
$$

which implies from Lemma 2.6 that

$$
\begin{equation*}
f(v \alpha y)=f(v) \alpha y \tag{3.21}
\end{equation*}
$$

## ÖZTÜRK, JUN, KIM

for all $y \in M, v \in V$ and $\alpha \in \Gamma$. It follows from (3.21) that $f: V \rightarrow M$ is a right $M$-module homomorphism. In this case, $q=C l(V, f) \in Q$. Moreover, $f(v)=q \beta v$ for all $v \in V$ and $\alpha \in \Gamma$ by Theorem 2.3. Let $x \in M, v \in V, u \in U$ and $\gamma, \beta \in \Gamma$. Replacing $v$ by $x \gamma v$ in (3.19), we get

$$
\begin{equation*}
d(u) \beta(x \gamma v)=u \beta f(x \gamma v)=u \beta(q \beta x \gamma v) \tag{3.22}
\end{equation*}
$$

Also, replacing $u$ by $u \gamma x$ in (3.19), we get

$$
\begin{equation*}
d(u) \gamma x \beta v=u \gamma x \beta q \beta v-u \gamma d(x) \beta v \tag{3.23}
\end{equation*}
$$

Now, replacing $\beta$ by $\gamma$ and replacing $\gamma$ by $\beta$ in (3.23), we get

$$
\begin{equation*}
d(u) \beta x \gamma v=u \beta x \gamma q \gamma v-u \beta d(x) \gamma v \tag{3.24}
\end{equation*}
$$

Thus, from (3.22) and (3.24) we obtain

$$
\begin{equation*}
u \beta(q \beta x-x \gamma q+d(x)) \gamma v=0 \tag{3.25}
\end{equation*}
$$

for all $x \in M, v \in V, u \in U$ and $\gamma, \beta \in \Gamma$. Hence $d(x)=x \gamma q-q \beta x$ for all $x \in M$ and $\gamma, \beta \in \Gamma$ by Lemma 2.6. Now, we shall prove that $q$ can be chosen in $Q$ such that $q \gamma a=0$ and $q \gamma u=0$ for all $u \in U$ and $\gamma \in \Gamma$. Let $u \in U$ and $x \in M, d(u)=q \alpha u-u \beta q$ and $d(x)=q \beta x-x \alpha q$. Then we have $0=d(u \beta x) \gamma a=(q \alpha(u \beta x)-(u \beta x) \alpha q) \gamma a$. Thus, $q \alpha u \beta x \gamma a=u \beta x \alpha q \gamma a$. If $q \gamma a=0$, then $q \alpha u \beta x \gamma a=0$, and so since $M$ is prime $\Gamma$-ring, we get $q \Gamma U=(0)$. On the other hand, if $q \gamma a \neq 0$, then $q \gamma u \neq 0$. In fact, if $q \gamma u=0$, then $q \gamma a=0$ since $q \alpha u \beta x \gamma a=u \beta x \alpha q \gamma a$. Thus, we may suppose that $q \gamma a \neq 0$ and $q \gamma u \neq 0$ for all $u \in U$ and $\gamma \in \Gamma$. In this case, we get

$$
\begin{equation*}
q \alpha u \beta x \gamma a=u \beta x \alpha q \gamma a \tag{3.26}
\end{equation*}
$$

for all $x \in M, u \in U$ and $\gamma, \beta, \alpha \in \Gamma$. It follows from Lemma 2.2 that there exists $\lambda \in C_{\Gamma}$ such that $q \gamma a=\lambda \delta a$ and $q \gamma u=\lambda \delta u$ for all $u \in U$ and $\gamma, \delta, \alpha \in \Gamma$. Hence, if $q^{\prime}=q-\lambda$, then $q^{\prime} \Gamma a=0$ and $q^{\prime} \Gamma U=(0)$. This completes the proof.

Theorem 3.5. Let $M$ be a prime $\Gamma$-ring with char $M \neq 2, U$ a non-zero right ideal of $M$ and $d$ a non-zero derivation of $M$. Then the subring of $M$ generated by $d(U)$ contains no non-zero right ideals of $M$ if and only if $d(U) \Gamma U=(0)$.

## ÖZTÜRK, JUN, KIM

Proof. Let $A$ be the subring generated by $d(U)$. Let $S=A \cap U, u \in U, s \in S$ and $\gamma \in \Gamma$. Then $d(s \gamma u)=d(s) \gamma u+s \gamma d(u) \in A$, and so we have $d(s) \gamma u \in S$. Thus $d(S) \Gamma U$ is a right ideal of $M$. In this case, $d(S) \Gamma U=(0)$ by hypothesis. $d(u \gamma a)=$ $d(u) \gamma a+u \gamma d(a) \in S$ and $d(u) \gamma a \in S$ where $u \in U, a \in A$. Thus, we have $u \gamma d(a) \in S$. Therefore, $0=d(u \gamma d(a)) \beta u=\left(u \gamma d^{2}(a)+d(u) \gamma d(a)\right) \beta u$. Since $M$ is a prime $\Gamma$-ring, it follows from Lemma 2.6 that

$$
\begin{equation*}
u \gamma d^{2}(a)+d(u) \gamma d(a)=0 \tag{3.27}
\end{equation*}
$$

for all $u \in U, \gamma \in \Gamma$ and $a \in A$. Replacing $u$ by $u \beta v$ where $v \in U, \beta \in \Gamma$ in (3.27), we get, for all $u, v \in U, \beta, \gamma \in \Gamma$ and $a \in A$

$$
\begin{equation*}
d(u) \beta v \gamma d(a)=0 \tag{3.28}
\end{equation*}
$$

Since $M$ is a prime $\Gamma$-ring, we get $d(U) \Gamma U=(0)$ or $d(A) \Gamma U=(0)$. If $d(A) \Gamma U=(0)$, then $d^{2}(U) \Gamma U=(0)$. Let $u, v \in U$ and $\beta \in \Gamma$. Then $0=d(d(u \beta v))=u \beta d^{2}(v)+$ $d(u) \beta d(v)+d(v) \beta d(u)+d^{2}(u) \beta v$, and so we have $d(u) \beta d(v)=0$ for all $u, v \in U$ and $\beta \in \Gamma$ by char $M \neq 2$. Replacing $u$ by $u \gamma w$ where $w \in U, \gamma \in \Gamma$ in last relation, we have $d(u) \gamma w \beta d(v)=0$ which yields $d(u) \gamma v=0$ for all $u, v \in U$ and $\gamma \in \Gamma$.

Conversely assume that $d(U) \Gamma U=(0)$. Then $A \Gamma U=(0)$. Since $M$ is a prime $\Gamma$-ring, $A$ contains no non-zero right ideals.

Theorem 3.6. Let $M$ be a prime $\Gamma$-ring with char $M \neq 2, U$ a non-zero right ideal of $M$ and $d_{1}$ and $d_{2}$ two non-zero derivations of $M$. If $d_{1} d_{2}(U)=(0)$, then there exists two elements $p, q$ of $Q$ such that $q \Gamma U=(0)$ and $p \Gamma U=(0)$.
Proof. If $d_{1} d_{2}(U)=(0)$, then $d_{1}(A)=(0)$ where $A$ is a subring generated by $d_{2}(U)$. Since $d \neq 0, A$ contains no non-zero right ideals of $M$. Thus, from Theorem 3.5, we have $d_{2}(u) \gamma v=0$ for all $u, v \in U$ and $\gamma \in \Gamma$. Also, there exists $q \in Q$ such that $q \Gamma U=(0)$ by Theorem 3.4. Therefore $d_{2}(u \gamma v)=u \gamma d_{2}(v)$ for all $u, v \in U$ and $\gamma \in \Gamma$. In this case, $0=d_{1} d_{2}(u \gamma v)=d_{1}\left(u \gamma d_{2}(v)\right)=d_{1}(u) \gamma d_{2}(v)$, and since $M$ is a prime $\Gamma$-ring, we get $d_{2}(u) \gamma v=0$ for all $u, v \in U$ and $\gamma \in \Gamma$. Again, by Theorem 3.4, there exists $p \in Q$ such that $p \Gamma U=(0)$. This completes the proof.

## ÖZTÜRK, JUN, KIM

Remark 3.7. (a) Consider the following example. Let $R$ be a ring. A derivation $d: R \rightarrow$ $R$ is called an inner derivation if there exists $a \in R$ such that $d(x)=[a, x]=a x-x a$ for all $x \in R$. Let $S$ be the $2 \times 2$ matrix ring over Galois field $\left\{0,1, w, w^{2}\right\}$, with inner derivations $d_{1}$ and $d_{2}$ defined by

$$
d_{1}(x):=\left[\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), x\right], d_{2}(x):=\left[\left(\begin{array}{cc}
0 & w \\
0 & 0
\end{array}\right), x\right]
$$

for all $x \in S$. Then the characteristic of $S$ is 2 and we have $d_{1} \neq 0, d_{2} \neq 0, d_{1} d_{2}=0$ and $d_{2}^{2}=0$. Also, if we take

$$
M:=M_{1 \times 2}(S)=\{(a, b) \mid a, b \in S\} \text { and } \Gamma:=\left\{\left.\binom{n}{0} \right\rvert\, n \text { is an integer }\right\}
$$

then $M$ is a prime $\Gamma$-ring of characteristic 2. Define an additive map $D_{1}: M \rightarrow M$ by $D_{1}(x, y)=\left(d_{1}(x), d_{1}(y)\right)$. Since $(x, y)\binom{n}{0}(a, b)=(n x a, n x b)$, therefore $D_{1}$ is a derivation on $M$. Similarly $D_{2}: M \rightarrow M$ given by $D_{2}(x, y)=\left(d_{2}(x), d_{2}(y)\right)$ is a derivation. In this case, we have $D_{1} \neq 0, D_{2} \neq 0, D_{1} D_{2}=0$ and $D_{2}^{2}=0$ (see [7]). Thus we know that there exist two derivations $D_{1}, D_{2}$ of $M$ such that $D_{1} D_{2}(M)=(0)$ but $D_{1}(M) \Gamma M \neq(0)$ and $D_{2}(M) \Gamma M \neq(0)$. Therefore the condition of char $M \neq 2$ in Theorems 3.5 and 3.6 is necessary.
(b) In Theorems 3.4 and 3.6, if $a \gamma(c \beta b)=a \beta(c \gamma b)$ for all $a, b, c \in M$ and $\gamma, \beta \in \Gamma$, then $d(x)=[q, x]_{\gamma}=q \gamma x-x \gamma q$ for all $x \in M, \gamma \in \Gamma$ and for some $q \in Q$ is inner derivation and also $d_{1}(x)=[q, x]_{\gamma}$ and $d_{2}(x)=[q, x]_{\beta}$ for all $x \in M, \gamma, \beta \in \Gamma$ and for some elements $q, p \in Q$ are inner derivations by Lemma 2.5(i).

## References

[1] Barnes, W. E.: On the $\Gamma$-rings of Nobusawa, Pacific J. Math. 18, 411-422, (1966).
[2] Kyuno, S.: On prime gamma rings, Pacific J. Math. 75(1), 185-190, (1978).
[3] Nobusawa, N.: On a generalization of the ring theory, Osaka J. Math. 1, 81-89, (1964).

## ÖZTÜRK, JUN, KIM

[4] Öztürk, M. A. and Jun, Y. B.: On the centroid of the prime gamma rings, Comm. Korean Math. Soc. 15(3), 469-479, (2000).
[5] Öztürk, M. A. and Jun, Y. B.: On the centroid of the prime gamma rings II, Tr. J. of Math. (to appear).
[6] Öztürk, M. A.: On the quotient gamma ring of the semi-prime gamma rings (to appear).
[7] Sapanci M. and Öztürk, M. A.: A note on gamma rings, Atatürk University 40th foundation year Math. Symposium, Special Press (20-22 May 1998), Erzurum, 48-51.
[8] Soytürk, M.: The commutativity in prime gamma rings with derivation, Tr. J. of Math. 18(4), 149-155, (1994).

## M. Ali ÖZTÜRK

Department of Mathematics
Faculty of Arts and Sciences
Cumhuriyet University
58140 Sivas-TURKEY
Young Bae JUN
Department of Mathematics Education,
Gyeongsang National University,
Chinju 660-701-KOREA
e-mail: ybjun@nongae.gsnu.ac.kr
Kyung Ho KIM
Department of Mathematics,
Chungju National University,
Chungju 380-702-KOREA
e-mail: ghkim@gukwon.chungju.ac.kr


[^0]:    2000 Mathematics Subject Classification: 03F55, 06F05, 20M12, 03B52.

