Turk J Math 26 (2002) , 329 – 338. © TÜBİTAK

Flat Marcinkiewicz Integral Operators

Ahmad Al-Salman and Hussain Al-Qassem

Abstract

In this paper, we study Marcinkiewicz integral operators with rough kernels supported by surfaces of revolutions. We prove that our operators are bounded on L^p under certain convexity assumptions on our surfaces and under very weak conditions on the kernel.

Key Words: Marcinkiewicz Integral, rough kernel, flat curves, Fourier transform.

1. Introduction

Let \mathbf{S}^{n-1} be the unit sphere in \mathbf{R}^n $(n \ge 2)$ equipped with the normalized Lebesgue measure $d\sigma$ and $\Omega \in L^1(\mathbf{S}^{n-1})$ be a homogeneous function of degree zero that satisfies

$$\int_{\mathbf{S}^{n-1}} \Omega(x) \, d\sigma(x) = 0. \tag{1.1}$$

Let $\Gamma : \mathbf{R}^n \to \mathbf{R}^d$, $d \ge n+1$ be a mapping such that the surface $\Gamma(\mathbf{R}^n)$ is smooth in \mathbf{R}^d . The Marcinkiewicz integral operator $\mu_{\Omega,\Gamma}$ associated to Γ and Ω is defined by

$$\mu_{\Omega,\Gamma}f(x) = \left(\int_{-\infty}^{\infty} \left| \int_{|y| \le 2^t} f(x - \Gamma(y)) \left| y \right|^{-n+1} \Omega(y) dy \right|^2 2^{-2t} dt \right)^{\frac{1}{2}}.$$
 (1.2)

The problem regarding the operator $\mu_{\Omega,\Gamma}$ is that under what conditions on Γ and Ω , the operator $\mu_{\Omega,\Gamma}$ maps $L^p(\mathbf{R}^d)$ into $L^p(\mathbf{R}^d)$ for some 1 . It is well known that if

²⁰⁰⁰ Mathematics Subject Classification. Primary 42B20; Secondary 42B15, 42B25.

d = n + 1, $\Gamma(y) = (y, 0)$, and $\Omega \in Lip_{\alpha}(\mathbf{S}^{n-1})$, $(0 < \alpha \leq 1)$, E. M. Stein has proved that $\mu_{\Omega,\Gamma}$ is bounded on L^p for all $1 . Subsequently, A. Benedek, A. Calderón, and R. Panzone proved the <math>L^p$ boundedness of $\mu_{\Omega,\Gamma}$, $\Gamma(y) = (y, 0)$, for all $1 provided that <math>\Omega \in C^1(\mathbf{S}^{n-1})$ ([3]). Recently, there has been a notable progress in obtaining L^p boundedness results of the operator $\mu_{\Omega,\Gamma}$ under the assumption that $\frac{\partial^{\alpha}\Gamma}{\partial y^{\alpha}}(0) \neq 0$ for some multi-index $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$, where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are non negative integers (see [1], [5], among others). Our main focus in this paper is investigating the L^p boundedness of $\mu_{\Omega,\Gamma}$ if $\frac{\partial^{\alpha}\Gamma}{\partial y^{\alpha}}(0) = 0$ for all multi-indices α , i.e., when Γ has infinite order of contact with its tangent plane at the origin. In this paper, we shall assume that Γ is a surface of revolution obtained by rotating a one-dimensional curve around one of the coordinate axes. More specifically, we let $\Gamma(y) = (y, \phi(|y|))$, where ϕ is a real valued function defined on \mathbf{R}^+ . Here we allow ϕ to be flat at the origin. In what follows we shall simply denote $\mu_{\Omega,\Gamma}$ by μ_{ϕ} . We should point out here that the study of integral operators with kernels supported by surfaces of revolutions has a long history (see [2], [6], [9], [11], among others).

Our main result in this paper is the following:

Theorem 1.1. Suppose that $\phi : \mathbf{R}^+ \to \mathbf{R}$ is an increasing convex function. If $\Omega \in L(Log^+L)(\mathbf{S}^{n-1})$ and satisfies (1.1), then μ_{ϕ} is bounded on $L^p(\mathbf{R}^{n+1})$ for 1 .

Here, $L(Log^+L)(\mathbf{S}^{n-1})$ is the space of all $L^1(\mathbf{S}^{n-1})$ functions Ω that satisfies

$$\int_{\mathbf{S}^{n-1}} |\Omega(y')| Log^+(|\Omega(y')|) d\sigma(y') < \infty.$$

It is worth pointing out that $L(Log^+L)(\mathbf{S}^{n-1})$ contains the space $L^q(\mathbf{S}^{n-1})$ (for any q > 1) properly and the condition $\Omega \in L(Log^+L)(\mathbf{S}^{n-1})$ is known to be the most desirable size condition for the L^p boundedness of the related Calderón-Zygmund singular integral operator ([4]).

We shall obtain Theorem 1.1 as a consequence of a more general result in which we allow our kernels to be rough in the radial direction. To be more specific, for $1 < \gamma < \infty$, let Δ_{γ} be the set of all measurable functions $h : \mathbf{R}^+ \to \mathbf{R}$ which satisfy

$$\|h\|_{\Delta_{\gamma}} = \sup_{R>0} (R^{-1} \int_{0}^{R} |h(t)|^{\gamma} dt)^{\frac{1}{\gamma}} < \infty$$
(1.3)

and let $\Delta_{\infty} = L^{\infty}(\mathbf{R}^+)$. For $h \in \Delta_{\gamma}$ for some $\gamma > 1$, let $\mu_{\phi,h}$ be the operator defined by (1.2) with $\Gamma(y) = (y, \phi(|y|))$ and Ω replaced by Ωh . Then we have the following theorem. **Theorem 1.2.** Suppose that $\phi : \mathbf{R}^+ \to \mathbf{R}$ is an increasing convex function and $h \in \Delta_{\gamma}$ for some $\gamma > 1$. If $\Omega \in L(Log^+L)(\mathbf{S}^{n-1})$ and satisfies (1.1), then $\mu_{\phi,h}$ is bounded on $L^p(\mathbf{R}^{n+1})$ for $|1/p - 1/2| < \min\left\{1/2, 1/\gamma'\right\}$.

It is easy to see that if $h \in \Delta_{\gamma}$ for some $\gamma \geq 2$, then $\mu_{\phi,h}$ in Theorem 1.2 is bounded on $L^{p}(\mathbf{R}^{n+1})$ for all 1 . Hence, Theorem 1.1 can be deduced from Theorem 1.2by taking <math>h = 1.

Throughout this paper, the letter C is a positive constant that may vary at each occurrence but it is independent of the essential variables.

2. Preparation

Suppose that $\Omega \in L^1(\mathbf{S}^{n-1})$ is a homogeneous function of degree zero that satisfies (1.1). For a suitable function $\phi : \mathbf{R}^+ \to \mathbf{R}$ and a measurable function $h : \mathbf{R}^+ \to \mathbf{R}$, consider the family of measures $\{\sigma_{\beta,\phi,h} : \beta \in \mathbf{R}^+\}$ defined on \mathbf{R}^{n+1} by

$$\int_{\mathbf{R}^{n+1}} f d\sigma_{\beta,\phi,h} = \beta^{-1} \int_{|y|<\beta} f(y,\phi(|y|)) |y|^{-n+1} \Omega(y') h(|y|) dy.$$
(2.1)

Also, let $\sigma^*_{{}_{\phi,h}}$ be the maximal function defined by

$$\sigma_{\phi,h}^* f(x, x_{n+1}) = \sup_{\beta > 0} |\sigma_{\beta,\phi,h} * f(x, x_{n+1})|.$$
(2.2)

Lemma 2.1. Suppose that $h \in \Delta_{\gamma}$ for some $\gamma > 1$ and $\Omega \in L^2(\mathbf{S}^{n-1})$ with $\|\Omega\|_{L^1} \leq 1$. Then for $\theta = \min\left\{(3\gamma')^{-1}, (12)^{-1}\right\}$, we have

$$|\hat{\sigma}_{\beta,\phi,h}(\xi,\tau)| \le 2 \, \|h\|_{\gamma} \, \|\Omega\|_{L^2} \, |\beta\xi|^{-\theta} \,. \tag{2.3}$$

Proof. Using polar coordinates, Hölder's inequality, and noticing that $|\hat{\sigma}_{\beta,\phi,h}(\xi,\tau)| \leq ||h||_{\Delta_{\gamma}}$, we get

$$|\hat{\sigma}_{\beta,\phi,h}(\xi,\tau)| \le \|h\|_{\Delta_{\gamma}} \max\{\|\Omega\|_{L^{2}}^{1-\frac{2}{\gamma'}} (F(\beta,\xi))^{\frac{2}{\gamma'}}, F(\beta,\xi)\},$$
(2.4)

where

$$F(\beta,\xi) = \left(\int_0^1 \left| \int_{\mathbf{S}^{n-1}} e^{-i\beta r\xi \cdot y'} \Omega(y') d\sigma(y') \right|^2 dr \right)^{\frac{1}{2}}.$$

Now it is easy to see that

$$(F(\beta,\xi))^2 \le \int_{\mathbf{S}^{n-1}} \int_{\mathbf{S}^{n-1}} |\Omega(z')| \left| \Omega(y') \right| \left| \int_0^1 e^{-i\beta r\xi \cdot (y'-z')} dr \right| d\sigma(y') d\sigma(z').$$
(2.5)

By combining the estimate $\left|\int_{0}^{1} e^{-i\beta r\xi \cdot (y'-z')} dr\right| \leq |\beta\xi|^{-1} |\xi' \cdot (y'-z')|^{-1}$ with the trivial estimate $\left|\int_{0}^{1} e^{-i\beta r\xi \cdot (y'-z')} dr\right| \leq 1$, we get

$$\left| \int_{0}^{1} e^{-i\beta r\xi \cdot (y'-z')} dr \right| \le |\beta\xi|^{-\frac{1}{6}} |\xi' \cdot (y'-z')|^{-\frac{1}{6}}.$$
(2.6)

Thus by (2.5), (2.6), and Hölder's inequality, we have

$$F(\beta,\xi) \le C \|\Omega\|_{L^2} \, |\beta\xi|^{-\frac{1}{12}} \,. \tag{2.7}$$

Hence by (2.4), (2.7), and the trivial estimate $|\hat{\sigma}_{\beta,\phi,h}(\xi,\tau)| \leq ||h||_{\gamma}$, we get (2.3).

Now we prove the following result concerning the maximal function $\sigma_{\phi,h}^*$:

Theorem 2.2. Suppose that $\phi : \mathbf{R}^+ \to \mathbf{R}$ is an increasing convex function. If $\|\Omega\|_{L^1(\mathbf{S}^{n-1})} \leq 1$ and $\|\Omega\|_{L^2(\mathbf{S}^{n-1})} \leq 2^{3(w+1)}$ for some $w \geq 0$, then for 1 we have

$$\left\|\sigma_{\phi,1}^{*}f\right\|_{p} \le (w+1)C \left\|f\right\|_{p}$$
(2.8)

Proof. Without loss of generality we may assume that $\Omega \ge 0$. Let $\{\sigma_{2^t,\phi,1} : t \in \mathbf{R}\}$ be a family of measures defined as in (2.1). Choose $\theta \in \mathcal{S}(\mathbf{R}^n)$ such that $\hat{\theta}(\xi) = 1$ for $|\xi| \le \frac{1}{2}$, and $\hat{\theta}(\xi) = 0$ for $|\xi| \ge 1$. Let $\theta_r(x) = r^{-n}\theta(\frac{x}{r})$ for $r \ge 0$. Define the families of measures $\{\tau_t : t \in \mathbf{R}\}$ and $\{\lambda_t : t \in \mathbf{R}\}$ on \mathbf{R}^{n+1} by

$$\hat{\tau}_t(\xi,\eta) = \hat{\sigma}_{2^t,\phi,1}(\xi,\eta) - \hat{\theta}_{2^t}(\xi)\hat{\sigma}_{2^t,\phi,1}(0,\eta).$$
(2.9)

By Lemma 2.1 and the estimate $\|\tau_t\| \leq C$, we have

$$\left|\hat{\tau}_{t}(\xi,\eta)\right| \le C2^{3(w+1)} \left|2^{t}\xi\right|^{-\frac{1}{12}};$$
(2.10)

from which, when combined with the trivial estimate $\|\tau_t\| \leq C$, we get

$$|\hat{\tau}_t(\xi,\eta)| \le C \left|2^t \xi\right|^{-\frac{1}{12(w+1)}}.$$
 (2.11)

On the other hand, by the estimate $\|\tau_t\| \leq C$ and noticing that $|\hat{\tau}_t(\xi,\eta)| \leq C |2^t\xi|$, we get

$$|\hat{\tau}_t(\xi,\eta)| \le C \left| 2^t \xi \right|^{\frac{1}{12(w+1)}}.$$
 (2.12)

Let μ_{ϕ} be the maximal function defined on \mathbf{R}^{n+1} by

$$\mu_{\phi}(f)(x, x_{n+1}) = \sup_{t \in \mathbf{R}} \left| 2^{-t} \int_{0}^{2^{t}} f(x, x_{n+1} - \phi(t)) dt \right|.$$

By the convexity assumption on ϕ , we have

$$\|\mu_{\phi}(f)\|_{p} \leq C \|f\|_{p}$$
 (2.13)

for $f \in L^p(\mathbf{R}^{n+1})$ and 1 .

We now choose a collection of \mathcal{C}^{∞} functions $\{\psi_{w,t}\}_{t\in\mathbf{R}}$ on $(0,\infty)$ such that:

$$supp(\psi_{w,t}) \subseteq [2^{-(w+1)t-(w+1)}, 2^{-(w+1)t+(w+1)}], 0 \le \psi_{w,t} \le 1, \\ \left|\frac{d^s \psi_{w,t}}{du^s}(u)\right| \le \frac{C}{u^s}, \text{ and } \sum_{j \in \mathbf{Z}} \psi_{w,j+t}(u) = 1.$$
(2.14)

Let $\varphi_{w,t}$ be such that $\hat{\varphi}_{w,t}(\xi) = \psi_{w,t}(|\xi)|$. For $j \in \mathbb{Z}$, define the operators

$$\mathbf{J}_{w,j}(f)(x) = \left(\int_{-\infty}^{\infty} \left|\tau_{(w+1)t} * \varphi_{w,j+t} * f(x)\right|^2 dt\right)^{\frac{1}{2}};$$
(2.15)

$$\mathbf{g}_{w,j}(f)(x) = \left(\int_{-\infty}^{\infty} |\varphi_{w,j+t} * f(x)|^2 dt\right)^{\frac{1}{2}}.$$
(2.16)

By a well known argument (see [11], pages 26-28), it is easy to prove that

$$\|\mathbf{g}_{w,j}(f)\|_{p} \le C \|f\|_{p}$$
 (2.17)

for $f \in L^p(\mathbf{R}^{n+1})$ and $1 . Let <math>\tau^*$ be the maximal function corresponding to the family $\{\tau_t : t \in \mathbf{R}\}$. Then it is easy to see that

$$\sigma_{\phi,1}^*(f) \leq 2\sqrt{w+1} \sum_{j \in \mathbf{Z}} \mathbf{J}_{w,j}(f) + ((M_{\mathbf{R}^n} \otimes id_{\mathbf{R}}) \circ \mu_{\phi}(f));$$
(2.18)

$$\tau^*(f) \leq 2\sqrt{w+1} \sum_{j \in \mathbf{Z}} \mathbf{J}_{w,j}(f) + 2((M_{\mathbf{R}^n} \otimes id_{\mathbf{R}}) \circ \mu_{\phi}(f)), \qquad (2.19)$$

where $M_{\mathbf{R}^n}$ is the Hardy Littlewood maximal function defined on \mathbf{R}^n .

Now by the trivial estimate $\|\tau_t\| \leq C$, (2.11)-(2.12), and Plancherel's theorem, it is easy to see that

$$\|\mathbf{J}_{w,j}(f)\|_{2} \le C2^{-|j|} \|f\|_{2}$$
(2.20)

for all $j \in \mathbb{Z}$ and $f \in L^2(\mathbb{R}^{n+1})$. Thus, by (2.13), (2.18)-(2.20) and the L^p boundedness of $M_{\mathbb{R}^n}$, we obtain

$$\|\tau^* f\|_2 \le 2\sqrt{w+1}C \,\|f\|_2\,,\tag{2.21}$$

holds for $f \in L^2(\mathbf{R}^{n+1})$. Now by a similar argument as in the proof of the lemma on page 544 in ([7]), we have

$$\left\|\mathbf{J}_{w,j}(f)\right\|_{p_0} \le (w+1)^{\frac{1}{4}} C \left\|f\right\|_{p_0}$$
(2.22)

for $f \in L^{p_0}(\mathbf{R}^{n+1})$ and $\left|\frac{1}{p_0} - \frac{1}{2}\right| = \frac{1}{2q}$, with q = 2. Therefore, by (2.19)-(2.20) and (2.22) we get

$$\|\tau^* f\|_p \le (w+1)^{\frac{1}{2} + \frac{1}{4}} C \, \|f\|_p \tag{2.23}$$

for $f \in L^p(\mathbf{R}^{n+1})$ and $\frac{4}{3} .$

Now repeat the same argument employed in the proof of the inequalities (2.22)-(2.23) using $q = \frac{4}{3} + \epsilon \ (\epsilon \to 0^+)$ this time, we get

$$\|\tau^* f\|_p \le (w+1)^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8}} C \|f\|_p \tag{2.24}$$

for $f \in L^p(\mathbf{R}^{n+1})$ and $\frac{7}{8} . By successive application of the above argument, we get$

$$\|\tau^* f\|_p \le (w+1)C \, \|f\|_p \tag{2.25}$$

for $f \in L^p(\mathbf{R}^{n+1})$ and 1 . Thus by an argument similar to the one that led to (2.22), we have

$$\|\mathbf{J}_{w,j}(f)\|_{p} \le \sqrt{w+1}C \|f\|_{p}$$
(2.26)

for $f \in L^{p}(\mathbf{R}^{n+1})$ and 1 . Hence by (2.13), (2.18), (2.20), and (2.26), we obtain (2.8). This ends the proof of our theorem.

Now by an application of Hölder's inequality, we immediately obtain the following corollary.

Corollary 2.3. Suppose that $\phi : \mathbf{R}^+ \to \mathbf{R}$ is an increasing convex function and $h \in \Delta_{\gamma}$ for some $\gamma > 1$. If $\|\Omega\|_{L^1(\mathbf{S}^{n-1})} \leq 1$ and $\|\Omega\|_{L^2(\mathbf{S}^{n-1})} \leq 2^{3(w+1)}$ for some $w \geq 0$, then for $\gamma' and <math>f \in L^p(\mathbf{R}^{n+1})$ we have

$$\left\|\sigma_{\phi,h}^{*}f\right\|_{p} \le (w+1)C \,\|f\|_{p} \,. \tag{2.27}$$

3. Proof of main results

We shall prove Theorem 1.2 as a consequence of the following theorem:

Theorem 3.1. Suppose that $\phi : \mathbf{R}^+ \to \mathbf{R}$ is an increasing convex function and $h \in \Delta_{\gamma}$ for some $\gamma > 1$. If $\Omega \in L^1(\mathbf{S}^{n-1})$ is a homogeneous function of degree zero that satisfies (1.1) with $\|\Omega\|_{L^1(\mathbf{S}^{n-1})} \leq 1$ and $\|\Omega\|_{L^2(\mathbf{S}^{n-1})} \leq 2^{3(w+1)}$ for some $w \geq 0$, then for $|1/p - 1/2| < \min\left\{1/2, 1/\gamma'\right\}$ and $f \in L^p(\mathbf{R}^{n+1})$ we have

$$\|\mu_{\phi,h}(f)\|_{p} \leq C(w+1) \|f\|_{p}$$

Proof. Since $\Delta_{\gamma} \subseteq \Delta_2$ for all $\gamma \geq 2$, we may assume that $1 < \gamma \leq 2$. Let $\{\sigma_{2^t,\phi,h} : t \in \mathbf{R}\}$ be the family of measures defined as in (2.1). Then $\mu_{\phi,h}$ can be written as

$$\mu_{\phi,h}(f)(x,x_{n+1}) = \left(\int_{-\infty}^{\infty} \left|\sigma_{2^t,\phi,h} * f(x,x_{n+1})\right|^2 dt\right)^{\frac{1}{2}}.$$
(3.1)

Let $\{\psi_{w,t}\}_{t\in\mathbf{R}}$ be as in (2.14) and let $\mathbf{J}_{w,j}$ be the operator defined on \mathbf{R}^{n+1} as in (2.15) with $\tau_{(w+1)t}$ replaced $\sigma_{2^{(w+1)t},\phi,h}$. Then it is easy to see that

$$\mu_{\phi,h}(f)(x,x_{n+1}) \le \sqrt{w+1} \sum_{j \in \mathbf{Z}} \mathbf{J}_{w,j}(f)(x,x_{n+1}).$$
(3.2)

2	2	5
0	0	U

Thus, by Lemma 2.1 and the trivial estimate $\|\sigma_{2^{(w+1)t},\phi,h}\| \leq C$, we have

$$\left|\hat{\sigma}_{2^{(w+1)t},\phi,h}(\xi,\tau)\right| \le C2^{3(w+1)} \left|2^{(w+1)t}\xi\right|^{-\frac{1}{3\gamma'}}.$$
(3.3)

On the other hand, by definition of $\sigma_{2^{(w+1)t},\phi,h}$ and the cancelation property of Ω , we obtain

$$\left|\hat{\sigma}_{2^{(w+1)t},\phi,h}(\xi,\tau)\right| \le C \left|2^{(w+1)t}\xi\right|.$$
 (3.4)

Therefore, by (3.3)-(3.4), we get

$$\left|\hat{\sigma}_{2^{(w+1)t},\phi,h}(\xi,\tau)\right| \le C \min\{\left|2^{(w+1)t}\xi\right|^{-\frac{1}{3\gamma'(w+1)}}, \left|2^{(w+1)t}\xi\right|^{\frac{1}{w+1}}\}.$$
(3.5)

Now by (3.3), (3.5), and Plancherel's theorem, we have

$$\|\mathbf{J}_{w,j}(f)\|_{2} \le 2^{-|j|} C \|f\|_{2}$$
(3.6)

for $f \in L^2(\mathbf{R}^{n+1})$ and $j \in \mathbf{Z}$. By Corollary 2.3 and a similar argument as in the proof of Theorem 7.5 in ([8]), we have

$$\|\mathbf{J}_{w,j}(f)\|_{p} \le \sqrt{w+1}C \,\|f\|_{p} \tag{3.7}$$

for all p satisfying $|1/p - 1/2| < 1/\gamma'$ and $f \in L^p(\mathbf{R}^{n+1})$.

By interpolating between (3.6) and (3.7), we get that

$$\|\mathbf{J}_{w,j}(f)\|_{p} \leq 2^{-\theta_{p}|j|} \sqrt{w+1} C \|f\|_{p}$$
(3.8)

for all p satisfying $|1/p - 1/2| < 1/\gamma'$, $f \in L^p(\mathbf{R}^{n+1})$, and for some constant $\theta_p > 0$ independent of j and w. Hence by (3.2) and (3.8), the proof is complete.

Now we turn to the proof of Theorem 1.2:

Proof of Theorem 1.2. Let $\phi : \mathbf{R}^+ \to \mathbf{R}$ be an increasing convex function, $\Omega \in L(\log^+ L)(\mathbf{S}^{n-1})$ with $\|\Omega\|_{L^1(\mathbf{S}^{n-1})} = 1$, and $h \in \Delta_{\gamma}$ for some $\gamma > 1$. Since $\Delta_{\gamma} \subseteq \Delta_2$ for $\gamma \ge 2$, we may assume that $1 < \gamma \le 2$. Now by a similar argument as in [2], there exist $D \subseteq \mathbf{N} \cup \{0\}$, a sequence of functions $\{b_w : w \in D\} \subset L^1(\mathbf{S}^{n-1})$, and a

sequence of positive real numbers $\{C_w : w \in D\}$ such that

$$\|b_w\|_{L^2} \leq C2^{3(w+1)}, \quad \|b_w\|_{L^1} \leq 2;$$
(3.9)

$$\sum_{w \in D} w C_w \leq 1 + \|\Omega\|_{L(\log^+ L)};$$
(3.10)

$$\int_{\mathbf{S}^{n-1}} b_w \, d\sigma = 0; \tag{3.11}$$

$$\Omega = \sum_{w \in D} C_w b_w. \tag{3.12}$$

For $w \in D$, let $\mu_{\phi,h,w}$ be the operator defined as in (1.6) with Ω replaced by b_w . Therefore, by (3.9)-(3.12) and Theorem 3.1, we obtain that

$$\|\mu_{\phi,h}f\|_{p} \leq C\{\sum_{w\in D} wb_{w}\} \|f\|_{p} \leq C\{1+\|\Omega\|_{L(\log^{+}L)}\} \|f\|_{p}$$

holds for all p satisfying $|1/p - 1/2| < 1/\gamma'$ and $f \in L^p(\mathbf{R}^{n+1})$. This ends the proof of Theorem 1.2.

We would like to thank the referee for some helpful comments.

References

- Al-Qassem, H., Al-Salman, A.: Rough Marcinkiewicz integral operators, IJMMS. 27:8, 495-503, (2001).
- [2] Al-Salman, A., Pan, Y.: Singular Integrals with Rough Kernels in $Llog^+L(\mathbf{S}^{n-1})$, J. London Math. Soc. to appear
- [3] Benedek, A., Calderón, A., Panzone, R.: Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U. S. A 48, 356-365, (1962).
- [4] Calderón, A. P., Zygmund, A.: On singular integrals, Amer. J. Math. 78, 289-309, (1956).
- [5] Chen, J., Fan, D., Pan, Y.: A note on a Marcinkiewicz integral operator, Math. Nachr. 227, 33–42, (2001).
- [6] Ding, Y., Fan, D., Pan, Y.: On the L^p boundedness of Marcinkiewicz integrals, preprint.

- [7] Duoandikoetxea, J., Rubio de Francia, J. L.: Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84, 541-561, (1986).
- [8] Fan, D., Pan, Y.: Singular integrals with rough kernels supported by subvarieties, Amer. J. Math. 119, 799-839, (1997).
- [9] Kim, W., Wainger, S., Wright, J., Ziesler, S.: Singular integrals and maximal functions associated to surfaces of revolution, Bull. London Math. Soc. 28, 291-296, (1996).
- [10] Ricci, F., Stein, E. M.: Harmonic analysis on nilpotent groups and singular integrals I: Oscillatory integrals, Jour. Func. Anal. 73, 179-194, (1987).
- [11] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.

Received 25.02.2002

Ahmad Al-SALMAN, Hussain Al-QASSEM Department of Math Yarmouk University Irbid-Jordan alsalman@yu.edu.jo husseink@yu.edu.jo