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Flat Marcinkiewicz Integral Operators
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Abstract

In this paper, we study Marcinkiewicz integral operators with rough kernels

supported by surfaces of revolutions. We prove that our operators are bounded

on Lp under certain convexity assumptions on our surfaces and under very weak

conditions on the kernel.
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1. Introduction

Let Sn−1 be the unit sphere in Rn (n ≥ 2) equipped with the normalized Lebesgue

measure dσ and Ω ∈ L1
(
Sn−1

)
be a homogeneous function of degree zero that satisfies∫

Sn−1
Ω(x) dσ(x) = 0. (1.1)

Let Γ : Rn → Rd , d ≥ n+1 be a mapping such that the surface Γ(Rn) is smooth in Rd.

The Marcinkiewicz integral operator µΩ,Γ associated to Γ and Ω is defined by

µΩ,Γf(x) = (
∫ ∞
−∞

∣∣∣∣∣
∫
|y|≤2t

f(x − Γ(y)) |y|−n+1 Ω(y)dy

∣∣∣∣∣
2

2−2tdt)
1
2 . (1.2)

The problem regarding the operator µΩ,Γ is that under what conditions on Γ and Ω,

the operator µΩ,Γ maps Lp(Rd) into Lp(Rd) for some 1 < p <∞. It is well known that if
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d = n + 1, Γ(y) = (y, 0), and Ω ∈ Lipα(Sn−1), (0 < α ≤ 1), E. M. Stein has proved that

µΩ,Γ is bounded on Lp for all 1 < p ≤ 2. Subsequently, A. Benedek, A. Calderón, and R.

Panzone proved the Lp boundedness of µΩ,Γ, Γ(y) = (y, 0), for all 1 < p < ∞ provided

that Ω ∈ C1
(
Sn−1

)
([3]). Recently, there has been a notable progress in obtaining Lp

boundedness results of the operator µΩ,Γ under the assumption that ∂
α

Γ
∂y
α (0) 6= 0 for some

multi-index α = (α1, α2, . . . , αn), where α1, α2, . . . , αn are non negative integers (see [1],

[5], among others). Our main focus in this paper is investigating the Lp boundedness of

µΩ,Γ if ∂
α

Γ
∂yα

(0) = 0 for all multi-indices α, i.e., when Γ has infinite order of contact with its

tangent plane at the origin. In this paper, we shall assume that Γ is a surface of revolution

obtained by rotating a one-dimensional curve around one of the coordinate axes. More

specifically, we let Γ(y) = (y, φ(|y|)), where φ is a real valued function defined on R+.

Here we allow φ to be flat at the origin. In what follows we shall simply denote µΩ,Γ by

µφ. We should point out here that the study of integral operators with kernels supported

by surfaces of revolutions has a long history (see [2], [6], [9], [11], among others).

Our main result in this paper is the following:

Theorem 1.1. Suppose that φ : R+ → R is an increasing convex function. If Ω ∈
L(Log+L)

(
Sn−1

)
and satisfies (1.1), then µφ is bounded on Lp(Rn+1) for 1 < p <∞.

Here, L(Log+L)
(
Sn−1

)
is the space of all L1

(
Sn−1

)
functions Ω that satisfies

∫
Sn−1

|Ω(y′)|Log+(|Ω(y′)|)dσ(y′) <∞.

It is worth pointing out that L(Log+L)
(
Sn−1

)
contains the space Lq(Sn−1) (for any

q > 1) properly and the condition Ω ∈ L(Log+L)
(
Sn−1

)
is known to be the most desirable

size condition for the Lp boundedness of the related Calderón-Zygmund singular integral

operator ([4]).

We shall obtain Theorem 1.1 as a consequence of a more general result in which we

allow our kernels to be rough in the radial direction. To be more specific, for 1 < γ <∞,

let ∆γ be the set of all measurable functions h : R+ → R which satisfy

‖h‖∆γ
= sup

R>0
(R−1

∫ R

0

|h(t)|γ dt)
1
γ <∞ (1.3)
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and let ∆∞ = L∞(R+). For h ∈ ∆γ for some γ > 1, let µφ,h be the operator defined by

(1.2) with Γ(y) = (y, φ(|y|)) and Ω replaced by Ωh. Then we have the following theorem.

Theorem 1.2. Suppose that φ : R+ → R is an increasing convex function and h ∈ ∆γ

for some γ > 1. If Ω ∈ L(Log+L)
(
Sn−1

)
and satisfies (1.1), then µφ,h is bounded on

Lp(Rn+1) for |1/p− 1/2| < min
{

1/2, 1/γ
′
}

.

It is easy to see that if h ∈ ∆γ for some γ ≥ 2, then µφ,h in Theorem 1.2 is bounded

on Lp(Rn+1) for all 1 < p < ∞. Hence, Theorem 1.1 can be deduced from Theorem 1.2

by taking h = 1.

Throughout this paper, the letter C is a positive constant that may vary at each

occurrence but it is independent of the essential variables.

2. Preparation

Suppose that Ω ∈ L1
(
Sn−1

)
is a homogeneous function of degree zero that satisfies

(1.1). For a suitable function φ : R+ → R and a measurable function h : R+ → R,

consider the family of measures {σβ,φ,h : β ∈ R+} defined on Rn+1 by∫
Rn+1

fdσβ,φ,h = β−1

∫
|y|<β

f(y, φ(|y|)) |y|−n+1 Ω(y′)h(|y|)dy. (2.1)

Also, let σ∗
φ,h

be the maximal function defined by

σ∗
φ,h
f(x, xn+1) = sup

β>0
|σβ,φ,h ∗ f(x, xn+1)| . (2.2)

Lemma 2.1. Suppose that h ∈ ∆γ for some γ > 1 and Ω ∈ L2(Sn−1) with ‖Ω‖L1 ≤ 1.

Then for θ = min
{

(3γ
′
)−1, (12)−1

}
, we have

|σ̂β,φ,h(ξ, τ)| ≤ 2 ‖h‖γ ‖Ω‖L2 |βξ|−θ . (2.3)

Proof. Using polar coordinates, Hölder’s inequality, and noticing that |σ̂β,φ,h(ξ, τ)| ≤
‖h‖∆γ

, we get

|σ̂β,φ,h(ξ, τ)| ≤ ‖h‖∆γ
max{‖Ω‖

1− 2
γ
′

L2 (F (β, ξ))
2
γ
′ , F (β, ξ)}, (2.4)
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where

F (β, ξ) = (
∫ 1

0

∣∣∣∣∫
Sn−1

e−iβrξ·y
′
Ω(y′)dσ(y′)

∣∣∣∣2 dr) 1
2 .

Now it is easy to see that

(F (β, ξ))2 ≤
∫

Sn−1

∫
Sn−1

|Ω(z′)| |Ω(y′)|
∣∣∣∣∫ 1

0

e−iβrξ·(y
′−z′)dr

∣∣∣∣dσ(y′)dσ(z′). (2.5)

By combining the estimate
∣∣∣∫ 1

0
e−iβrξ·(y

′−z′)dr
∣∣∣ ≤ |βξ|−1 |ξ′ · (y′ − z′)|−1 with the trivial

estimate
∣∣∣∫ 1

0
e−iβrξ·(y

′−z′)dr
∣∣∣ ≤ 1, we get

∣∣∣∣∫ 1

0

e−iβrξ·(y
′−z′)dr

∣∣∣∣ ≤ |βξ|− 1
6 |ξ′ · (y′ − z′)|−

1
6 . (2.6)

Thus by (2.5), (2.6), and Hölder’s inequality, we have

F (β, ξ) ≤ C ‖Ω‖L2 |βξ|−
1
12 . (2.7)

Hence by (2.4), (2.7), and the trivial estimate |σ̂β,φ,h(ξ, τ)| ≤ ‖h‖γ , we get (2.3).

Now we prove the following result concerning the maximal function σ∗
φ,h

:

Theorem 2.2. Suppose that φ : R+ → R is an increasing convex function. If

‖Ω‖L1(Sn−1) ≤ 1 and ‖Ω‖L2(Sn−1) ≤ 23(w+1) for some w ≥ 0, then for 1 < p < ∞
we have ∥∥∥σ∗

φ,1
f
∥∥∥
p
≤ (w + 1)C ‖f‖p (2.8)

Proof. Without loss of generality we may assume that Ω≥ 0. Let {σ2t,φ,1 : t ∈ R} be a

family of measures defined as in (2.1). Choose θ ∈ S(Rn) such that θ̂(ξ) = 1 for |ξ| ≤ 1
2
,

and θ̂(ξ) = 0 for |ξ| ≥ 1. Let θr(x) = r−nθ(xr ) for r ≥ 0. Define the families of measures

{τt : t ∈ R} and {λt : t ∈ R} on Rn+1 by

τ̂t(ξ, η) = σ̂2t,φ,1(ξ, η)− θ̂2t(ξ)σ̂2t,φ,1(0, η). (2.9)
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By Lemma 2.1 and the estimate ‖τt‖ ≤ C, we have

|τ̂t(ξ, η)| ≤ C23(w+1)
∣∣2tξ∣∣− 1

12 ; (2.10)

from which, when combined with the trivial estimate ‖τt‖ ≤ C, we get

|τ̂t(ξ, η)| ≤ C
∣∣2tξ∣∣− 1

12(w+1) . (2.11)

On the other hand, by the estimate ‖τt‖ ≤ C and noticing that |τ̂t(ξ, η)| ≤ C |2tξ|, we

get

|τ̂t(ξ, η)| ≤ C
∣∣2tξ∣∣ 1

12(w+1) . (2.12)

Let µφ be the maximal function defined on Rn+1 by

µφ(f)(x, xn+1) = sup
t∈R

∣∣∣∣∣2−t
∫ 2t

0

f(x, xn+1 − φ(t))dt

∣∣∣∣∣ .
By the convexity assumption on φ, we have

‖µφ(f)‖p ≤ C ‖f‖p (2.13)

for f ∈ Lp(Rn+1) and 1 < p <∞.

We now choose a collection of C∞ functions {ψw,t}t∈R on (0,∞) such that:

supp(ψw,t) ⊆ [2−(w+1)t−(w+1), 2−(w+1)t+(w+1)], 0 ≤ ψw,t ≤ 1,∣∣∣∣dsψw,tdus
(u)
∣∣∣∣ ≤ C

us
, and

∑
j∈Z

ψw,j+t(u) = 1. (2.14)

Let ϕw,t be such that ϕ̂w,t (ξ) = ψw,t(|ξ)|). For j ∈ Z, define the operators

Jw,j(f)(x) = (
∫ ∞
−∞

∣∣τ(w+1)t ∗ ϕw,j+t ∗ f(x)
∣∣2 dt) 1

2 ; (2.15)

gw,j(f)(x) = (
∫ ∞
−∞
|ϕw,j+t ∗ f(x)|2 dt) 1

2 . (2.16)

By a well known argument (see [11], pages 26-28), it is easy to prove that

‖gw,j(f)‖p ≤ C ‖f‖p (2.17)
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for f ∈ Lp(Rn+1) and 1 < p <∞. Let τ∗ be the maximal function corresponding to the

family {τt : t ∈ R}. Then it is easy to see that

σ∗
φ,1

(f) ≤ 2
√
w + 1

∑
j∈Z

Jw,j(f) + ((MRn ⊗ idR) ◦ µφ(f)); (2.18)

τ∗(f) ≤ 2
√
w + 1

∑
j∈Z

Jw,j(f) + 2((MRn ⊗ idR) ◦ µφ(f)), (2.19)

where MRn is the Hardy Littlewood maximal function defined on Rn.

Now by the trivial estimate ‖τt‖ ≤ C, (2.11)-(2.12), and Plancherel’s theorem, it is

easy to see that

‖Jw,j(f)‖2 ≤ C2−|j| ‖f‖2 (2.20)

for all j ∈ Z and f ∈ L2(Rn+1). Thus, by (2.13), (2.18)-(2.20) and the Lp boundedness

of MRn , we obtain

‖τ∗f‖2 ≤ 2
√
w + 1C ‖f‖2 , (2.21)

holds for f ∈ L2(Rn+1). Now by a similar argument as in the proof of the lemma on

page 544 in ([7]), we have

‖Jw,j(f)‖p0
≤ (w + 1)

1
4C ‖f‖p0

(2.22)

for f ∈ Lp0 (Rn+1) and
∣∣∣ 1
p0
− 1

2

∣∣∣ = 1
2q , with q = 2. Therefore, by (2.19)-(2.20) and (2.22)

we get

‖τ∗f‖p ≤ (w + 1)
1
2 + 1

4C ‖f‖p (2.23)

for f ∈ Lp(Rn+1) and 4
3
< p < 4.

Now repeat the same argument employed in the proof of the inequalities (2.22)-(2.23)

using q = 4
3 + ε (ε→ 0+) this time, we get

‖τ∗f‖p ≤ (w + 1)
1
2 + 1

4 + 1
8C ‖f‖p (2.24)

for f ∈ Lp(Rn+1) and 7
8 < p < 8. By successive application of the above argument, we

get

‖τ∗f‖p ≤ (w + 1)C ‖f‖p (2.25)
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for f ∈ Lp(Rn+1) and 1 < p < ∞. Thus by an argument similar to the one that led to

(2.22), we have

‖Jw,j(f)‖p ≤
√
w + 1C ‖f‖p (2.26)

for f ∈ Lp(Rn+1) and 1 < p <∞. Hence by (2.13), (2.18), (2.20), and (2.26), we obtain

(2.8). This ends the proof of our theorem. 2

Now by an application of Hölder’s inequality, we immediately obtain the following

corollary.

Corollary 2.3. Suppose that φ : R+ → R is an increasing convex function and h ∈ ∆γ

for some γ > 1. If ‖Ω‖L1(Sn−1) ≤ 1 and ‖Ω‖L2(Sn−1) ≤ 23(w+1) for some w ≥ 0, then for

γ
′
< p ≤ ∞ and f ∈ Lp(Rn+1) we have∥∥∥σ∗

φ,h
f
∥∥∥
p
≤ (w + 1)C ‖f‖p . (2.27)

3. Proof of main results

We shall prove Theorem 1.2 as a consequence of the following theorem:

Theorem 3.1. Suppose that φ : R+ → R is an increasing convex function and h ∈ ∆γ

for some γ > 1. If Ω ∈ L1
(
Sn−1

)
is a homogeneous function of degree zero that

satisfies (1.1) with ‖Ω‖L1(Sn−1) ≤ 1 and ‖Ω‖L2(Sn−1) ≤ 23(w+1) for some w ≥ 0, then for

|1/p− 1/2| < min
{

1/2, 1/γ
′
}

and f ∈ Lp(Rn+1) we have

‖µφ,h(f)‖p ≤ C(w + 1) ‖f‖p .

Proof. Since ∆γ ⊆ ∆2 for all γ ≥ 2, we may assume that 1 < γ ≤ 2. Let

{σ2t,φ,h : t ∈ R} be the family of measures defined as in (2.1). Then µφ,h can be written

as

µφ,h(f)(x, xn+1) = (
∫ ∞
−∞
|σ2t,φ,h ∗ f(x, xn+1)|2 dt) 1

2 . (3.1)

Let {ψw,t}t∈R be as in (2.14) and let Jw,j be the operator defined on Rn+1 as in (2.15)

with τ(w+1)t replaced σ2(w+1)t,φ,h. Then it is easy to see that

µφ,h(f)(x, xn+1) ≤
√
w + 1

∑
j∈Z

Jw,j(f)(x, xn+1). (3.2)
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Thus, by Lemma 2.1 and the trivial estimate
∥∥σ2(w+1)t,φ,h

∥∥ ≤ C, we have

∣∣σ̂2(w+1)t,φ,h(ξ, τ)
∣∣ ≤ C23(w+1)

∣∣∣2(w+1)tξ
∣∣∣− 1

3γ′ . (3.3)

On the other hand, by definition of σ2(w+1)t,φ,h and the cancelation property of Ω, we

obtain ∣∣σ̂2(w+1)t,φ,h(ξ, τ)
∣∣ ≤ C ∣∣∣2(w+1)tξ

∣∣∣ . (3.4)

Therefore, by (3.3)-(3.4), we get

∣∣σ̂2(w+1)t,φ,h(ξ, τ)
∣∣ ≤ C min{

∣∣∣2(w+1)tξ
∣∣∣− 1

3γ′ (w+1) ,
∣∣∣2(w+1)tξ

∣∣∣ 1
w+1 }. (3.5)

Now by (3.3), (3.5), and Plancherel’s theorem, we have

‖Jw,j(f)‖2 ≤ 2−|j|C ‖f‖2 (3.6)

for f ∈ L2(Rn+1) and j ∈ Z. By Corollary 2.3 and a similar argument as in the proof of

Theorem 7.5 in ([8]), we have

‖Jw,j(f)‖p ≤
√
w + 1C ‖f‖p (3.7)

for all p satisfying |1/p− 1/2| < 1/γ
′

and f ∈ Lp(Rn+1).

By interpolating between (3.6) and (3.7), we get that

‖Jw,j(f)‖p ≤ 2−θp|j|
√
w + 1C ‖f‖p (3.8)

for all p satisfying |1/p− 1/2| < 1/γ
′
, f ∈ Lp(Rn+1), and for some constant θp > 0

independent of j and w. Hence by (3.2) and (3.8), the proof is complete.

Now we turn to the proof of Theorem 1.2:

Proof of Theorem 1.2. Let φ : R+ → R be an increasing convex function,

Ω ∈ L(log+ L)(Sn−1) with ‖Ω‖L1(Sn−1) = 1, and h ∈ ∆γ for some γ > 1. Since

∆γ ⊆ ∆2 for γ ≥ 2, we may assume that 1 < γ ≤ 2. Now by a similar argument as in

[2], there exist D ⊆ N ∪ {0}, a sequence of functions {bw : w ∈ D} ⊂ L1(Sn−1), and a
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sequence of positive real numbers {Cw : w ∈ D} such that

‖bw‖L2 ≤ C23(w+1), ‖bw‖L1 ≤ 2; (3.9)∑
w∈D

wCw ≤ 1 + ‖Ω‖L(log+ L) ; (3.10)

∫
Sn−1

bw dσ = 0; (3.11)

Ω =
∑
w∈D

Cwbw. (3.12)

For w ∈ D, let µφ,h,w be the operator defined as in (1.6) with Ω replaced by bw.

Therefore, by (3.9)-(3.12) and Theorem 3.1, we obtain that

‖µφ,hf‖p ≤ C{
∑
w∈D

wbw} ‖f‖p ≤ C{1 + ‖Ω‖L(log+ L)} ‖f‖p

holds for all p satisfying |1/p− 1/2| < 1/γ
′

and f ∈ Lp(Rn+1). This ends the proof of

Theorem 1.2.

We would like to thank the referee for some helpful comments.
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