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Abstract

In the current paper, we are concerned with the study of abstract linear evolution
equations in Banach spaces in which the time derivative term is multiplied by a small
parameter, say ε. Such equations arise in the study of radiative transfer and neutron

transport in Nuclear Physics. Following works by Krein (cf [9]) and others, Mika (cf

[12,13,14,15]) using either the Hilbert method or the Compressed method has shown

that the solution of the given singularly perturbed equation may be approximated
upto any prescibed order by a sum of two asymptotic expansions that are the outer
expansion that is valid “far away” from the Initial layer and the Inner expansion
which vanishes out of a certain neighborhood of the Initial layer. Since the terms of
the Inner expansion are usually difficult to calculated, these higher order asymptotic
approximations often remain formal. The main objectives of the current paper are:

- to locate precisely the Initial layer (cf [7,8])

- to show that making use of the concept of corrector as set by Lions (cf [11]) the

outer expansion alone (at the exclusion of the inner expansion) suffices to achieve

an approximation upto any prescribed order of precision.

Moreover, these results are reached under hypotheses that are weaker than those
usually considered in the literature. The asymptotic solutions are worked out either
in the general situation of Banach spaces or in the case of Hilbert spaces.
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1. Introduction

1.1. The Physical Problem

In the study of particle collision phenomena in Nuclear Physics, one may stress on the
particle aspect of the electromagnetic radiation by considering the radiation field to be
composed of a “photon gas”(cf.[1], Section 3.1.3 and [5] chapter 13 and [18]). Doing so,
one is led to describing by a time dependent and frequency dependent unknown function,
say Iν , called the “radiative specific density”. ν stands for the frequency. If one neglects
the refraction, the polarization and the dispersion effects then the neutron transport
equation (or the radiative transfer equation) in the One-speed Transport Theory (or
One-velocity Model Theory) may be written as:

1
c

∂Iν
∂t

+ ~n. ~∇(Iν) = −Rν,a + Rν,e. (1.0a).

In equation (1.0a), the notations have the following meanings.
- c stands for the speed of light;
- ~n represents the unit vector in the direction of the velocity vector;
- Rν,a is the rate of radiant energy absorption per unit phase space volume;
- Rν,e stands for the rate of radiant energy emitted per unit phase space volume.

Equation (1.0a) is the core subject matter of our current attention. Setting 1/c = ε

and Iν = x(t), we turn this equation into the following equation:

ε∂tx(t)− Ax(t) = f(t) (1.0b)

where A is an operator.

1.2. The Mathematical field works

This physical problem correspond in fact at the mathematical study of a singularly
perturbed problem that we introduce as follows. ε is a given small parameter such that
ε << 1. X being a Banach space, we deal with a family of perturbed non-homogeneous
Cauchy problems of evolution equations that presents as follows:

A(t) = A is either a time-dependent or a time-independent linear operator in X with
the domain D(A). We consider a linear operator Lε defined by:

Lεx(t) = ε∂tx(t) − Ax(t) .

We consider a given and fixed element µ ∈ D(A) ⊂ X. These data result in the
following singularly perturbed non-homogeneous Cauchy problem defined for 0 < t < T :
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
Lεx(t) = f(t) t ∈]0, T [

x(0) = µ.

(1.1)

This type of singularly perturbed problems are usually treated in the literature by the
means of the Hilbert method (Matching principle method) and others including those
known to be of the compressed method type. As for the Hilbert method, Krein (cf.
[9]) and other authors have established that the solution of the considered singularly
perturbed problem may be approached by the sum of three asymptotic expansions. Larsen
and Keller also (cf. [10]) established the same kind of result using a sum of four asymptotic
expansions about the Boltzmann equation in the case of small mean free paths. Mika has
shown (cf. [12,13,14,15]) that such an approximation could be achieved at any prescribed
order with the sum of only two asymptotic expansions that are the outer expansion and
the Inner expansion. Lions (cf. [11]) introduced a concept of corrector to construct an
asymptotic approximation to the solution of a given perturbed problem. Unfortunately,
the correctors as proposed in this work is reluctant to perform approximations that are
better than order one in ε. Even though this basic idea governs the current work for
which we drop off the boundary layer based correctors to define a family of some more
general correctors.

1.3. The advances of the Current paper

When performing a classical asymptotic analysis of a singularly perturbed problem, one
may face some difficulties among which are the following:

- the geometric domain of the Inner layer and that of the Outer expansion intersect;
- the equations defining the terms of the inner expansion may be very complicated

so that it could be cumbersome to compute those terms that are beyond the first order
term.

With regard to these difficulties, the current paper
- realizes a precise localization of the inner Layer (cf. [4,5]) and
- constructs an approximation solution of any prescribed order by making use of the

outer expansion alone at the exclusion of any use of the inner expansion.
The technique we are using starts from the regular outer expansion and develops

through an iterated use of the classical Matching Principle or Hilbert method until
we reach, at the second step of that iteration, a convenient corrector which is used to
construct an approximation of any arbitrary and prescribed order.
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2. Functional space setting

Consider the Banach space X equipped with the norm ‖·‖X . C0 ([0, T [, X) denotes
the space of (classes of) functions t → u(t) (u(t) ∈ X) that are continuous in the variable

t; C1 (]0, T [, X) denote the space of (classes of) functions t → u(t) that are continuously

differentiable in the variable t and C2 (]0, T [, X) stands for the classe of functions t → u(t)
that are twofold differientiable and that together with their derivatives upto order two
are continuous.

Lp ([0, T ], X) for p ∈ N; 1 ≤ p < +∞ stands for the classe of functions t → u(t)
such that u(t) is mesurable, and

∫ T

0

‖u(t)‖pXdt < +∞ .

L(X) stands for the space of the Linear Contineous operators on X which is equipped
with the norm ‖·‖L(X). We start with recalling some well-known results we need of for

the sequel of our study.
For more on the Cauchy Problem of evolution equations and the semigroup theory,

the interested reader may consult, for instance, [2-4,16].We will restrict ourself to recall
some results that are important for the current study.

Lemma 2.1 For any C0-semigroup (G(t))t≥0 there exist constants M and ω such that:

‖G(t)‖L(X) ≤ Meωt t ∈ [0, +∞[ (2.1)

If ω = 0 the semigroup (G(t))t≥0 is said to be uniformly bounded ;

if ω < 0 the semigroup (G(t))t≥0 is said to be of negative type.

•

Theorem 2.1 If (G(t))t≥0 is a strongly continuous semigroup, then D(A) is dense in

X, A is closed, and for all x0 ∈ D(A) we have G(t)x0 ∈ D(A) for t ≥ 0.
Moreover, the function t → G(t)x0 is differentiable for t ≥ 0 and it satisfies on the
interval ]0, +∞[ the equation:

∂tG(t)x0 = AG(t)x0. (2.2)
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•
We make now the point on the existence and the representation of the solution of Problem
(1.1).

Theorem 2.2 If x is the classical solution to equation (1.1) and f ∈ L1 ([0, T ], X) then
x is given by the representation:

x(t) = G(t)x(0) +
∫ t

0

G(t− s)f(s)ds 0 ≤ t ≤ T. (2.3)

• In the sequel, especially to localize the Initial layer, we will need to use a concept of
threshold of acceptance, we following definition.

Definition 2.1 Consider a non-zero real number η such that η << ε. η will be a
threshold of acceptance if
For x ∈ R; if |x| ≤ η, then we set x = 0.
•
After these prelimaries, now, we may consider the asymptotic analysis of our given
perturbed problems.

3. The Asymptotic Analysis in Banach Spaces

We set the basic hypothesis (H.1) of this section as follows:
(i) A generates a semigroup (GA(t))t≥0 = (G(t))t≥0 (H.1.a)

(ii) (G(t))t≥0 is strongly continuous of negative type (H.1.b)

• We come back to equation (1.1) from which we derive a family of equations depending

on a parameter a ; a ∈ R− that we define as follows:


ε∂tx(t) − ax(t) = f(t) t ∈ ]0, T [

x(0) = µ

a ∈ R− µ ∈ R.

(3.1)

We now make the following definition.

Definition 3.1 If we set a = −1, into (3.1), we get an equation we call the non-
homogeneous Shadow-equation to (1.1), or simply the Shadow equation, if there is no risk
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of confusion. Obviously, the homogeneous Shadow-equation is that one into which we set
f(t) ≡ 0.
•
The solution of the homogeneous Shadow equation to (3.1) is use(t) such that


use(t) = us(t).µ

us(t) = exp (−t/ε) 0 ≤ t ≤ T.

(3.2)

3.1. Corrector and Inner Layer

We consider now the q-th outer asymptotic expansion to x = x(t) solution of problem
(1.1) to be constructed by the means of the Hilbert method, say x(t). It may be written
as

x(t) =
q∑
i=0

εixi(t). (3.3)

We now state the following theorem.

Theorem 3.1 Set W (t) = x(t) − x(t).
The following assertions hold true:



(i) Lεx(t) = f(t) + εq+1∂txq(t);

(ii) LεW (t) = εq+1∂txq(t);

(iii) W (0) =
q∑
i=0

εixi(0) − µ.

•
Proof. The coefficient functions xi(t) 0 ≤ i ≤ q are determined in replacing the
function x(t) with the expression of x into equation (1.1). Equating the terms of same
power in ε, we get:
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

Ax0(t) = −f(t)

Ax1(t) = (∂tx0(t))

Ax2(t) = (∂tx1(t))

· · ·
· · ·
· · ·

Axq(t) = (∂txq−1(t))

(3.4)

which may be rewritten as:



x0(t) = −A−1f(t)

x1(t) = A−1 (∂tx0(t))

x2(t) = A−1 (∂tx1(t))

· · ·
· · ·
· · ·

xq(t) = A−1 (∂txq−1(t))

(3.5)

From equation (3.5), we draw straightaway that
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

Lεx0(t) = ε∂tx0(t) + f(t)

εLεx1(t) = ε2∂tx1(t) − ε∂tx0(t)

· · ·
· · ·
· · ·

εq−1Lεxq−1(t) = εq∂txq−1(t) − εq−1∂txq−2(t)

εqLεxq(t) = εq+1∂txq(t) − εq∂txq−1(t).

(3.6)

We add up all terms on the same side of (3.6) line equations to get

Lεx(t) =
q∑
i=0

εiLεxi(t) = f(t) + εq+1∂txq(t),

that is (i).
Next consider LεW (t). We have:

LεW (t) = Lεx(t) − Lεx(t) = f(t) + εq+1∂txq(t) − f(t) = εq+1∂txq(t),t
that is (ii).
Statement (iii) of Theorem 3.1 is obvious.
• Now, we introduce the notions of Corrector and Strong Stable Asymptotic solution. 2

Definition 3.2 A regular function θ(t) is said to be a q-th order Corrector to Problem
(1.1) if

Y (t) = x(t) − (x(t) − θ(t))

satisfies Y (0) = 0.
•

Definition 3.3 We say that a regular function Yas(t) (Yas(t) ∈ X) is a q-th Strong
Stable asymptotic solution to x(t) solution of (1.1) if
(i) Yas(t) is a Corrector to x(t)
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(ii) ‖x(t)− Yas(t)‖X ≤ Cεq+1 where C is a constant independent of ε.

•

Lemma 3.1 We claim that the regular function θs such that:

θst = us(t) · (µ− x(0)) (3.7)

is a Corrector to x(t) solution of (1.1).

•
Proof. Consider the function Ys(t) such that:

Ys(t) = x(t)− (x(t) − θs(t))

according to Definition 3.2, and since Ys(0) is obviously equal to zero, Ys(t) is a Corrector
to x(t).
•
us(t) is an exponentially decaying function in t so the thin neighborhood of t = 0 into
which its values are not negligible is set to be the Inner Layer. More precisely, with regard
to the threshold of acceptance η (cf. Definition 2.4) we state the following definition. 2

Definition 3.4 The Inner Layer, say Ωε, is defined by

Ωε = {t ∈ [0, T ] ; us(t) > η}

that is
Ωε =

{
t ∈ [0, T ] ; t < ε ·Log

(
η−1

) }
.

•

3.2. Construction of the Asymptotic Solution

Our aim now is to construct a q-th Strong Stable asymptotic solution to (1.1). We start
from the q-th outer expansion x(t). Consider W (t) = x(t) − x(t). We consider also an
auxiliary asymptotic expansion Z(t) having the following expression:

Z(t) =
q∑
i=0

εiλizi,
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where the coefficient constants λi ; 0 ≤ i ≤ q and the coefficient functions zi ; 0 ≤ i ≤
q are to be determined.
Assume that the functions zi are constant in the variable t that is: zi(t) = zi 0 ≤ i ≤ q

and set U(t) = W (t) − Z(t). We have:



Lεzi = −Azi

LεU(t) = LεW (t) − LεZ(t) = LεW (t) −A

q∑
i=0

εiλizi

U(0) = W (0)− Z(0) = x0(0) − λ0z0 − µ +
q∑
i=1

εi(xi(0) − λizi),

so that the function U(t) is completely determined by



LεU(t) = εq+1∂txq(t) − A

q∑
i=0

εiλizi

U(0) = x0(0) − λ0z0 − µ +
q∑
i=1

εi(xi(0) − λizi) .

(3.8)

Consider now the outer expansion to U(t) say V (t) with:

V (t) =
q+1∑
i=0

εivi(t).

We have

LεV =
q+1∑
i=0

εiLε(vi) .

Since
Lε(vi) = ε∂tvi − Avi,

then

LεV =
q+1∑
i=0

εi
(
εi+1∂tvi − εiAvi

)
.
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We identify the coefficient functions vi from the equality

LεV = LεU

in equating the terms of like powers in the parameter ε. With regard to equation (3.8)
giving the expression of LεU , we get



−Av0(t) = −Aλ0z0

−Av1(t) = −Aλ1z1 − ∂tv0

−Av2(t) = −Aλ2z2 − ∂tv1

· · ·
· · ·
· · ·

−Avq(t) = −Aλqzq − ∂tvq−1

−Avq+1(t) = (∂txq(t)) .

So remembering that ∂tzi = 0, we draw that


vi(t) = λizi 0 ≤ i ≤ q

vq+1(t) = −A−1∂txq(t).
(3.9)

Set S(t) = U(t) − V (t). Since V is a qth order outer expansion to U , from Theorem
(3.1), we deduce that:

LεS(t) = εq+2∂tvq+1 = εq+2∂2
t xq(t). (3.10)

From equation (3.9) and the expression of Z(t), we draw that

V (t) = Z(t) − εq+1A−1∂txq(t),

which implies that
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
S(t) = W (t)− 2Z(t) + εq+1A−1∂txq(t) =

x(t) − x(t)− 2Z(t) + εq+1A−1∂txq(t)
(3.11)

and

S(0) = x0(0)− 2λ0z0 − µ +
q∑
i=1

εi(xi(0)− 2λizi) + εq+1A−1∂txq(0). (3.12)

We set the following assignments:



λi = 1 0 ≤ i ≤ q

z0 = (x0(0)− µ) /2

zi = (xi(0)) /2 0 ≤ i ≤ q,

(3.13)

which cause that in Equation (3.12) S(0) turns to be

S(0) = εq+1A−1∂txq(0). (3.14)

Finally, putting together Equations (3.10) and (3.14), we get that S is solution to the
following Cauchy Problem


LεS(t) = εq+2∂2

t xq(t)

S(0) = εq+1A−1∂txq(0).
(3.15)

It is clear that the function Z(t) =
q∑
i=0

εiλizi is completely determined by Equation

(3.13). We make the following statement that is the core result of the current paper.
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Theorem 3.2 Assume that the coefficient function xq(t) is such that: t → xq(t) ∈
C2 (]0, T [, X). Assume that hypothesis (H.1) holds true. Set

Yas(t) = x(t) − 2Z(t) − εq+1A−1∂txq(0) .

Then the regular function Yas(t) defines a q-th order Strong Stable asymptotic approx-
imation solution to x(t) solution of (1.1). More precisely, we have



x(t) =
(
x(t) − 2Z(t) − εq+1k

)
+ O

(
εq+1

)
x(t) =

q∑
i=0

εixi(t)

Z(t) =
q∑
i=0

εiλizi

k = A−1∂txq(0),

(3.16)

where C is a constant independent of ε. In other words, we have:

x(t) = x(t)− 2Z(t)− εq+1k +O
(
εq+1

)
. (3.17)

•
Proof. Related to equation (3.15), the representation form given in equation (2.3) of

Theorem 2.2-where the second member (the forcing term) is fε(s) = εq+2∂2
sxq(s)-turns

to be



Gε
A(t) = G(t/ε)

S(t) = Gε
A(t)S(0) +

∫ t
0 Gε

A(t− s)fε(s)ds 0 ≤ t ≤ T

S(0) = εq+1A−1∂txq(0)

fε(s) = εq+2∂2
sxq(s).

(3.18)
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Since the basic hypothesis (H.1) says that the semigroup (G(t))t≥0 is strongly con-

tinuous and is of negative type, we can write



‖Gε
A(t)‖L(X) ≤ M. exp (tω/ε) ≤ M

‖GA(t)S(0)‖X ≤ ‖GA(t)‖L(X)‖S(0)‖X ≤

≤ M · ‖S(0)‖X ≤ M · εq+1 · ‖A−1∂t · xq(0)‖X ≤

≤ C1 · εq+1 ,

(3.19)

where M and C1 denote constants that are independent of ε. Same way, it is easy to see
that



‖f(s)‖X ≤ C2 · εq+2

‖Gε
A(t− s)f(s)‖X ≤ ‖Gε

A‖L(X) · ‖f(s)‖X ≤

≤ C3 · εq+2,

(3.20)

where C2 and C3 are two constants that are independent of ε. Together, inequalities
(3.19) and (3.20) show that S(t) as expressed by equation (3.18) is bounded in X, and
precisely we have

‖S(t)‖X ≤ C.εq+1. (3.21)

We know from equation (3.11) that

S(t) = U(t) − V (t) = x(t)− x(t)− 2Z(t) + εq+1A−1∂txq(t),

where x(t) is a q-th order outer expansion to x(t). This means that :

Yas(t) = x(t) − 2Z(t) − εq+1A−1∂txq(0)

is a q-th order Strong Stable approximation to x(t); that is, the first part of Theorem
3.2. 2
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Equation (3.16) is an expression that is just equivalent to inequality (3.21). This ends
the proof of Theorem 3.2.
•

We may note:

Remark 3.1 In addition to obtaining the approximation of any prescribed order q, Yas
in using only the Outer expansion, we note that we do not impose the second member
f(t) to be of class Cq+1 as it is usually done in the literature.

•

4. The Asymptotic Analysis in Hilbert Spaces

Sometimes, the study of particle flux problems call on naturally the use of Hilbert
Spaces. Let us remind the Hilbert spaces we are using in the sequel.
L1(Ω) stands for the Lebesgue space of absolute integrable functions over Ω, and L2(Ω)
is the Lebesgue Space of Square Integrable functions defined on Ω. The norms over these
classical Lebesgue function spaces are set to be respectively

| f |1 =
∫

Ω

|f(x) |dx and | f |2 =
(∫

Ω

|f(x)|2dx
) 1

2

.

We assume that the norm on L2(Ω) derives from the classical scalar product on

L2(Ω), denoted (·, ·). Consider X as an Hilbert Sub-space of L2(Ω) equipped with the
derived scalar product and the derived norm ‖·‖X . W ([0, T [, X) denotes the sub-space

of C1 (]0, T [, X) equipped with the norm ‖ · ‖W defined by

‖ v ‖W = Max

[∫ T

0

| v |2dt,

∫ T

0

| d

dt
v |2 dt].

We consider the following basic hypothesis:

-A is a positive definite and coercive Hermitian operator. (H.2)

In other terms, we have
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

(−Af, g) = (f,−Ag)

(−Af, f) ≥ 0

c| f |2 ≤ (−Af, f)

(H.2bis).

From now on and through out the current section, we assume that this hypothesis
(H.1) holds true. We will make use of a result from the Theory of Spectral Analysis
which may be put as in the following theorem (cf. [5]).

Theorem 4.1 If A is a positive definite Hermitian operator then A posseses eigenvalues.
These eigenvalues are real positives numbers and eigenfunctions associated to two different
eigenvalues are orthogonal.

•
We come back to x(t, u) the outer expansion to x(t, u), where u stands for the space

variable. For convenience, this time we set

W (t, u) = x(t, u)− x(t, u).

From Thorem 3.1, we know that W (t, u) satisfies


LεW (t, u) = −εq+1∂txq(t, u)

W (0, u) = µ(u) −
q∑
i=0

εixi(0, u).
(4.22)

We new state the following lemma.

Lemma 4.1 There exists a function say Y (t, u) such that :


LεY (t, u) = 0

Y (0, u) = −µ(u) +
q∑
i=0

εixi(0, u)
(4.23)
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•

Proof of Lemma 4.1
Let us set Y (t, u) in the form of variable separated function such that

Y (t, u) = T (t) ·Q(u).

Then we have
LεY (t, u) = ε ·Q(u) · ∂tT (t) − T (t)AQ(u) = 0.

Using the classical Method of separated variables, we find that there exists a constant
say λ such that:


ε · ∂tT (t) = λ · T (t)

AQ(u) = λ ·Q(u).

This means that λ is an eigenvalue to the Positive definite Hermitian operator A. From
Theorem 4.1 we know that such a constant λ exists as an eigenvalue of A. Then for any
given eigenvalue λ of A, we set

T (t) = k(u) · exp(−λt)

where k(u) is constant in the variable t and we set Q(x) to be the eigenfunction associated
with the selected eigenvalue λ. Eventually, we get:

Y (t, u) = Q(u) · k(u) · exp(−λt)

where, by definition LεY = 0 and Y (0, u) = Q(u)k(u) = µ(u) −
q∑
i=0

εixi(0, u). For u

such that Q(u) 6= 0 we determine the values of k(u).
Q.E.D.
• From this the following results.

Theorem 4.2 The function −Y (t, u) is a (q + 1)-th corrector to x(t, u) and x(t, u) −
Y (t, u) is a (q + 1)-th order approximation solution to x(t, u). More precisely, we have

‖ (W (t, u) + Y (t, u)) ‖W ≤ C · εq ,

where C is a constant independent of ε.
•
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Proof. From equations above, we draw that


Lε(W (t, u) + Y (t, u)) = −εq+1∂txq(t, u)

W (0, u) + Y (t, 0) = 0,

(4.24)

and

ε(
d(W + Y )

dt
, W + Y ) + (−A(W + Y ), W + Y ) = (f, W + Y ),

where

f(t, u) = −εq+1∂txq(t, u).

Noting that

(
d(W + Y )

dt
, W + Y ) = (1/2)

d

dt
|W + Y |22,

and assuming that the coercivity coefficient of the operator −A is greater than ε, we get

(1/2)ε

(∫ T

0

d

dt
|W + Y |22dt +

∫ T

0

|W + Y |22dt ≤ C.

∫ T

0

ε(q+1)|W + Y |2dt,

that is, by definition of the norm on W ([0, T [, X),

ε‖W + Y ‖2W ≤ C.ε(q+1).‖W + Y ‖W. (4.25)

And equation (4.4) implies that

‖W + Y ‖W ≤ C · εq,

where C stands for various constants that are independent of ε. 2

•
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[8] Konaté D.; Uniformly convergent schemes for singularly perturbed differential equations

based on Collocation Methods; International Journal of Mathematics and Mathematical

Sciences; 24, (5), (2000), 305-317.

[9] Krein S.G.; linear differential equations in Banach spaces; American Mathematical Society;

Providence; (1971).

[10] Larsen E.W.; Keller J.B; Asymptotic solution of neutron transport problems for small mean

free paths; Journal of Mathematical Physics; 15 (1); (1974), 75-81.

[11] Lions J.L.; Perturbations Singuliéres dans les Problémes aux limites et en Contrôle Optimal;
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