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Property, and G-Cogalois Extensions
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Abstract

We present a short proof, based on Cogalois Theory, of a result due to Acosta de

Orozco and Vélez (1982, J. Number Theory 15, 388-405) characterizing separable

simple radical field extensions with the unique subfield property, and prove that
these extensions are precisely the simple G–Cogalois extensions with a cyclic Kneser
group.

Key words and phrases: Field extension, separable extension, simple extension,
radical extension, G–Cogalois extension, unique subfield property, classical Kummer
extension.

Introduction

The aim of this paper is to investigate via Cogalois Theory field extensions with the
unique subfield property considered by Vélez [10], [11] and by Acosta de Orozco and Vélez
[1]. We present in this framework an alternative proof of the Acosta de Orozco–Vélez
Criterion [1] characterizing separable simple radical extensions with the unique subfield
property. We show that a separable simple radical extension has the unique subfield
property if and only if it is G–Cogalois with cyclic Kneser group. Using this fact, we
retrieve immediately a result of Vélez [10].
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0. Preliminaries

Throughout this paper F denotes a fixed field with characteristic exponent e(F ) and
Ω a fixed algebraic closure of F . Any algebraic extension of F is supposed to be a subfield
of Ω.

For an arbitrary nonempty subset S of Ω and a natural number n ≥ 1 we shall use
the following notation:

S∗ := S \ {0},
Sn := { xn | x ∈ S },
µn(S) := { x ∈ S | xn = 1 }.

We denote by N the set {0, 1, 2, . . .} of all natural numbers, by N∗ the set N�{0}
of all strictly positive natural numbers, by Dn the set of all positive divisors of a given
natural number n, by Z the ring of all rational integers, by Zn the ring of all rational
integers modulo a positive integer n, and by Q the field of all rational numbers. If
m, n ∈ N, then gcd(m, n) will denote the greatest common divisor of m and n. For any
set M we denote by |M | the cardinal number of M .

If x ∈ Ω∗, then x̂ will denote throughout this paper the coset xF ∗ of x in the quotient
group Ω∗/F ∗. By a primitive n–th root of unity we mean any generator of the cyclic
group µn(Ω), and ζn will always denote such an element.

For an arbitrary multiplicative group G with identity element e, the notation H 6 G
means that H is a subgroup of G. The lattice of all subgroups of G will be denoted by
Subgroups(G). For any subset M of G, 〈M〉 will denote the subgroup of G generated

by M . If G is a finite group, then the exponent exp(G) of G is the least n ∈ N∗ such
that Gn = {e}. The order of an element g ∈ G will be denoted by ord(g).

For a field extension F ⊆ E we shall use the notation E/F , and we shall denote
by [E : F ] the degree of E/F . Very often, instead of ”field extension” we shall use the
shorter term ”extension”. For an extension E/F , the lattice of all intermediate fields K
of E/F will be denoted by Intermediate(E/F ).

We shall also use the following notation:

T (E/F ) := { x ∈ E∗ | xn ∈ F ∗ for some n ∈ N∗ }.

The quotient group T (E/F )/F ∗ is called in [8] the Cogalois group of the extension E/F

and is denoted by Cog(E/F ).

As in [5], a field extension E/F is said to be a radical extension if there exists a subset
A ⊆ T (E/F ) such that E = F (A), or equivalently, if E = F (T (E/F )). A simple radical
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extension is an extension E/F such that there exists an a ∈ T (E/F ) with E = F (a). A
field extension E/F is said to be G–radical if F ∗ ≤ G ≤ T (E/F ) and E = F (G).

A basic concept in Cogalois Theory [3] is that of Kneser extension, which has been
introduced in [5] as follows: a finite field extension E/F is said to be G–Kneser if it is a
G–radical extension and |G/F ∗| = [E : F ]. The extension E/F is called Kneser if it is
G–Kneser for some group G. A finite G–radical field extension E/F is said to be strongly
G–Kneser if the extension K/F is K∗∩G–Kneser for every intermediate field K of E/F .

The class of finite Kneser extensions includes the class of Cogalois extensions defined
in [8]: a finite extension E/F is said to be a Cogalois if it is T (E/F )–Kneser, that is,
if it is radical and |Cog(E/F )| = [E : F ]. As in [5], a finite field extension is said to
be G–Cogalois if it is a separable strongly G–Kneser extension. For any G–Cogalois
extension E/F , the group G/F ∗ is uniquely determined; it is called the Kneser group of
E/F and denoted by Kne(E/F ).

For any n ∈ N∗ we denote by Pn the set of all divisors p of n, with p > 3 a prime
number or p = 4. As in [8] (resp. [5]) a field extension E/F is said to be pure (resp.
n–pure, where n ∈ N∗) if µp(E) ⊆ F for all p, p odd prime or 4 (resp. for all p ∈ Pn).
For all other undefined terms and notation concerning Field Theory the reader is referred
to [7] or [9].

For an arbitrary G–radical extension E/F one defines the standard Cogalois connec-
tion (see [5])

E G-�
ϕ

ψ

between the lattices

E = Intermediate(E/F ) = { K | F ⊆ K, K subfield of E },

G = { H | F ∗ 6 H 6 G }
as follows:

ϕ : E −→ G, ϕ(K) = K ∩G,

ψ : G −→ E , ψ(H) = F (H).

Observe that G is canonically isomorphic to the lattice Subgroups(G/F ∗) of all sub-

groups of the group G/F ∗.
For the reader’s convenience we state below a basic result in Cogalois Theory which

will be frequently used throughout this paper.
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Theorem 0.1 (Albu and Nicolae [5, Theorem 3.7]). The following assertions are equiva-
lent for a finite separable G–radical extension E/F with G/F ∗ finite and n = exp(G/F ∗).

(1) E/F is G–Cogalois.

(2) E/F is G–Kneser, and the map ψ : G −→ E , ψ(H) = F (H) is surjective.

(3) E/F is G–Kneser, and the maps − ∩ G : E −→ G, F (−) : G −→ E are
isomorphisms of lattices, inverse to one another.

(4) E/F is n–pure. �

1. G-Cogalois extensions having the USP

In this section we characterize G–Cogalois extensions having the unique subfield
property.

Definition 1.1 (Vélez [10]). A finite extension E/F is said to have the unique subfield
property, abbreviated USP, if for every divisor m of [E : F ] there exists a unique
intermediate field K of E/F such that [K : F ] = m.

Clearly, a finite extension E/F of degree n has the USP if and only if the canonical
map

Intermediate(E/F ) −→ Dn, K 7→ [K : F ],

is a lattice isomorphism.

Lemma 1.2 For any irreducible binomial Xn − a ∈ F [X] and any of its roots u ∈ Ω,
the extension F (u)/F is F ∗〈u〉–Kneser and n = ord(û) = |F ∗〈u〉/F ∗|.
Proof. Set E = F (u), G = F ∗〈u〉, and k = exp(G/F ∗). Clearly, the extension E/F is

G–radical, k = ord(û) = |G/F ∗|, k |n, and [E : F ] = n. We have uk = b ∈ F , hence
n = [F (u) : F ] 6 k. This implies that n = k, i.e.,

[E : F ] = |G/F ∗|,

which shows that E/F is a G–Kneser extension. 2

For any finite group A of order n we consider the canonical map

ωA : Subgroups(A) −→ Dn, B 7→ |B|.
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The next result is certainly known (see e.g., Albu and Ion [4]).

Lemma 1.3 The following assertions are equivalent for a finite group A of order n.

(1) A is a cyclic group.

(2) The map ωA is injective.

(3) The map ωA is bijective.

(4) The map ωA is a lattice isomorphism. �

Proposition 1.4 The following assertions are equivalent for a finite G–
Cogalois extension E/F of degree n.

(1) E/F has the USP.

(2) The Kneser group G/F ∗ of E/F is cyclic.

(3) G/F ∗ ∼= Zn.

Proof. (1) =⇒ (2): Since the extension E/F is G–Cogalois, the map

Subgroups(G/F ∗) −→ Intermediate(E/F ), H/F ∗ 7→ F (H),

is a lattice isomorphism by Theorem 0.1.
If the extension E/F has the USP, the map

Intermediate(E/F ) −→ Dn, K 7→ [K : F ],

is a lattice isomorphism.
Observe that for any H/F ∗ ∈ Subgroups(G/F ∗), the extension F (H)/F is H–Kneser

by [5, Lemma 3.1], hence [F (H) : F ] = |H/F ∗|. Consequently, the composition of the
two lattice isomorphisms above yields precisely the lattice isomorphism

ωG/F∗ : Subgroups(G/F ∗) −→ Dn, H/F ∗ 7→ |H/F ∗|.

Now, apply Lemma 1.3 to conclude that G/F ∗ is a cyclic group of order n.
(2) =⇒ (3): Since the extension E/F is in particular G–Kneser, we have

n = [E : F ] = |G/F ∗|,
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hence the cyclic group G/F ∗ is necessarily isomorphic to the additive group Zn of
integers modulo n.

(3) =⇒ (1): By Lemma 1.3, the map

ωG/F∗ : Subgroups(G/F ∗) −→ Dn, H/F ∗ 7→ |H/F ∗|,

is a lattice isomorphism. If we compose it with the lattice isomorphism

Intermediate(E/F ) −→ Subgroups(G/F ∗), K 7→ (K ∩G)/F ∗,

given by Theorem 0.1, we obtain the lattice isomorphism

Intermediate(E/F ) −→ Dn, K 7→ |(K ∩G)/F ∗|.

Since the extension E/F is G–Cogalois, we have

F (K ∩G) = K and |(K ∩G)/F ∗| = [F (K ∩G) : F ],

hence the composed lattice isomorphism considered above is precisely the map

Intermediate(E/F ) −→ Dn, K 7→ [K : F ].

This proves that the extension E/F has the USP. 2

Corollary 1.5 The following assertions are equivalent for a finite Cogalois extension
E/F of degree n.

(1) E/F has the USP.

(2) The Cogalois group Cog(E/F ) of E/F is cyclic.

(3) Cog(E/F ) ∼= Zn.

Proof. By [5, 5B], the Cogalois extension E/F is T (E/F )–Cogalois, and then we have
Kne(E/F ) = T (E/F )/F ∗ = Cog(E/F ). Now apply Proposition 1.4. 2

438



ALBU

2. The Acosta de Orozco - Vélez Criterion via Cogalois Theory

In this section we present an alternative proof of a result due to Acosta de Orozco
and Vélez [1] characterizing separable simple radical extensions with the USP, based on
simple facts from Cogalois Theory.

Theorem 2.1 (Acosta de Orozco and Vélez [1, Theorem 2.1]). Let u ∈ Ω be a root of
an irreducible binomial Xn − a ∈ F [X], with gcd(n, e(F )) = 1. The extension F (u)/F
has the USP if and only if the following two conditions are satisfied.

(1) ζp 6∈ F (u) \ F for every odd prime divisor p of n.

(2) If 4 |n, then ζ4 6∈ F (u) \ F .

Proof. Set E = F (u) and G = F ∗〈u〉. By Lemma 1.2, E/F is a G–Kneser extension,
and by [5, Lemma 4.1], the extension E/F is separable.

(1) =⇒ (2): Let m ∈ Dn. Consider the tower of fields

F ⊆ F (un/m) ⊆ F (u).

Since un/m is a root of the polynomial Xm−a ∈ F [X], we have [F (un/m) : F ] 6 m. A

similar argument shows that we also have [F (u) : F (un/m) ] 6 n/m. On the other hand,
by the Tower Law, we have

[F (u) : F ] = [F (u) : F (un/m) ] · [F (un/m) : F ],

which implies that

[F (un/m) : F ] = m

for any m ∈ Dn.

Let K ∈ E . If m = [K : F ], then m |n, and [F (un/m) : F ] = m. Since E/F has the

USP, we must have K = F (un/m). Observe that K = F (H), where H = F ∗〈un/m〉 ∈ G,
which implies that the map ψ : G −→ E , ψ(H) = F (H) is surjective. By Theorem 0.1,
we deduce that the G–Kneser extension E/F is actually a G–Cogalois extension, so it is
n–pure. Now observe that conditions (1) and (2) mean precisely that the extension E/F

is n–pure.
(2) =⇒ (1): As we have already noticed, conditions (1) and (2) say that the extension

E/F is n–pure. By Theorem 0.1, E/F is a G–Cogalois extension and the map

Intermediate(E/F ) −→ Subgroups(G/F ∗), K 7→ (K ∩G)/F ∗
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yields a lattice isomorphism. Since G/F ∗ is a cyclic group of order n, the map

ωG/F∗ : Subgroups(G/F ∗) −→ Dn, H/F ∗ 7→ |H/F ∗|

is a lattice isomorphism by Lemma 1.3. Now continue as in the proof of Proposition 1.4
to conclude that E/F has the USP. 2

3. Simple radical separable extensions having the USP

In this section we investigate simple radical separable extensions having the USP.

Theorem 3.1 Let u ∈ Ω be a root of an irreducible binomial Xn − a ∈ F [X], with
gcd(n, e(F )) = 1. The following assertions are equivalent.

(1) The extension F (u)/F has the USP.

(2) The extension F (u)/F is n–pure.

(3) The extension F (u)/F is F ∗〈u〉–Cogalois.

(4) The extension F (u)/F is G–Cogalois for some group G, and G/F ∗ is a cyclic
group.

Proof. Set E = F (u) and H = F ∗〈u〉. By Lemma 1.2 we have exp(H/F ∗) = n. We
have noticed in the proof of Theorem 2.1 that conditions (1) and (2) of Theorem 2.1
mean exactly that E/F is n–pure. So, (1)⇐⇒ (2) by Theorem 2.1, and (2)⇐⇒ (3) by
Theorem 0.1.

The implication (3) =⇒ (4) is obvious, while the implication (4) =⇒ (1) follows from
Proposition 1.4. 2

Remark 3.2 The condition “G/F ∗ is a cyclic group” in Theorem 3.1 (4) is essential,

as the following example shows: Let F = Q, and let u =
√

2 (1 + i) ∈ C. Observe

that u is a root of the irreducible polynomial X4 + 16 ∈ Q[X]. Since u2 = 4i, it

follows that F (u) = Q(i,
√

2 ). Thus, F (u)/F is a classical 2–Kummer extension, so

it is Q∗〈 i,
√

2 〉–Cogalois, but clearly F (u)/F does not have the USP. Observe that

Kne(F (u)/F ) = Q∗〈 i,
√

2 〉/Q∗ ∼= Z2 × Z2 is a noncyclic group of order 4. �
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The next result shows that, in certain circumstances, the condition “G/F ∗ is a cyclic
group” in point (4) of Theorem 3.1 is superfluous.

Proposition 3.3 Let u ∈ Ω be a root of an irreducible binomial Xn − a ∈ F [X]. If
n 6≡ 0 (mod 4) and gcd(n, e(F )) = 1, then the following statements are equivalent.

(1) The extension F (u)/F has the USP.

(2) The extension F (u)/F is F ∗〈u〉–Cogalois.

(3) The extension F (u)/F is G–Cogalois for some group G.

Proof. The proof below is a modified version of a part of the referee’s proof for a
question raised by the author in the first submitted version of this paper.

Set E = F (u). In view of Theorem 3.1, it is sufficient to prove only that G/F ∗ is
cyclic if E/F is G-Cogalois. Of course we may assume that n > 2.

First, we reduce the setup to n a power of a prime number. Let q be a prime divisor

of n, and let n = mqk, with m prime to q and k > 1. Set v = um. One easily checks

that E′ = E(v) has degree qk over F , and Xqk − vqk is an irreducible polynomial over
F .

By [6, Proposition 3.1], the extension E′/F is G′-Cogalois for some subgroup G′ of
G. In particular, E′/F is G′-Kneser, so

|G′/F ∗| = [E′ : F ] = qk.

It follows that G′/F ∗ is precisely the q-primary component of G/F ∗. Since q was an
arbitrary prime divisor of n, it will suffice to show that G′/F ∗ is cyclic. This achieves
the reduction, so, without loss of generality, we may assume that n = ps, where p is a
prime number and s > 2.

Assume that the group G/F ∗ is not cyclic, and aim for a contradiction. We cannot
have p = 2 since, by hypothesis, n is not divisible by 4. Thus, p is an odd prime.

Since |G/F ∗| = [E : F ] = ps, it follows that the noncyclic p-group G/F ∗ has a
subgroup U/F ∗ such that

(G/F ∗)/(U/F ∗) ∼= G/U ∼= Zp × Zp.

If we denote K = F (U), then, again by [6, Proposition 3.1], the extension E/K is H-
Cogalois, where H = GK∗. Since K∗∩G = F (U)∩G = U by [5, Lemma 3.1], we deduce
that

H/K∗ = (GK∗)/K∗ ∼= G/(K∗ ∩G) = G/U ∼= Zp × Zp.
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Let x, y ∈ H be such that H/K∗ = 〈 x̂, ŷ 〉 and 〈 x̂ 〉 ∩ 〈 ŷ 〉 = { 1̂ }. Then E = K(x, y).
We now adjoin ζp to both K and E, calling the resulting fields K1 and E1, respectively.

Since [E : K ] = |H/K∗| = p2 and [K1 : K ] 6 p − 1, the extensions K1/K and

E/K are linearly disjoint, so [E1 : K1 ] = p2. Now, observe that E1 = K1(x, y) and
xp, yp ∈ K ⊆ K1, so, the extension E1/K1 is H1-Cogalois by [5, Theorem 5.2], where
H1 = K∗1 〈x, y〉. Note that, in fact, E1/K1 is a classical p-Kummer extension, and

Kne(E1/K1) = H1/K
∗
1
∼= Gal(E1/K1) ∼= Zp × Zp.

On the other hand, E1 = K1(u), and exp(K∗1 〈u〉/K∗1 ) = ord(û) = pk for some k

with 2 6 k 6 s. Since p is an odd prime, the extension K1(u)/K1 is clearly pk-pure,
hence it is K∗1 〈u〉-Cogalois by Theorem 0.1. But K1(u) = E1, and we have just seen that
the extension E1/K1 is H1-Cogalois. It follows that H1 = K∗1 〈u〉 by the uniqueness of
the Kneser group of a G-Cogalois extension (see [5, Corollary 3.12]). This implies that
H1/K

∗
1 = K∗1 〈u〉/K∗1 is a cyclic group, which is a contradiction. 2

Remark 3.4 The ”bad” case in Proposition 3.3 appears when n is divisible by 4. By
the proof of Proposition 3.3, this is related to whether or not the 2-primary component
of the Kneser group of the involved extension E/F is cyclic.

Therefore, we will examine below when a simple radical G-Cogalois extension E/F

of degree a power of 2 has a noncyclic Kneser group G/F ∗, where F is a field of

characteristic 6= 2, E = F (u), and u is a root in Ω of an irreducible binomial X2s−a ∈
F [X]. Since E/F is in particular a G-Kneser extension, we have |G/F ∗| = [E : F ] = 2s,

and of course s > 2. Then exp(G/F ∗) = 2k for some 1 6 k 6 s.
If k > 2, then the G-Cogalois extension E/F is 2k-pure by Theorem 0.1, and hence

it is also 2s-pure. Observe that exp(F ∗〈u〉/F ∗) = ord(û) = 2s by Lemma 1.2; so,
E/F is also F ∗〈u〉-Cogalois, again by Theorem 0.1. Then, by the uniqueness of the
Kneser group of a G-Cogalois extension, we deduce that G = F ∗〈u〉. This implies that
G/F ∗ = F ∗〈u〉/F ∗ is a cyclic group, which is a contradiction.

Thus, we must have k = 1, i.e., exp(G/F ∗) = 2, and so, E/F is a classical 2-Kummer
extension. Then E = F (

√
a1, . . . ,

√
as ) and

G/F ∗ = F ∗〈√a1, . . . ,
√
as 〉/F ∗ ∼= (Z2)s,

where
√
ai denotes a root of a polynomial X2− ai ∈ F [X] for each i = 1, . . . , s. In par-

ticular, E/F is a Galois extension. Since E/F is also F ∗〈u〉-radical and exp(F ∗〈u〉/F ∗) =
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2s, it follows that ζ2s ∈ E by [5, Proposition 4.2]. In particular, we have ζ4 = ζ2s−2

2s ∈ E.
We cannot have ζ4 ∈ F , for otherwise, this would imply that E/F is 2s-pure, and then
as above, it would follow that G = F ∗〈u〉, which is a contradiction. Thus, without loss of
generality, we can choose a1 = −1, and therefore, the given extension E/F is necessarily

generated over F by ζ4 =
√
−1 and some other square roots

√
a2, . . . ,

√
as , s > 2, such

that F ∗〈√a1, . . . ,
√
as 〉/F ∗ ∼= (Z2)s. In particular, we have

√
−1 6∈ F ∗〈√a2, . . . ,

√
as 〉.

It is not clear if any such extension produce an extension we are looking for. However,
this happens at least for s = 2. More precisely, for any field F of characteristic 6= 2
such that ζ4 6∈ F , and for a root

√
a ∈ Ω of any polynomial X2 − a ∈ F [X] such that

√
a 6∈ F ∗〈ζ4〉, set E = F (ζ4,

√
a ) and G = F ∗〈ζ4,

√
a 〉. Then, the extension E/F is a

simple radical quartic G-Cogalois extension with a noncyclic Kneser group of order 4.
Indeed, it is easily checked that the hypotheses about F and

√
a imply that E = F (u),

with u = (1 + ζ4)
√
a a root of the polynomial X4 + 4a2 ∈ F [X], which is irreducible by

the Vahlen-Capelli Criterion. Notice that the example in Remark 3.2 is a particular case
of this more general case. �

Examples 3.5 (1) Any extension of degree a prime number has clearly the USP.

(2) A finite G–radical extension which has USP is not necessarily G–Cogalois. Indeed

the extension Q(
√
−3 )/Q is not Q∗〈ζ3〉 –Kneser, so it is not Q∗〈ζ3〉 –Cogalois either.

By [2, Proposition 3.3 and Corollary 5.4], for any square–free integer d ∈ N , d > 2

and any n ∈ Z∗ such that
√
n2 − d 6∈ Q(

√
d ), the quartic extension Q

(√
n+
√
d
)
/Q

has precisely only one quadratic intermediate field, so it has the USP, but is neither a
radical nor a Cogalois extension.

Also, any cyclic Galois extension E/Q of degree > 2 is not G-Cogalois, but has the
USP.

(3) A finite G–Cogalois extension may fail to have the USP, as the example in Remark
3.2 shows. Also, a finite Cogalois extension does not have necessarily the USP; e.g., the

quartic Cogalois extension Q(
√

2,
√

3 )/Q does not have the USP. �

Corollary 3.6 (Vélez [10, Lemma 2.3]). Let F be an arbitrary field, let n ∈ N∗ be such
that gcd(n, e(F )) = 1, and let Xn − a, Xn − b be irreducible polynomials in F [X] with
roots u, v ∈ Ω, respectively. If the extension F (u)/F has the USP, then the following
assertions are equivalent.

(1) The fields F (u) and F (v) are F–isomorphic.
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(2) There exists c ∈ F and j ∈ N with gcd(j, n) = 1 and a = bjcn.

Proof. (1) =⇒ (2): If F (u) and F (v) are F –isomorphic, then there exists an F –
automorphism σ of Ω such that F (v) = σ(F (u)). Denote w = σ(u). Then F (v) =
F (w), and w is a root in Ω of the irreducible polynomial Xn−a. Note that the extension
F (v)/F also has the USP.

Since v ∈ F (w), wn = a ∈ F , and F (w)/F is F ∗〈w〉–Cogalois by Theorem 3.1, we can
apply [2, Lemma 8.4], to deduce that v ∈ F ∗〈w〉. Now, observe that since F (v) = F (w),
the extension F (v)/F is F ∗〈v〉–Cogalois again by Theorem 3.1, hence w ∈ F ∗〈v〉 using

a similar argument. Thus, we have F ∗〈v〉 = F ∗〈w〉, and then w = cvj for some c ∈ F ∗

and j ∈ N∗. Raising this last equation to the n-th power we obtain a = bjcn. Since
ord(v̂) = ord(ŵ) = n, it follows that j and n are relatively prime numbers.

(2) =⇒ (1): We can write the equation a = bjcn as un = (cvj)n, hence cvj = ζu for
some ζ ∈ µn(Ω). If we denote w = ζu, then w is a root of the irreducible polynomial

Xn−a ∈ F [X], so w is a conjugate of u over F . Now, observe that the equation cvj = w,
with c ∈ F ∗ and gcd(j, n) = 1 implies that F ∗〈v〉 = F ∗〈w〉. Then F (v) = F (w), so
F (u) and F (v) are conjugate over F . 2

Corollary 3.7 Let F be an arbitrary field, and let n ∈ N∗ be such that ζn ∈ F and
gcd(n, e(F )) = 1. Let Xn − a, Xn − b be irreducible polynomials in F [X] with roots
u, v ∈ Ω, respectively. Then, the following assertions are equivalent.

(1) F (u) = F (v).

(2) There exists c ∈ F and j ∈ N with gcd(j, n) = 1 and a = bjcn.

Proof. Since ζn ∈ F , the extension F (u)/F, is a classical n–Kummer extension, so it
is F ∗〈u〉–Cogalois by [5, Theorem 5.2], and by Theorem 3.1, it has the USP. Now ob-
serve that the fields F (u) and F (v) are F –isomorphic if and only if they coincide. Apply
Corollary 3.6 to deduce the desired result. 2
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