Turk J Math 26 (2002) , 447 – 463. © TÜBİTAK

KO-groups of Bounded Flag Manifolds

Yusuf Civan

Abstract

We exhibit an appropriate suspension of bounded flag manifolds as a wedge sum of Thom complexes of associated complex line bundles. We use the existence of such a splitting to assist our computation of real and complex K-groups. Moreover, we compute the Sq^2 -homology of bounded flag manifolds to make use of relevant Atiyah-Hirzebruch spectral sequence of KO-theory.

Key Words: Bounded flag manifolds, Sq^2 -homology, KO-theory, toric variety, stably complex structure

1. Introduction

As explained by Buchstaber and Ray [2], the geometry of bounded flag manifolds plays an important role in complex cobordism, namely that they generate the double cobordism ring Ω^{DU}_* . These objects were originally constructed by Bott and Samelson, and were introduced into complex cobordism by Ray [7].

Bounded flag manifolds also fit into the settings of toric geometry. We showed in [3] that they are smooth projective toric varieties associated to fans arising from crosspolytopes.

By analogy with many stable splitting phenomena discovered in the 80s, we will carry out a programme of exhibiting an appropriate suspension of bounded flag manifolds as a wedge sum of Thom complexes of associated complex line bundles. We then use the existence of such a splitting to assist our computation of real and complex K-groups. More generally, Bahri and Bendersky[1] have announced a method for computing KOgroups of any toric manifold via the relevant Adam spectral sequence. Our first step overlaps with theirs in that we compute the Sq^2 -homology of bounded flag manifolds.

We begin with introducing some notations. We follow combinatorial convention by writing [n] for the set of natural numbers $\{1, 2, \ldots, n\}$, and an interval in the poset [n]

has the form [a, b] for some $1 \le a \le b \le n$ which consists of all k satisfying $a \le k \le b$. Throughout, $\omega_1, \ldots, \omega_{n+1}$ will denote the standard basis vectors in \mathbb{C}^{n+1} , and we write \mathbb{C}_I and $\mathbb{C}P_I$ for the subspace spanned by the vectors $\{\omega_i : i \in I\}$ and the projectivization of \mathbb{C}_I respectively, where $I \subset [n+1]$.

Definition 1.1 A flag $U: 0 < U_1 < \ldots < U_n < \mathbb{C}^{n+1}$ is called bounded if $\mathbb{C}_{[i-1]} < U_i$ for each $1 \leq i \leq n$. The set of all bounded flags in \mathbb{C}^{n+1} is called bounded flag manifold, which is an n-dimensional smooth complex manifold and will be denoted by $B(\mathbb{C}^{n+1})$ (or simply by B_n).

As a consequence of the definition, each factor U_i of any bounded flag $U \in B(\mathbb{C}^{n+1})$ is of the form $\mathbb{C}_{[i-1]} \oplus L_i$, where L_i is a line in $\mathbb{C}_i \oplus L_{i+1}$ for $1 \leq i \leq n$, and $L_{n+1} = \mathbb{C}_{n+1}$. Therefore, we may display U as

$$U: 0 < L_1 < \mathbb{C}_1 \oplus L_2 < \ldots < \mathbb{C}_{[n-1]} \oplus L_n < \mathbb{C}^{n+1}.$$

$$(1.2)$$

We define maps q_i and $r_i: B(\mathbb{C}^{n+1}) \to \mathbb{C}P_{[i,n+1]}$ by letting $q_i(U) = L_i$ and $r_i(U) = L_i^{\perp}$, where L_i^{\perp} is the orthogonal complement of L_i in $\mathbb{C}_i \oplus L_{i+1}$ for each $U \in B(\mathbb{C}^{n+1})$, and $1 \leq i \leq n$.

If $B(\mathbb{C}_{[n-k+1,n+1]})$ denotes the set bounded flags in $\mathbb{C}_{[n-k+1,n+1]}$, which we abbreviate to B_k , then there is a sequence of projections

$$B_n \xrightarrow{\pi_{n-1}} B_{n-1} \xrightarrow{\pi_{n-2}} \dots \xrightarrow{\pi_2} B_2 \xrightarrow{\pi_1} B_1 \xrightarrow{\pi_0} *,$$

each of which is the projection of a fiber bundle whose fibers isomorphic to $\mathbb{C}P^1$ and can be given for any $0 \le k \le n-1$ as follows: $\pi_k \colon B_k \to B_{k-1}$ maps each flag

$$U_k: 0 < L_{n-k+1} < \mathbb{C}_{n-k+1} \oplus L_{n-k+2} < \ldots < \mathbb{C}_{[n-k+1,n-1]} \oplus L_n < \mathbb{C}_{[n-k+1,n+1]}$$

in B_k to the flag

 $U_{k-1}: 0 < L_{n-k+2} < \mathbb{C}_{n-k+2} \oplus L_{n-k+3} < \ldots < \mathbb{C}_{[n-k+2,n-1]} \oplus L_n < \mathbb{C}_{[n-k+2,n+1]}$

in B_{k-1} . There are two inclusions i_k^S and $i_k^N \colon B_{k-1} \to B_k$, which are given respectively by

 $i_k^S(U_{k-1}) := 0 < \mathbb{C}_{n-k+1} < \mathbb{C}_{n-k+1} \oplus L_{n-k+2} < \ldots < \mathbb{C}_{[n-k+1,n-1]} \oplus L_n < \mathbb{C}_{[n-k+1,n+1]},$

and

$$i_k^N(U_{k-1}) := 0 < L_{n-k+2} < \mathbb{C}_{n-k+1} \oplus L_{n-k+2} < \ldots < \mathbb{C}_{[n-k+1,n-1]} \oplus L_n < \mathbb{C}_{[n-k+1,n+1]}$$

We consider complex line bundles η_i and η_i^{\perp} over B_n , classified respectively by the maps q_{n-i+1} and r_{n-i+1} for every $1 \leq i \leq n$, and we set η_0 to be the trivial line bundle with fiber \mathbb{C}_{n+1} . We sometimes to refer them as the *associated line bundles* on B_n . It follows that

$$\eta_i \oplus \eta_i^{\perp} \oplus \eta_{i-1}^{\perp} \oplus \ldots \oplus \eta_1^{\perp} \cong \mathbb{C}_{[n-i,n+1]}$$
(1.3)

for every i. As detailed in [7], there is an isomorphism

$$\tau(B_n) \oplus \mathbb{R}^2 \cong \bigoplus_{i=0}^{n-1} \eta_i \oplus \mathbb{C}, \qquad (1.4)$$

giving a stable complex structure on B_n . However, each B_n can be identified with the total space of the sphere bundle of $\eta_{n-1} \oplus \mathbb{R}$ over B_{n-1} , and the above *U*-structure extends over the associated 3-disk bundle; hence, B_n represents zero in the complex cobordism ring Ω^U_* .

We let $x_1, \ldots, x_n \in H^2(B_n; \mathbb{Z})$ denote the respective first Chern classes of η_1, \ldots, η_n .

Theorem 1.5 [2] The integral cohomology ring $H^*(B_n)$ is generated by x_1, \ldots, x_n , and these are subject only to the relations $x_1^2 = 0$ and $x_i^2 = x_i x_{i-1}$ for each $2 \le i \le n$ and for all n > 0.

2. Stable Splitting and Sq²-Homology of Bounded Flags

Let $\xi = \{E, p, B, \mathbb{C}^n\}$ be an *n*-dimensional complex vector bundle over a *CW*-complex *B*. We let $D(\xi)$ denote the associated disk bundle consisting of vectors of length at most 1 in each fiber, while $S(\xi)$ denotes the associated sphere bundle. We then set

$$T\xi := D(\xi)/S(\xi).$$

The space $T\xi$ is called the *Thom space* or the *Thom complex* of ξ (see [9]). Alternatively, the Thom complex $T\xi$ can be constructed as

$$T\xi \cong \mathbb{C}P(\mathbb{C} \oplus \xi)/\mathbb{C}P(\xi), \tag{2.6}$$

where $\mathbb{C}P(\xi)$ is the space obtained by projectivizing each fiber. In particular, if ξ is a line bundle, it then follows that $\mathbb{C}P(\xi)$ is homeomorphic to the base space B so that $T\xi \cong \mathbb{C}P(\mathbb{C} \oplus \xi)/B$. Furthermore, the *Thom class* of ξ is defined to be the element (up to sign) $t \in H^n(D(\xi), S(\xi))$ such that $j^*(t)$ is a generator of $H^n(D^n, S^{n-1})$, where $j: (D^n, S^{n-1}) \to (D(\xi), S(\xi))$ is the inclusion of the fiber over some point. In this way, we obtain the *Thom isomorphism*

$$\Phi^* \colon H^i(B) \to H^{i+n}(D(\xi), S(\xi)), \quad \Phi^*(z) := p^*(z) \cup t \quad \text{for all } i \in \mathbb{Z}.$$

In the case of bounded flag manifolds, it follows from (2.6) that the Thom complex $T\eta_{k-1}$ of each η_{k-1} is of the form

$$T\eta_{k-1} \cong \mathbb{C}P(\mathbb{C} \oplus \eta_{k-1})/\mathbb{C}P(\eta_{k-1}) \cong B_k/B_{k-1}.$$
(2.7)

Therefore, there is a cofibre sequence

$$B_{k-1} \xrightarrow{i_k} B_k \xrightarrow{q_k} T\eta_{k-1}, \tag{2.8}$$

where $i_k : B_{k-1} \to B_k$ is either of the inclusions i_k^S or i_k^N , and $q_k : B_k \to T\eta_{k-1}$ is the quotient map. We then have a short exact sequence:

$$0 \to H^{2j}(T\eta_{k-1}) \xrightarrow{q_k^*} H^{2j}(B_k) \xrightarrow[i_k^*]{\pi_k^*} H^{2j}(B_{k-1}) \to 0, \qquad (2.9)$$

for each $1 \leq j \leq k-1$ and

$$0 \to H^{2k}(T\eta_{k-1}) \xrightarrow{q_k^*} H^{2k}(B_k) \to 0.$$
(2.10)

Since the composition $\pi_k \circ i_k$ is the identity map on B_{k-1} , where $\pi_k \colon B_k \to B_{k-1}$ is the projection map, then (2.9) splits as abelian groups, that is, the map

$$\Psi \colon H^{2j}(B_{k-1}) \oplus H^{2j}(T\eta_{k-1}) \to H^{2j}(B_k)$$

given by $\Psi := \pi_k^* + q_k^*$ is an isomorphism of free abelian groups.

Remark 2.11 Of course, Ψ is not normally multiplicative. For example, recall that the Thom complex of the canonical line bundle $\eta_1 \to B_1 = \mathbb{C}P^1$ can be identified with $\mathbb{C}P^2$. Therefore, we have a cofibre sequence $B_1 \to B_2 \to \mathbb{C}P^2$, while it is obvious that the cohomology ring of B_2 is not isomorphic to that of the direct sum of B_1 and $\mathbb{C}P^2$.

We now suspend (2.8), and consider the pinch map $\gamma: \Sigma B_k \to \Sigma B_k \vee \Sigma B_k$. We write ψ_k for the composite

$$\Sigma B_k \xrightarrow{\gamma} \Sigma B_k \vee \Sigma B_k \xrightarrow{\Sigma \pi_k \vee \Sigma q_k} \Sigma B_{k-1} \vee \Sigma T \eta_{k-1}$$
(2.12)

for each $1 \leq k \leq n$, and note that ψ_k^* is an isomorphism of cohomology groups

$$\psi_k^* \colon H^*(\Sigma B_{k-1}) \oplus H^*(\Sigma T\eta_{k-1}) \cong H^*(\Sigma B_k).$$
(2.13)

Theorem 2.14 The map $\psi_k \colon \Sigma B_k \to \Sigma B_{k-1} \lor \Sigma T \eta_{k-1}$ is a homotopy equivalence.

Proof. It easily follows from the definitions that the spaces ΣB_k and $\Sigma B_{k-1} \vee \Sigma T \eta_{k-1}$ are simply connected finite *CW*-complexes. Therefore, applying Whitehead's theorem [11] to (2.13), we obtain the desired result.

Repeated application of Theorem 2.14 yields the following:

Theorem 2.15 For each $1 \le k \le n$, there is a homotopy equivalence

$$\Psi_k \colon \Sigma B_k \simeq \Sigma T \eta_0 \lor \ldots \lor \Sigma T \eta_{k-1}.$$
(2.16)

We note that, if $t_k \in H^2(T\eta_k; \mathbb{Z})$ is the Thom class, then it satisfies $t_k^2 = t_k c_1(\eta_k)$, and the class x_{k+1} is the pullback of t_k to $H^2(B_{k+1}; \mathbb{Z})$ for any $1 \le k \le n$.

In order to compute KO-groups of bounded flag manifolds, we will make use of the relevant Atiyah-Hirzebruch spectral sequences. By a theorem of Thomas [10], some of the differentials in this spectral sequence can be related to Steenrod squares. Moreover, in our case, the E_3 -term will turn out to be so-called Sq^2 -homology of the bounded flag manifold. Therefore, to assist such computation, we will determine these homology groups in advance.

Since $H^*(B_n; \mathbb{Z}_2)$ is concentrated in even dimensions,

$$\ldots \to H^{2k-2}(B_n; \mathbb{Z}_2) \xrightarrow{Sq^2} H^{2k}(B_n; \mathbb{Z}_2) \to \ldots$$

is a chain complex because $Sq^2Sq^2 = Sq^3Sq^1 = 0$. The homology of this chain complex is said to be the Sq^2 homology of the bounded flag manifold and denoted by $H_*(B_n; Sq^2)$. Our main task is now to prove the following theorem.

Theorem 2.17 The homology group $H_{2k}(B_n; Sq^2)$ is trivial for all $n \ge 1$ and k > 1.

We divide the proof of this theorem into several steps. Let y_1, \ldots, y_n be the generators of the group $H^2(B_n; \mathbb{Z}_2)$ so that they satisfy the relation

$$y_i^2 = y_i y_{i-1}$$
 for all $i = 2, ..., n$ and $y_1^2 = 0.$ (2.18)

If $y_{i_1} \dots y_{i_k}$ is a monomial in $H^{2k}(B_n; \mathbb{Z}_2)$, we denote it simply by y_I , where $I = \{i_1, \dots, i_k\}$. In this way, we get a bijection between the non-zero monomials in $H^{2k}(B_n; \mathbb{Z}_2)$ and the elements of the set \mathcal{D}_k^n consisting of all subsets of [n] with k-elements. Furthermore, we denote by \mathcal{C}_k^n , the \mathbb{Z}_2 -vector space generated by the set \mathcal{D}_k^n ; hence, \mathcal{C}_k^n is an isomorphic copy of $H^{2k}(B_n; \mathbb{Z}_2)$. The idea behind replacing $H^{2k}(B_n; \mathbb{Z}_2)$ with \mathcal{C}_k^n is just to simplify the notation.

Each non-empty set $I \in \mathcal{D}_k^n$ can be uniquely written as

$$I = [a_1, b_1] \cup \ldots \cup [a_t, b_t],$$
(2.19)

where $b_{i-1} + 1 < a_i$ for any $2 \le i \le t$. For any k > 1, we define a map $Sq^2 \colon \mathcal{C}_{k-1}^n \to \mathcal{C}_k^n$ by

$$Sq^{2}(I) := \sum_{i=1}^{t} (b_{i} - a_{i} + 1)[a_{1}, b_{1}] \cup \ldots \cup [a_{i} - 1, b_{i}] \cup \ldots \cup [a_{t}, b_{t}] \pmod{2} \tag{2.20}$$

for each $I \in \mathcal{D}_{k-1}^n$ with the conventions that

- if $a_1 = 1$, then the first term in the sum is deleted,
- Sq^2 maps the empty set to itself,

and for an arbitrary sum $I_1 + \ldots + I_l \in \mathcal{C}_{k-1}^n$, we insist that

$$\mathcal{S}q^2(I_1 + \ldots + I_l) = \mathcal{S}q^2(I_1) + \ldots + \mathcal{S}q^2(I_l).$$

Example 2.21 Consider the set $I = \{1, 3, 4, 7, 9\} \in \mathcal{D}_5^n$ for some $n \ge 9$. Then, we may write I as $I = [1, 1] \cup [3, 4] \cup [7, 7] \cup [9, 9]$, and by definition,

$$\begin{split} \mathcal{S}q^2(I) =& 2[1,1] \cup [2,4] \cup [7,7] \cup [9,9] + [1,1] \cup [3,4] \cup [6,7] \cup [9,9] \\ &+ [1,1] \cup [3,4] \cup [7,7] \cup [8,9] \\ =& [1,1] \cup [3,4] \cup [6,7] \cup [9,9] + [1,1] \cup [3,4] \cup [7,9] \\ =& \{1,3,4,6,7,9\} + \{1,3,4,7,8,9\}. \end{split}$$

Definition 2.22 If $y_{i_1} \dots y_{i_k}$ is a monomial in $H^{2k}(B_n; \mathbb{Z}_2)$ such that $Sq^2(I) = I_1 + \dots + I_s$, then we define $y_{Sq^2(I)} := y_{I_1} + \dots + y_{I_s}$.

Lemma 2.23 For any $I = [a_1, b_1] \cup \ldots \cup [a_t, b_t]$, the Steenrod square Sq^2 maps the monomial y_I to $y_{Sq^2(I)}$, i.e. $Sq^2(y_I) = y_{Sq^2(I)}$.

Proof. We will proceed by induction on t. When t = 1, let $I = [i, i + k - 1] \in \mathcal{D}_k^n$ for some $n \ge 1$ and k > 1. Then, by using the relation (2.18) together with the Cartan formula, we have

$$Sq^{2}(y_{I}) = y_{[i-1,i+k-1]} = y_{Sq^{2}(I)}.$$

Assume that the claim holds for t-1 so that $Sq^2(y_J) = y_{Sq^2(J)}$ for all $J = [c_1, d_1] \cup \ldots \cup [c_{t-1}, d_{t-1}]$. For a given $I = [a_1, b_1] \cup \ldots \cup [a_t, b_t] \in \mathcal{D}_k^n$, we define $J := I \setminus [a_t, b_t]$. Now, it is easy to verify that if $Sq^2(J) = \sum_{j=1}^{t-1} J_j$, then

$$Sq^{2}(I) = J_{1} \cup [a_{t}, b_{t}] + \ldots + J_{t-1} \cup [a_{t}, b_{t}] + (b_{t} - a_{t} + 1)J \cup [a_{t} - 1, b_{t}].$$

Then, it follows from the induction assumption that

$$Sq^{2}(y_{I}) = Sq^{2}(y_{J} \cdot y_{[a_{t},b_{t}]})$$

= $Sq^{2}(y_{J}) \cdot y_{[a_{t},b_{t}]} + y_{J} \cdot Sq^{2}(y_{[a_{t},b_{t}]})$
= $y_{Sq^{2}(J)} \cdot y_{[a_{t},b_{t}]} + y_{J} \cdot y_{Sq^{2}([a_{t},b_{t}])}$
= $(y_{J_{1}} \cdot y_{[a_{t},b_{t}]} + \ldots + y_{J_{t-1}} \cdot y_{[a_{t},b_{t}]}) + y_{J} \cdot y_{Sq^{2}([a_{t},b_{t}])}$
= $y_{Sq^{2}(I)}$.

Proposition 2.24 Let $J \in \mathcal{D}_k^n$ be given, where k > 1. If $Sq^2(J) = \emptyset$, then there exists $I \in \mathcal{D}_{k-1}^n$ such that $Sq^2(I) = J$.

Proof. Assume that $Sq^2(J) = \emptyset$ for some $J \in \mathcal{D}_k^n$, where $J = [a_1, b_1] \cup \ldots \cup [a_t, b_t]$. Then, it follows from the definition of Sq^2 that either

- (i) $a_1 = 1$ and $b_j a_j$ is odd for all $j = 2, \ldots, t$, or
- (ii) $a_1 > 1$ and $b_j a_j$ is odd for all $j = 1, \ldots, t$,

453

Figure 1. Sq^2 connections for B_5

According to above situations, if we define $I\in \mathcal{D}_{k-1}^n$ by either

(i)
$$I := [a_1, b_1] \cup \ldots \cup [a_j, b_j] \setminus \{b_j - 1\} \cup \ldots [a_t, b_t]$$
 for some $j = 2, \ldots, t$, or

(ii)
$$I := [a_1, b_1] \cup \ldots \cup [a_j, b_j] \setminus \{b_j - 1\} \cup \ldots [a_t, b_t] \text{ for some } j = 1, \ldots, t,$$

respectively, it is easy to verify that $Sq^2(I) = J$.

Example 2.25 Let $J \in \mathcal{D}_7^n$ be given by $J = \{1, 3, 4, 5, 6, 8, 9\}$ for some $n \ge 9$ which we can write as $J = [1, 1] \cup [3, 6] \cup [8, 9]$. Then,

$$Sq^2(J) = (3+1)[1,1] \cup [2,6] \cup [8,9] + (1+1)[1,1] \cup [3,6] \cup [7,9]$$
$$= \emptyset.$$

Following the proof of Proposition 2.24, the image of $I_1 := [1,1] \cup [3,4] \cup [6,6] \cup [8,9]$ or $I_2 := [1,1] \cup [3,6] \cup [9,9]$ is exactly J.

If I, J are two elements in \mathcal{D}_k^n , then we define d(I, J), "the difference of I by J", to be the integer $|(I \setminus I \cap J)|$.

Proposition 2.26 Given $\sum_{j \in \mathcal{A}} J_j \in \mathcal{C}_k^n$, where \mathcal{A} is an arbitrary index set, such that

$$Sq^2(\sum_{j\in\mathcal{A}}J_j) = \emptyset,$$
 (2.27)

then there exist $\sum_{i \in \mathcal{B}} I_i \in \mathcal{C}_{k-1}^n$ for which

$$Sq^{2}(\sum_{i\in\mathcal{B}}I_{i}) = \sum_{j\in\mathcal{A}}J_{j},$$
(2.28)

where $\mathcal{B} \subset \mathcal{A}$.

Proof. Firstly, by consideration of Proposition 2.24, we may assume in (2.27) that $Sq^2(J_j) \neq \emptyset$ for all $j \in A$. The equation (2.27) implies that

$$\sum_{j \in \mathcal{A}} \mathcal{S}q^2(J_j) = \emptyset.$$

Suppose that $Sq^2(J_j) = \sum_{s=1}^{t_j} J_{j,s}$ for each $j \in \mathcal{A}$, where we write the sum over all (j, s) such that $J_{j,s} \neq \emptyset$. Therefore

$$\sum_{j \in \mathcal{A}} \mathcal{S}q^2(J_j) = \sum_{j \in \mathcal{A}} \sum_{s=1}^{t_j} J_{j,s} = \emptyset.$$

If we define $\mathcal{U}(j,s) := \{(e, f) : J_{j,s} = J_{e,f}\}$ for any $j \in \mathcal{A}$ and $1 \leq s \leq t_j$, then it follows that the number of elements in $\mathcal{U}(j,s)$ must be even, since we are working over \mathbb{Z}_2 . It is also clear from the definitions that if $(e, f) \in \mathcal{U}(j, s) \setminus \{(j, s)\}$, then $d(J_j, J_e) = 1$. Pick any (e, f) in $\mathcal{U}(j, s)$ different than (j, s) and define d_j and d_e to be the elements of J_j and J_e respectively such that $d_j, d_e \notin J_j \cap J_e$, and set

 $\mathcal{U}(j) := \{ e \in \mathcal{A} \colon (e, f) \in \mathcal{U}(j, s) \text{ for some } s \text{ and } f \}.$

Now, let $I_j := J_j \setminus \{d_j\}$, then $Sq^2(I_j) = \sum_{e \in \mathcal{U}(j)} J_e$, which may be obtained easily from the facts that if $I_j = [a_1, b_1] \cup \ldots \cup [a_t, b_t]$, then we have $d_e < b_t$ and $I_j \cup \{d_e\} = J_e$

Λ	5	5
-	υ	υ

for all $e \in \mathcal{U}(j)$. Finally, we define \mathcal{B} to be the subset of \mathcal{A} for which $j, e \in \mathcal{B}$ whenever $\mathcal{U}(j) \cap \mathcal{U}(e) = \emptyset$. Thus,

$$Sq^2(\sum_{i\in\mathcal{B}}I_i) = \sum_{i\in\mathcal{B}}Sq^2(I_i) = \sum_{j\in\mathcal{A}}J_j,$$

from which we deduce Equation (2.28). This completes the proof.

Example 2.29 Let $J_1 + \ldots + J_4 \in C_5^n$ be given as follows: $J_1 = \{1, 2, 4, 7, 10\}, J_2 = \{2, 3, 4, 7, 10\}, J_3 = \{2, 4, 6, 7, 10\}$ and $J_4 = \{2, 4, 7, 9, 10\}$. Then,

$$\begin{split} &\mathcal{S}q^2(J_1 + \ldots + J_4) = \mathcal{S}q^2(J_1) + \ldots + \mathcal{S}q^2(J_4) \\ &= [1,4] \cup [7,7] \cup [10,10] + [1,2] \cup [4,4] \cup [6,7] \cup [10,10] + [1,2] \cup [4,4] \cup [7,7] \cup [9,10] \\ &+ [1,4] \cup [7,7] \cup [10,10] + [2,4] \cup [6,7] \cup [10,10] + [2,4] \cup [7,7] \cup [9,10] \\ &+ [1,2] \cup [4,4] \cup [6,7] \cup [10,10] + [2,4] \cup [6,7] \cup [10,10] + [2,2] \cup [4,4] \cup [6,7] \cup [9,10] \\ &+ [1,2] \cup [4,4] \cup [7,7] \cup [9,10] + [2,4] \cup [7,7] \cup [9,10] + [2,2] \cup [4,4] \cup [6,7] \cup [9,10] \\ &= \emptyset. \end{split}$$

We see that $\mathcal{U}(1) = \mathcal{U}(2) = \mathcal{U}(3) = \mathcal{U}(4) = \{1, 2, 3, 4\}$. Therefore, we define $I := J_1 \setminus \{1\}$, which is equal to $[2, 2] \cup [4, 4] \cup [7, 7] \cup [10, 10]$, and

$$\begin{split} \mathcal{S}q^2(I) &= [1,2] \cup [4,4] \cup [7,7] \cup [10,10] \\ &+ [2,4] \cup [7,7] \cup [10,10] \\ &+ [2,2] \cup [4,4] \cup [6,7] \cup [10,10] \\ &+ [2,2] \cup [4,4] \cup [7,7] \cup [9,10] \\ &= J_1 + J_2 + J_3 + J_4. \end{split}$$

Proof. [*Proof of Theorem 2.17*] Combining Lemma 2.23, Propositions 2.24 and 2.26, we see that $ker(Sq^2) = Im(Sq^2)$ for any k > 1, which completes the proof. \Box

Theorem 2.17 also allows us to compute the Sq^2 homology of the Thom space of the associated line bundle η_i over B_i for any $i \ge 1$.

Corollary 2.30 The group $H_{2k}(T\eta_i; Sq^2)$ is trivial for all *i* and $k \ge 1$.

Proof. This follows from the existence of the homotopy equivalence

$$\psi_{i+1} \colon \Sigma B_{i+1} \to \Sigma B_i \lor \Sigma T \eta_i \tag{2.31}$$

for all $i \ge 1$ and k > 1. When k = 1, it is easy to see the map $Sq^2: H^2(T\eta_i; \mathbb{Z}_2) \to H^4(T\eta_i; \mathbb{Z}_2)$ is an injection.

3. KO-Groups of Bounded Flags

Throughout, we will consider the spectra KO and K representing real and complex Ktheory respectively. There are natural transformations: complexification $c: KO^*(X) \to K^*(X)$, realification $r: K^*(X) \to KO^*(X)$, and conjugation $-: K^*(X) \to K^*(X)$. The formulas

$$\label{eq:relation} \begin{split} r\cdot c &= 2 \colon KO^*(X) \to KO^*(X) \\ c\cdot r &= 1+- \colon K^*(X) \to K^*(X), \end{split}$$

are well known, where c is a ring homomorphism, but r is not. The coefficient rings $K_*(S^0)$ and $KO_*(S^0)$ are given as follows.

$$KO_* \cong \mathbb{Z}[e, x, y, y^{-1}] / \{2e, e^3, e \cdot x, x^2 - 4y\}$$
 and $K_* \cong \mathbb{Z}[z, z^{-1}],$ (3.32)

where z is represented by the complex Hopf bundle over S^2 , and e, x and y are represented by the real Hopf bundle over S^1 , the symplectic Hopf bundle over S^4 , and the canonical bundle over S^8 , respectively.

We recall that η_1, \ldots, η_n are the associated line bundles over B_n with the first Chern classes x_1, \ldots, x_n respectively, described as in Section 1. In order to compute the real and complex K-theory of B_n , we first recall Theorem 2.15, the stable splitting of B_n , which is possible after one-suspension:

$$B_n \simeq \bigvee_{i=0}^{n-1} T\eta_i. \tag{3.33}$$

It is important to note that in the above decomposition, we consider each η_i over B_i rather than B_n for every $1 \leq i \leq n-1$, while η_0 is the trivial line bundle over a point, whose Thom complex may be identified with $\mathbb{C}P^1$. If we recall the Thom isomorphism $\Phi: H^{2k}(B_i; \mathbb{Z}) \to H^{2k+2}(T\eta_i; \mathbb{Z})$ for $1 \leq k \leq n$ and the fact that B_i is a toric variety[3]

arising from an *i*-crosspolytope, we see that the group $H^{2k+2}(T\eta_i; \mathbb{Z})$ is of rank h_k when $k \geq 1$, where $h = (h_0, \ldots, h_i)$ is the *h*-vector of the *i*-crosspolytope given by $h_k = \binom{i}{k}$ for any $0 \leq k \leq i$. Generators are given by $t_i x_I$, where $I \subseteq [i]$ is any subset of cardinality k.

Firstly, we compute the complex K-theory. Let γ_i be the element in $\widetilde{K}^2(B_n)$ such that $z\gamma_i = \eta_i - 1 \in \widetilde{K}^0(B_n)$ for each $1 \leq i \leq n$, and let θ_n be the line bundle over $T\eta_n$ such that $c_1(\theta_n) = t_n$ in $H^2(T\eta_n; \mathbb{Z})$; then $t_n^K = z^{-1}(\theta_n - 1)$ is the Thom class in $K^2(T\eta_n)$. Then the corresponding Thom isomorphism expresses $K^*(T\eta_n)$ as a free module over $K^*(B_n)$ on generators 1 and t_n^K .

Proposition 3.34 The multiplicative structure of $K^*(T\eta_n)$ is determined by $(t_n^K)^2 = t_n^K \gamma_n$.

Proof. The construction of t_n^K ensures that

$$ch(t_n^K) = (e^{ut_n} - 1)/u = t_n(e^{ux_n} - 1)/x_n u,$$

since $t_n^2 = t_n x_n$, where $H_*(K) \cong \mathbb{Q}[u, u^{-1}]$. Therefore,

$$ch((t_n^K)^2) = (ch(t_n^K))^2 = (e^{ut_n} - 1) \cdot t_n(e^{ux_n} - 1)/x_n u^2,$$
$$= (e^{ut_n} - 1) \cdot (e^{ux_n} - 1)/u^2,$$
$$= ch(t_n^K) \cdot ch(\gamma_n).$$

On the other hand, the Atiyah-Hirzebruch spectral sequence for $T\eta_n$ collapses, since $T\eta_n$ has a cell-decomposition concentrated in even dimensions; the Chern character *ch* is therefore monic and the result follows.

Theorem 3.35 For each $n \ge 1$, the complex K-theory $K^*(B_n)$ of bounded flag manifold is given by

$$K^*(B_n) \cong K_*[\gamma_1, \dots, \gamma_n]/(\gamma_i^2 - \gamma_i \gamma_{i-1}, \gamma_1^2).$$
 (3.36)

Proof. This follows from (3.33) and Proposition 3.34.

In order to compute the KO-groups of B_n , we recall that the E_2 and E_{∞} terms of the Atiyah-Hirzebruch spectral sequence of $\tilde{K}O$ -theory are given by

$$E_2^{p,q} \cong H^p(X; \widetilde{K}O_q(S^0)), \tag{3.37}$$

$$E_{\infty}^{p,q} \cong G_p K O^{p+q}(X) = F_p^{p+q}(X) / F_{p+1}^{p+q}(X), \qquad (3.38)$$

where $F_p^m(X) = \operatorname{Ker}[\widetilde{K}O^m(X) \to \widetilde{K}O^m(X^{p-1})]$ and X^{p-1} is the (p-1)-skeleton of X. As for the differentials $d_r^{p,q} \colon E_r^{p,q} \to E_r^{p+r,q-r+1}$, it follows from Theorem 4.2 of [10] that

$$d_2^{p,-8t} = Sq^2 \circ \rho \colon H^p(X;\mathbb{Z}) \to H^{p+2}(X;\mathbb{Z}_2),$$

$$d_2^{p,-8t-1} = Sq^2 \colon H^p(X;\mathbb{Z}_2) \to H^{p+2}(X;\mathbb{Z}_2),$$
(3.39)

where ρ is the mod 2 reduction map.

Theorem 3.40 The groups $\widetilde{K}O^{2j+1}(T\eta_i)$ are trivial for any $i \ge 0$ and $j \in \mathbb{Z}$, except for $\widetilde{K}O^{8j-7}(T\eta_0)$, which is isomorphic to \mathbb{Z}_2 .

Proof. For $\widetilde{K}O^{-1}(T\eta_i) \cong \widetilde{K}O^7(T\eta_i)$, the E_2 -term of the spectral sequence is given by $E_2^{p+7,-p} \cong H^{p+7}(T\eta_i; \widetilde{K}O_p(S^0))$, which is trivial except for $p \equiv 1 \pmod{8}$, where -7 . Assume that <math>p = 8t + 1 for some $t \ge 0$. Then, by (3.39), we can replace the sequence

$$\cdots \to E_2^{8t+6,-8t} \xrightarrow{d_2^{8t+6,-8t}} E_2^{8t+8,-8t-1} \xrightarrow{d_2^{8t+8,-8t-1}} E_2^{8t+10,-8t-2} \to \cdots$$

with

$$\cdots \to H^{8t+6}(T\eta_i; \mathbb{Z}) \xrightarrow{Sq^2\rho} H^{8t+8}(T\eta_i; \mathbb{Z}_2) \xrightarrow{Sq^2} H^{8t+10}(T\eta_i; \mathbb{Z}_2) \to \cdots$$

By Corollary 2.30, it follows that $E_3^{8t+8,-8t-1} \cong 0$; hence the spectral sequence collapses to the E_3 -term, and the result follows. The proofs of the other cases are similar to that of $\tilde{K}O^{-1}(T\eta_i)$. On the other hand, since we may identify $T\eta_o$ with $\mathbb{C}P^1$, it follows from (3.32) that $\tilde{K}O^{-7}(T\eta_0) \cong \mathbb{Z}_2$.

Corollary 3.41 The groups $\widetilde{K}O^{2j+1}(B_n)$ are trivial for any $j \in \mathbb{Z}$, except for $\widetilde{K}O^{8j-7}(B_n)$, which is isomorphic to \mathbb{Z}_2 .

Proof. The splitting given by (3.33) induces an isomorphism of groups

$$\widetilde{K}O^{2j+1}(B_n) \cong \bigoplus_{i=0}^{n-1} \widetilde{K}O^{2j+1}(T\eta_i), \qquad (3.42)$$

for $j \in \mathbb{Z}$. Thus, the claim follows from Theorem 3.40.

459

Theorem 3.43 The groups $\widetilde{K}O^{2j}(T\eta_i)$ are free of rank 2^{i-1} for any $i \ge 1$ and $j \in \mathbb{Z}$. **Proof.** To show that these groups are free, we consider the fibration $U \to U/O$, and from the fact that $BO \times \mathbb{Z} = \Omega(U/O)$, we obtain the exact Bott sequence for any CW-complex X in the form

$$\dots \to \widetilde{K}O^k(X) \to \widetilde{K}^k(X) \to \widetilde{K}O^{k+2}(X) \to \widetilde{K}O^{k+1}(X) \to \dots$$
 (3.44)

Applying the sequence (3.44) for $T\eta_i$ and k = -1, we get the exact sequence

$$\cdots \to \widetilde{K}^{-1}(T\eta_i) \to \widetilde{K}O^1(T\eta_i) \to \widetilde{K}O^0(T\eta_i) \to \widetilde{K}^0(T\eta_i) \to \widetilde{K}O^2(T\eta_i) \to \cdots .$$
(3.45)

By Theorem 3.40, the group $\widetilde{K}O^1(T\eta_i) \cong \widetilde{K}O^{-7}(T\eta_i)$ is trivial for any $i \ge 1$; hence, $\widetilde{K}O^0(T\eta_i)$ is a free group. A similar argument will apply to the other cases.

To find the rank of these groups, we consider the related Atiyah-Hirzebruch spectral sequences. For example, for $\tilde{K}O^0(T\eta_i)$, we have $E_2^{p,-p} \cong H^p(T\eta_i; \tilde{K}O_p(S^0))$, which is trivial except for $p \equiv 0, 2, 4 \pmod{8}$, where 0 .

(i) Let p = 8t for some $t \ge 1$. Then, from the sequence

$$\dots \to E_2^{8t-2,-8t+1} \xrightarrow{d_2^{8t-2,-8t+1}} E_2^{8t,-8t} \xrightarrow{d_2^{8t,-8t}} E_2^{8t+2,-8t-1} \to \dots, \qquad (3.46)$$

we have that $E_2^{8t-2,-8t+1} \cong 0$, since $\widetilde{K}O_{8t-1}(S^0) \cong \widetilde{K}O_7(S^0) \cong 0$. By (3.39), we can replace (3.46) with the sequence

$$0 \to H^{8t}(T\eta_i; \mathbb{Z}) \xrightarrow{Sq^2 \circ \rho} H^{8t+2}(T\eta_i; \mathbb{Z}_2) \to \cdots,$$

from which we obtain that

$$E_3^{8t,-8t} \cong \operatorname{Ker}[Sq^2\rho \colon H^{8t}(T\eta_i;\mathbb{Z}) \to H^{8t+2}(T\eta_i;\mathbb{Z}_2)].$$

Since the differential $d_k \colon E_k^{p,-p} \to E^{p+k,-p-k+1}$ (total degree 1) is a zero map (compare to Theorem 3.40) for any $k \geq 3$, the group $E_3^{8t,-8t}$ will survive to $E_{\infty}^{8t,-8t}$. Moreover, the group $E_{\infty}^{8t,-8t}$ is isomorphic to h_{4t-1} copies of \mathbb{Z} for each $t \geq 1$, where $h = (h_0, \ldots, h_i)$ is the *h*-vector of the *i*-crosspolytope.

(ii) Let $p \equiv 2 \pmod{8}$, then p = 8t + 2 for some $t \ge 0$. Then, from the sequence

$$\cdots \to E_2^{8t,-8t-1} \to E_2^{8t+2,-8t-2} \to E_2^{8t+4,-8t-3} \to \cdots,$$

we see that $E_2^{8t+4,-8t-3} \cong 0$, and

$$E_3^{8t+2,-8t-2} \cong H^{8t+2}(T\eta_i;\mathbb{Z}_2) / \text{Im}[Sq^2 \colon H^{8t}(T\eta_i;\mathbb{Z}_2) \to H^{8t+2}(T\eta_i;\mathbb{Z}_2)],$$

which is a finite group for any $t \ge 0$.

(iii) Let $p \equiv 4 \pmod{8}$, then p = 8t + 4 for some $t \ge 1$. Then, from the sequence

$$\dots \to E_2^{8t+2,-8t-3} \to E_2^{8t+4,-8t-4} \to E_2^{8r+6,-8t-5} \to \dots,$$

we deduce that $E_3^{8t+4,-8r-4} \cong H^{8t+4}(T\eta_i;\mathbb{Z})$. Similar to the case (i), the group $E_3^{8t+4,-8t-4}$ will survive to E_∞ so that the group $E_\infty^{8t+4,-8t-4}$ is of rank h_{4t+1} for each $t \ge 1$.

As a conclusion, since all groups in our filtration are free, all the extension problems are trivial, and from the well-known formula

$$h_1 + h_3 + h_5 + \ldots = \binom{i}{1} + \binom{i}{3} + \binom{i}{5} + \ldots = 2^{i-1},$$

the group $\widetilde{K}O^0(T\eta_i)$ is isomorphic to $\mathbb{Z}^{2^{i-1}}$ for any $i \ge 1$. For the other cases, we can obtain the results in the same way as the proof of j = 0.

Corollary 3.47 (a) $\widetilde{K}O^0(B_n) \cong \mathbb{Z}_2 \oplus \mathbb{Z}^{2^{n-1}-1}$,

- (b) $\widetilde{K}O^{-2}(B_n) \cong \widetilde{K}O^{-6}(B_n) \cong \mathbb{Z}^{2^{n-1}},$
- (c) $\widetilde{K}O^{-4}(B_n) \cong \mathbb{Z}^{2^{n-1}-1}$.

Proof. Once again, we apply to (3.33), from which we obtain an isomorphism

$$\widetilde{K}O^{2j}(B_n) \cong \bigoplus_{i=0}^{n-1} \widetilde{K}O^{2j}(T\eta_i), \qquad (3.48)$$

for any $j \in \mathbb{Z}$. On the other hand, it follows from (3.32) that $\widetilde{K}O^0(\mathbb{C}P^1) \cong \mathbb{Z}_2$, $\widetilde{K}O^{-2}(\mathbb{C}P^1) \cong \widetilde{K}O^{-6}(\mathbb{C}P^1) \cong \mathbb{Z}$ and $\widetilde{K}O^{-4}(\mathbb{C}P^1) \cong 0$. Now, the claims follow from Theorem 3.43 and the formula

$$2^0 + 2^1 + 2^2 + \ldots + 2^{n-2} = 2^{n-1} - 1.$$

Let us explain what we have gained so far. We first recall that from the fibration

$$O/U \xrightarrow{f} BU \xrightarrow{r} BO,$$
 (3.49)

we obtain the associated exact Bott sequence for B_n :

$$\dots \to \widetilde{K}O^{-1}(B_n) \to \widetilde{K}O^{-2}(B_n) \xrightarrow{\chi} \widetilde{K}^0(B_n) \xrightarrow{r} \widetilde{K}O^0(B_n) \to \widetilde{K}O^7(B_n) \to \dots,$$

which links the real and complex K-theory through the realification homomorphism r. Here, χ is induced by f and may be identified with $z^{-1} \cdot c$ by composing the complexification homomorphism with multiplication by z^{-1} .

When combined with Corollary 3.41, it reduces to a short exact sequence

$$0 \to \widetilde{K}O^{-2}(B_n) \xrightarrow{\chi} \widetilde{K}^0(B_n) \xrightarrow{r} \widetilde{K}O^0(B_n) \to 0.$$
(3.50)

Therefore, if \mathcal{K}_n denotes the kernel of $r \colon \widetilde{K}^0(B_n) \to \widetilde{K}O^0(B_n)$, then it follows that $\mathcal{K}_n \cong \widetilde{K}O^{-2}(B_n) \cong \mathbb{Z}^{2^{n-1}}$ by Corollary 3.47. We note that since χ is a monomorphism in this case, the group \mathcal{K}_n can be identified with the set of stably complex structures on B_n .

References

- A. Bahri and M. Bendersky. *The KO-theory of toric manifolds*. Transaction of American Mathematical Society, 352, 3: 1191-1202, 2000.
- [2] V.M. Buchstaber and N. Ray. Flag manifolds and the Landweber-Novikov algebra. Geometry and Topology, 2: 79-101, 1998.
- [3] Y. Civan. The Topology of Families of Toric Manifolds. PhD Thesis, University of Manchester, 2001.
- [4] Y. Civan and N. Ray. Homotopy decompositions and real K-theory of Bott towers. In preparation, University of Manchester, 2002.
- [5] M. Fuji. KO-groups of projective spaces. Osaka Journal of Mathematics, 4: 141-149, 1967.
- [6] H. Miller. Stable splitting of Stiefel manifolds. Topology, 24: 411-419, 1985.
- [7] N. Ray. On a construction in bordism theory. Proceedings of the Edinburgh Mathematical Society, 29: 413-422, 1986.

- [8] C.M. Riberio. *KO-groups of the Stiefel Manifolds* $V_{n,4}$ and $V_{n,5}$. Proceedings of the London Mathematical Society, 3: 182-208, 1989.
- [9] R.M. Switzer. Algebraic Topology- Homotopy and Homology. Springer-Verlag, Berlin, 1975.
- [10] E. Thomas. Homotopy classification of maps by cohomology homomorphisms. American Mathematical Society, 111: 138-151, 1964.
- [11] G. Whitehead. Elements of Homotopy Theory. Springer-Verlag, Graduate Texts in Mathematics, Vol.61, New York, 1978.

Received 10.06.2002

Yusuf CİVAN Department of Mathematics, Süleyman Demirel University, 32260, Isparta-TURKEY e-mail: ycivan@fef.sdu.edu.tr