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Abstract

We exhibit an appropriate suspension of bounded flag manifolds as a wedge sum
of Thom complexes of associated complex line bundles. We use the existence of
such a splitting to assist our computation of real and complex K-groups. Moreover,

we compute the Sq2-homology of bounded flag manifolds to make use of relevant
Atiyah-Hirzebruch spectral sequence of KO-theory.
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1. Introduction

As explained by Buchstaber and Ray [2], the geometry of bounded flag manifolds
plays an important role in complex cobordism, namely that they generate the double
cobordism ring ΩDU∗ . These objects were originally constructed by Bott and Samelson,
and were introduced into complex cobordism by Ray [7].

Bounded flag manifolds also fit into the settings of toric geometry. We showed
in [3] that they are smooth projective toric varieties associated to fans arising from
crosspolytopes.

By analogy with many stable splitting phenomena discovered in the 80s, we will carry
out a programme of exhibiting an appropriate suspension of bounded flag manifolds as
a wedge sum of Thom complexes of associated complex line bundles. We then use the
existence of such a splitting to assist our computation of real and complex K-groups.
More generally, Bahri and Bendersky[1] have announced a method for computing KO-
groups of any toric manifold via the relevant Adam spectral sequence. Our first step
overlaps with theirs in that we compute the Sq2-homology of bounded flag manifolds.

We begin with introducing some notations. We follow combinatorial convention by
writing [n] for the set of natural numbers {1, 2, . . . , n}, and an interval in the poset [n]
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has the form [a, b] for some 1 ≤ a ≤ b ≤ n which consists of all k satisfying a ≤ k ≤ b.

Throughout, ω1, . . . , ωn+1 will denote the standard basis vectors in Cn+1, and we write
CI and CPI for the subspace spanned by the vectors {ωi : i ∈ I} and the projectivization
of CI respectively, where I ⊂ [n+ 1].

Definition 1.1 A flag U : 0 < U1 < . . . < Un < Cn+1 is called bounded if C[i−1] < Ui

for each 1 ≤ i ≤ n. The set of all bounded flags in Cn+1 is called bounded flag manifold,
which is an n-dimensional smooth complex manifold and will be denoted by B(Cn+1) (or
simply by Bn).

As a consequence of the definition, each factor Ui of any bounded flag U ∈ B(Cn+1) is
of the form C[i−1] ⊕ Li, where Li is a line in Ci ⊕ Li+1 for 1 ≤ i ≤ n, and Ln+1 = Cn+1.

Therefore, we may display U as

U : 0 < L1 < C1 ⊕ L2 < . . . < C[n−1] ⊕ Ln < Cn+1. (1.2)

We define maps qi and ri : B(Cn+1)→ CP[i,n+1] by letting qi(U) = Li and ri(U) = L⊥i ,

where L⊥i is the orthogonal complement of Li in Ci ⊕ Li+1 for each U ∈ B(Cn+1), and
1 ≤ i ≤ n.

If B(C[n−k+1,n+1]) denotes the set bounded flags in C[n−k+1,n+1], which we abbreviate

to Bk, then there is a sequence of projections

Bn
πn−1−−−→ Bn−1

πn−2−−−→ . . .
π2−→ B2

π1−→ B1
π0−→ ∗,

each of which is the projection of a fiber bundle whose fibers isomorphic to CP 1 and can
be given for any 0 ≤ k ≤ n− 1 as follows: πk : Bk → Bk−1 maps each flag

Uk : 0 < Ln−k+1 < Cn−k+1 ⊕ Ln−k+2 < . . . < C[n−k+1,n−1]⊕ Ln < C[n−k+1,n+1]

in Bk to the flag

Uk−1 : 0 < Ln−k+2 < Cn−k+2 ⊕ Ln−k+3 < . . . < C[n−k+2,n−1]⊕ Ln < C[n−k+2,n+1]

in Bk−1. There are two inclusions iSk and iNk : Bk−1 → Bk, which are given respectively
by

iSk (Uk−1) : = 0 < Cn−k+1 < Cn−k+1 ⊕ Ln−k+2 < . . . < C[n−k+1,n−1]⊕ Ln < C[n−k+1,n+1],
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and

iNk (Uk−1) : = 0 < Ln−k+2 < Cn−k+1 ⊕ Ln−k+2 < . . . < C[n−k+1,n−1]⊕ Ln < C[n−k+1,n+1].

We consider complex line bundles ηi and η⊥i over Bn, classified respectively by the maps
qn−i+1 and rn−i+1 for every 1 ≤ i ≤ n, and we set η0 to be the trivial line bundle with
fiber Cn+1. We sometimes to refer them as the associated line bundles on Bn . It follows
that

ηi ⊕ η⊥i ⊕ η⊥i−1 ⊕ . . .⊕ η⊥1 ∼= C[n−i,n+1] (1.3)

for every i. As detailed in [7], there is an isomorphism

τ (Bn)⊕ R2 ∼=
n−1⊕
i=0

ηi ⊕ C, (1.4)

giving a stable complex structure on Bn. However, each Bn can be identified with the
total space of the sphere bundle of ηn−1⊕R over Bn−1, and the above U -structure extends
over the associated 3-disk bundle; hence, Bn represents zero in the complex cobordism

ring ΩU∗ .

We let x1, . . . , xn ∈ H2(Bn;Z) denote the respective first Chern classes of η1, . . . , ηn.

Theorem 1.5 [2] The integral cohomology ring H∗(Bn) is generated by x1, . . . , xn, and

these are subject only to the relations x2
1 = 0 and x2

i = xixi−1 for each 2 ≤ i ≤ n and for
all n > 0.

2. Stable Splitting and Sq2-Homology of Bounded Flags

Let ξ = {E, p, B,Cn} be an n-dimensional complex vector bundle over a CW -complex
B. We let D(ξ) denote the associated disk bundle consisting of vectors of length at most
1 in each fiber, while S(ξ) denotes the associated sphere bundle. We then set

Tξ := D(ξ)/S(ξ).

The space Tξ is called the Thom space or the Thom complex of ξ (see [9]). Alternatively,
the Thom complex Tξ can be constructed as

Tξ ∼= CP (C⊕ ξ)/CP (ξ), (2.6)
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where CP (ξ) is the space obtained by projectivizing each fiber. In particular, if ξ is a
line bundle, it then follows that CP (ξ) is homeomorphic to the base space B so that
Tξ ∼= CP (C ⊕ ξ)/B. Furthermore, the Thom class of ξ is defined to be the element

(up to sign) t ∈ Hn(D(ξ), S(ξ)) such that j∗(t) is a generator of Hn(Dn, Sn−1), where

j : (Dn , Sn−1) → (D(ξ), S(ξ)) is the inclusion of the fiber over some point. In this way,
we obtain the Thom isomorphism

Φ∗ : Hi(B) → Hi+n(D(ξ), S(ξ)), Φ∗(z) := p∗(z) ∪ t for all i ∈ Z.

In the case of bounded flag manifolds, it follows from (2.6) that the Thom complex Tηk−1

of each ηk−1 is of the form

Tηk−1
∼= CP (C⊕ ηk−1)/CP (ηk−1) ∼= Bk/Bk−1. (2.7)

Therefore, there is a cofibre sequence

Bk−1
ik−→ Bk

qk−→ Tηk−1, (2.8)

where ik : Bk−1 → Bk is either of the inclusions iSk or iNk , and qk : Bk → Tηk−1 is the
quotient map. We then have a short exact sequence:

0→ H2j(Tηk−1)
q∗k−→ H2j(Bk)

π∗k
�
i∗k

H2j(Bk−1)→ 0, (2.9)

for each 1 ≤ j ≤ k − 1 and

0→ H2k(Tηk−1)
q∗k−→
∼=

H2k(Bk)→ 0. (2.10)

Since the composition πk ◦ ik is the identity map on Bk−1, where πk : Bk → Bk−1 is the
projection map, then (2.9) splits as abelian groups, that is, the map

Ψ: H2j(Bk−1) ⊕H2j(Tηk−1)→ H2j(Bk)

given by Ψ := π∗k + q∗k is an isomorphism of free abelian groups.

Remark 2.11 Of course, Ψ is not normally multiplicative. For example, recall that the
Thom complex of the canonical line bundle η1 → B1 = CP 1 can be identified with CP 2.
Therefore, we have a cofibre sequence B1 → B2 → CP 2, while it is obvious that the
cohomology ring of B2 is not isomorphic to that of the direct sum of B1 and CP 2.
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We now suspend (2.8), and consider the pinch map γ : ΣBk → ΣBk ∨ΣBk. We write ψk
for the composite

ΣBk
γ−→ ΣBk ∨ ΣBk

Σπk∨Σqk−−−−−−→ ΣBk−1 ∨ ΣTηk−1 (2.12)

for each 1 ≤ k ≤ n, and note that ψ∗k is an isomorphism of cohomology groups

ψ∗k : H∗(ΣBk−1) ⊕H∗(ΣTηk−1) ∼= H∗(ΣBk). (2.13)

Theorem 2.14 The map ψk : ΣBk → ΣBk−1 ∨ ΣTηk−1 is a homotopy equivalence.

Proof. It easily follows from the definitions that the spaces ΣBk and ΣBk−1 ∨
ΣTηk−1 are simply connected finite CW -complexes. Therefore, applying Whitehead’s
theorem [11] to (2.13), we obtain the desired result. 2

Repeated application of Theorem 2.14 yields the following:

Theorem 2.15 For each 1 ≤ k ≤ n, there is a homotopy equivalence

Ψk : ΣBk ' ΣTη0 ∨ . . . ∨ ΣTηk−1. (2.16)

We note that, if tk ∈ H2(Tηk;Z) is the Thom class, then it satisfies t2k = tkc1(ηk), and

the class xk+1 is the pullback of tk to H2(Bk+1;Z) for any 1 ≤ k ≤ n.
In order to compute KO-groups of bounded flag manifolds, we will make use of the

relevant Atiyah-Hirzebruch spectral sequences. By a theorem of Thomas [10], some of
the differentials in this spectral sequence can be related to Steenrod squares. Moreover,
in our case, the E3-term will turn out to be so-called Sq2-homology of the bounded
flag manifold. Therefore, to assist such computation, we will determine these homology
groups in advance.

Since H∗(Bn;Z2) is concentrated in even dimensions,

. . .→ H2k−2(Bn;Z2)
Sq2

−−→ H2k(Bn;Z2)→ . . .

is a chain complex because Sq2Sq2 = Sq3Sq1 = 0. The homology of this chain complex is
said to be the Sq2 homology of the bounded flag manifold and denoted by H∗(Bn;Sq2).
Our main task is now to prove the following theorem.

Theorem 2.17 The homology group H2k(Bn;Sq2) is trivial for all n ≥ 1 and k > 1.
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We divide the proof of this theorem into several steps. Let y1, . . . , yn be the generators
of the group H2(Bn ;Z2) so that they satisfy the relation

y2
i = yiyi−1 for all i = 2, . . . , n and y2

1 = 0. (2.18)

If yi1 . . . yik is a monomial in H2k(Bn;Z2), we denote it simply by yI , where I =

{i1, . . . , ik}. In this way, we get a bijection between the non-zero monomials inH2k(Bn;Z2)
and the elements of the set Dnk consisting of all subsets of [n] with k-elements. Further-
more, we denote by Cnk , the Z2-vector space generated by the set Dnk ; hence, Cnk is an

isomorphic copy of H2k(Bn ;Z2). The idea behind replacing H2k(Bn;Z2) with Cnk is just
to simplify the notation.

Each non-empty set I ∈ Dnk can be uniquely written as

I = [a1, b1] ∪ . . .∪ [at, bt], (2.19)

where bi−1 + 1 < ai for any 2 ≤ i ≤ t. For any k > 1, we define a map Sq2 : Cnk−1 → Cnk
by

Sq2(I) :=
t∑
i=1

(bi − ai + 1)[a1, b1] ∪ . . . ∪ [ai − 1, bi] ∪ . . . ∪ [at, bt] (mod 2) (2.20)

for each I ∈ Dnk−1 with the conventions that

• if a1 = 1, then the first term in the sum is deleted,

• Sq2 maps the empty set to itself,

and for an arbitrary sum I1 + . . .+ Il ∈ Cnk−1, we insist that

Sq2(I1 + . . .+ Il) = Sq2(I1) + . . .+ Sq2(Il).

Example 2.21 Consider the set I = {1, 3, 4, 7, 9} ∈ Dn5 for some n ≥ 9. Then, we may
write I as I = [1, 1] ∪ [3, 4] ∪ [7, 7]∪ [9, 9], and by definition,

Sq2(I) =2[1, 1]∪ [2, 4]∪ [7, 7]∪ [9, 9] + [1, 1]∪ [3, 4]∪ [6, 7]∪ [9, 9]

+ [1, 1] ∪ [3, 4]∪ [7, 7]∪ [8, 9]

=[1, 1]∪ [3, 4]∪ [6, 7]∪ [9, 9] + [1, 1]∪ [3, 4]∪ [7, 9]

={1, 3, 4, 6, 7, 9}+ {1, 3, 4, 7, 8, 9}.
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Definition 2.22 If yi1 . . . yik is a monomial in H2k(Bn;Z2) such that Sq2(I) = I1 +
. . .+ Is, then we define ySq2(I) := yI1 + . . .+ yIs .

Lemma 2.23 For any I = [a1, b1] ∪ . . . ∪ [at, bt], the Steenrod square Sq2 maps the

monomial yI to ySq2(I), i.e. Sq2(yI ) = ySq2(I).

Proof. We will proceed by induction on t. When t = 1, let I = [i, i + k − 1] ∈ Dnk
for some n ≥ 1 and k > 1. Then, by using the relation (2.18) together with the Cartan
formula, we have

Sq2(yI ) = y[i−1,i+k−1] = ySq2(I).

Assume that the claim holds for t− 1 so that Sq2(yJ) = ySq2(J) for all J = [c1, d1]∪ . . .∪
[ct−1, dt−1]. For a given I = [a1, b1] ∪ . . . ∪ [at, bt] ∈ Dnk , we define J := I\[at, bt]. Now,

it is easy to verify that if Sq2(J) =
∑t−1

j=1 Jj , then

Sq2(I) = J1 ∪ [at, bt] + . . .+ Jt−1 ∪ [at, bt] + (bt − at + 1)J ∪ [at − 1, bt].

Then, it follows from the induction assumption that

Sq2(yI) = Sq2(yJ · y[at ,bt])

= Sq2(yJ ) · y[at ,bt] + yJ · Sq2(y[at ,bt])

= ySq2(J) · y[at ,bt] + yJ · ySq2([at,bt])

= (yJ1 · y[at,bt] + . . .+ yJt−1 · y[at ,bt]) + yJ · ySq2([at,bt])

= ySq2(I).

2

Proposition 2.24 Let J ∈ Dnk be given, where k > 1. If Sq2(J) = ∅, then there exists

I ∈ Dnk−1 such that Sq2(I) = J .

Proof. Assume that Sq2(J) = ∅ for some J ∈ Dnk , where J = [a1, b1] ∪ . . . ∪ [at, bt].

Then, it follows from the definition of Sq2 that either

(i) a1 = 1 and bj − aj is odd for all j = 2, . . . , t , or

(ii) a1 > 1 and bj − aj is odd for all j = 1, . . . , t,
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Figure 1. Sq2 connections for B5

According to above situations, if we define I ∈ Dnk−1 by either

(i) I := [a1, b1] ∪ . . . ∪ [aj, bj]\{bj − 1} ∪ . . . [at, bt] for some j = 2, . . . , t, or

(ii) I := [a1, b1] ∪ . . . ∪ [aj, bj]\{bj − 1} ∪ . . . [at, bt] for some j = 1, . . . , t,

respectively, it is easy to verify that Sq2(I) = J . 2

Example 2.25 Let J ∈ Dn7 be given by J = {1, 3, 4, 5, 6, 8, 9} for some n ≥ 9 which we
can write as J = [1, 1]∪ [3, 6]∪ [8, 9]. Then,

Sq2(J) =(3 + 1)[1, 1]∪ [2, 6]∪ [8, 9] + (1 + 1)[1, 1]∪ [3, 6]∪ [7, 9]

=∅.
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Following the proof of Proposition 2.24, the image of I1 := [1, 1] ∪ [3, 4]∪ [6, 6]∪ [8, 9] or
I2 := [1, 1]∪ [3, 6] ∪ [9, 9] is exactly J .

If I, J are two elements in Dnk , then we define d(I, J), “the difference of I by J”, to be

the integer |(I\I ∩ J)|.

Proposition 2.26 Given
∑

j∈A Jj ∈ Cnk , where A is an arbitrary index set, such that

Sq2(
∑
j∈A

Jj) = ∅, (2.27)

then there exist
∑

i∈B Ii ∈ Cnk−1 for which

Sq2(
∑
i∈B

Ii) =
∑
j∈A

Jj, (2.28)

where B ⊂ A.
Proof. Firstly, by consideration of Proposition 2.24, we may assume in (2.27) that

Sq2(Jj) 6= ∅ for all j ∈ A. The equation (2.27) implies that∑
j∈A
Sq2(Jj) = ∅.

Suppose that Sq2(Jj) =
∑tj

s=1 Jj,s for each j ∈ A, where we write the sum over all (j, s)

such that Jj,s 6= ∅. Therefore

∑
j∈A
Sq2(Jj) =

∑
j∈A

tj∑
s=1

Jj,s = ∅.

If we define U(j, s) := {(e, f) : Jj,s = Je,f} for any j ∈ A and 1 ≤ s ≤ tj , then it follows
that the number of elements in U(j, s) must be even, since we are working over Z2. It
is also clear from the definitions that if (e, f) ∈ U(j, s)\{(j, s)}, then d(Jj , Je) = 1. Pick
any (e, f) in U(j, s) different than (j, s) and define dj and de to be the elements of Jj and

Je respectively such that dj, de /∈ Jj ∩ Je, and set

U(j) := {e ∈ A : (e, f) ∈ U(j, s) for some s and f}.

Now, let Ij := Jj\{dj}, then Sq2(Ij) =
∑

e∈U(j) Je, which may be obtained easily from

the facts that if Ij = [a1, b1] ∪ . . . ∪ [at, bt], then we have de < bt and Ij ∪ {de} = Je
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for all e ∈ U(j). Finally, we define B to be the subset of A for which j, e ∈ B whenever
U(j) ∩ U(e) = ∅. Thus,

Sq2(
∑
i∈B

Ii) =
∑
i∈B
Sq2(Ii) =

∑
j∈A

Jj ,

from which we deduce Equation (2.28). This completes the proof. 2

Example 2.29 Let J1 + . . . + J4 ∈ Cn5 be given as follows: J1 = {1, 2, 4, 7, 10}, J2 =
{2, 3, 4, 7, 10}, J3 = {2, 4, 6, 7, 10} and J4 = {2, 4, 7, 9, 10}. Then,

Sq2(J1 + . . .+ J4) = Sq2(J1) + . . .+ Sq2(J4)

= [1, 4]∪ [7, 7]∪ [10, 10] + [1, 2]∪ [4, 4] ∪ [6, 7] ∪ [10, 10] + [1, 2]∪ [4, 4]∪ [7, 7]∪ [9, 10]

+ [1, 4]∪ [7, 7]∪ [10, 10] + [2, 4]∪ [6, 7]∪ [10, 10] + [2, 4]∪ [7, 7]∪ [9, 10]

+ [1, 2]∪ [4, 4]∪ [6, 7] ∪ [10, 10] + [2, 4]∪ [6, 7]∪ [10, 10] + [2, 2]∪ [4, 4] ∪ [6, 7]∪ [9, 10]

+ [1, 2]∪ [4, 4]∪ [7, 7] ∪ [9, 10] + [2, 4]∪ [7, 7]∪ [9, 10] + [2, 2]∪ [4, 4]∪ [6, 7]∪ [9, 10]

= ∅.

We see that U(1) = U(2) = U(3) = U(4) = {1, 2, 3, 4}. Therefore, we define I := J1\{1},
which is equal to [2, 2]∪ [4, 4]∪ [7, 7]∪ [10, 10], and

Sq2(I) = [1, 2]∪ [4, 4]∪ [7, 7]∪ [10, 10]

+ [2, 4]∪ [7, 7]∪ [10, 10]

+ [2, 2]∪ [4, 4]∪ [6, 7] ∪ [10, 10]

+ [2, 2]∪ [4, 4]∪ [7, 7] ∪ [9, 10]

= J1 + J2 + J3 + J4.

Proof. [Proof of Theorem 2.17] Combining Lemma 2.23, Propositions 2.24 and 2.26,

we see that ker(Sq2) = Im(Sq2) for any k > 1, which completes the proof. 2

Theorem 2.17 also allows us to compute the Sq2 homology of the Thom space of the
associated line bundle ηi over Bi for any i ≥ 1.

Corollary 2.30 The group H2k(Tηi;Sq2) is trivial for all i and k ≥ 1.
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Proof. This follows from the existence of the homotopy equivalence

ψi+1 : ΣBi+1 → ΣBi ∨ ΣTηi (2.31)

for all i ≥ 1 and k > 1. When k = 1, it is easy to see the map Sq2 : H2(Tηi;Z2) →
H4(Tηi;Z2) is an injection. 2

3. KO-Groups of Bounded Flags

Throughout, we will consider the spectra KO and K representing real and complex K-
theory respectively. There are natural transformations: complexification c : KO∗(X) →
K∗(X), realification r : K∗(X) → KO∗(X), and conjugation
− : K∗(X) → K∗(X). The formulas

r · c = 2: KO∗(X)→ KO∗(X),

c · r = 1 +− : K∗(X)→ K∗(X),

are well known, where c is a ring homomorphism, but r is not. The coefficient rings
K∗(S0) and KO∗(S0) are given as follows.

KO∗ ∼= Z[e, x, y, y−1]/{2e, e3, e · x, x2 − 4y} and K∗ ∼= Z[z, z−1], (3.32)

where z is represented by the complex Hopf bundle over S2 , and e, x and y are represented
by the real Hopf bundle over S1, the symplectic Hopf bundle over S4, and the canonical
bundle over S8 , respectively.

We recall that η1, . . . , ηn are the associated line bundles over Bn with the first Chern
classes x1, . . . , xn respectively, described as in Section 1 . In order to compute the real
and complex K-theory of Bn, we first recall Theorem 2.15, the stable splitting of Bn,
which is possible after one-suspension:

Bn '
n−1∨
i=0

Tηi. (3.33)

It is important to note that in the above decomposition, we consider each ηi over Bi
rather than Bn for every 1 ≤ i ≤ n − 1, while η0 is the trivial line bundle over a point,
whose Thom complex may be identified with CP 1. If we recall the Thom isomorphism

Φ: H2k(Bi;Z) → H2k+2(Tηi;Z) for 1 ≤ k ≤ n and the fact that Bi is a toric variety[3]
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arising from an i-crosspolytope, we see that the group H2k+2(Tηi;Z) is of rank hk when

k ≥ 1, where h = (h0, . . . , hi) is the h-vector of the i-crosspolytope given by hk =
(
i
k

)
for

any 0 ≤ k ≤ i. Generators are given by tixI, where I ⊆ [i] is any subset of cardinality k .

Firstly, we compute the complex K-theory. Let γi be the element in K̃2(Bn) such that

zγi = ηi − 1 ∈ K̃0(Bn) for each 1 ≤ i ≤ n, and let θn be the line bundle over Tηn such

that c1(θn) = tn in H2(Tηn;Z); then tKn = z−1(θn − 1) is the Thom class in K2(Tηn).
Then the corresponding Thom isomorphism expresses K∗(Tηn) as a free module over

K∗(Bn) on generators 1 and tKn .

Proposition 3.34 The multiplicative structure of K∗(Tηn) is determined by (tKn )2 =

tKn γn.

Proof. The construction of tKn ensures that

ch(tKn ) = (eutn − 1)/u = tn(euxn − 1)/xnu,

since t2n = tnxn, where H∗(K) ∼= Q[u, u−1]. Therefore,

ch((tKn )2) = (ch(tKn ))2 = (eutn − 1) · tn(euxn − 1)/xnu2,

= (eutn − 1) · (euxn − 1)/u2,

= ch(tKn ) · ch(γn).

On the other hand, the Atiyah-Hirzebruch spectral sequence for Tηn collapses, since
Tηn has a cell-decomposition concentrated in even dimensions; the Chern character ch is
therefore monic and the result follows. 2

Theorem 3.35 For each n ≥ 1, the complex K-theory K∗(Bn) of bounded flag manifold
is given by

K∗(Bn) ∼= K∗[γ1, . . . , γn]/(γ2
i − γiγi−1, γ2

1). (3.36)

Proof. This follows from (3.33) and Proposition 3.34. 2

In order to compute the KO-groups of Bn, we recall that the E2 and E∞ terms of the

Atiyah-Hirzebruch spectral sequence of K̃O-theory are given by

Ep,q2
∼= Hp(X; K̃Oq(S0)), (3.37)

Ep,q∞
∼= GpK̃O

p+q(X) = F p+qp (X)/F p+qp+1 (X), (3.38)
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where Fmp (X) = Ker[K̃Om(X) → K̃Om(Xp−1)] and Xp−1 is the (p − 1)-skeleton of X.

As for the differentials dp,qr : Ep,qr → Ep+r,q−r+1
r , it follows from Theorem 4.2 of [10] that

dp,−8t
2 = Sq2 ◦ ρ : Hp(X;Z)→ Hp+2(X;Z2),

dp,−8t−1
2 = Sq2 : Hp(X;Z2)→ Hp+2(X;Z2),

(3.39)

where ρ is the mod 2 reduction map.

Theorem 3.40 The groups K̃O2j+1(Tηi) are trivial for any i ≥ 0 and j ∈ Z, except for

K̃O8j−7(Tη0), which is isomorphic to Z2.

Proof. For K̃O−1(Tηi) ∼= K̃O7(Tηi), the E2-term of the spectral sequence is given

by Ep+7,−p
2

∼= Hp+7(Tηi; K̃Op(S0)), which is trivial except for p ≡ 1 (mod 8), where

−7 < p ≤ 2i− 5. Assume that p = 8t+ 1 for some t ≥ 0. Then, by (3.39), we can replace
the sequence

· · · → E8t+6,−8t
2

d8t+6,−8t
2−−−−−−→ E8t+8,−8t−1

2

d8t+8,−8t−1
2−−−−−−−→ E8t+10,−8t−2

2 → · · ·

with

· · · → H8t+6(Tηi;Z) Sq2ρ−−−→ H8t+8(Tηi;Z2) Sq2

−−→ H8t+10(Tηi;Z2)→ · · ·

By Corollary 2.30, it follows that E8t+8,−8t−1
3

∼= 0; hence the spectral sequence collapses
to the E3-term, and the result follows. The proofs of the other cases are similar to that

of K̃O−1(Tηi). On the other hand, since we may identify Tηo with CP 1, it follows from

(3.32) that K̃O−7(Tη0) ∼= Z2. 2

Corollary 3.41 The groups K̃O2j+1(Bn) are trivial for any j ∈ Z, except for K̃O8j−7(Bn),
which is isomorphic to Z2.

Proof. The splitting given by (3.33) induces an isomorphism of groups

K̃O2j+1(Bn) ∼=
n−1⊕
i=0

K̃O2j+1(Tηi), (3.42)

for j ∈ Z. Thus, the claim follows from Theorem 3.40. 2
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Theorem 3.43 The groups K̃O2j(Tηi) are free of rank 2i−1 for any i ≥ 1 and j ∈ Z.

Proof. To show that these groups are free, we consider the fibration U → U/O,
and from the fact that BO × Z = Ω(U/O), we obtain the exact Bott sequence for any
CW -complex X in the form

· · · → K̃Ok(X) → K̃k(X) → K̃Ok+2(X) → K̃Ok+1(X) → · · · . (3.44)

Applying the sequence (3.44) for Tηi and k = −1, we get the exact sequence

· · · → K̃−1(Tηi)→ K̃O1(Tηi)→ K̃O0(Tηi)→ K̃0(Tηi)→ K̃O2(Tηi)→ · · · . (3.45)

By Theorem 3.40, the group K̃O1(Tηi) ∼= K̃O−7(Tηi) is trivial for any i ≥ 1; hence,

K̃O0(Tηi) is a free group. A similar argument will apply to the other cases.
To find the rank of these groups, we consider the related Atiyah-Hirzebruch spectral

sequences. For example, for K̃O0(Tηi) , we have Ep,−p2
∼= Hp(Tηi; K̃Op(S0)), which is

trivial except for p ≡ 0, 2, 4 (mod 8), where 0 < p ≤ 2i + 2.

(i) Let p = 8t for some t ≥ 1. Then, from the sequence

· · · → E8t−2,−8t+1
2

d8t−2,−8t+1
2−−−−−−−→ E8t,−8t

2

d8t,−8t
2−−−−→ E8t+2,−8t−1

2 → · · · , (3.46)

we have that E8t−2,−8t+1
2

∼= 0, since K̃O8t−1(S0) ∼= K̃O7(S0) ∼= 0. By (3.39), we
can replace (3.46) with the sequence

0→ H8t(Tηi;Z) Sq2◦ρ−−−−→ H8t+2(Tηi;Z2)→ · · · ,

from which we obtain that

E8t,−8t
3

∼= Ker[Sq2ρ : H8t(Tηi;Z)→ H8t+2(Tηi;Z2)].

Since the differential dk : Ep,−pk → Ep+k,−p−k+1 (total degree 1) is a zero map

(compare to Theorem 3.40) for any k ≥ 3, the group E8t,−8t
3 will survive to E8t,−8t

∞ .

Moreover, the group E8t,−8t
∞ is isomorphic to h4t−1 copies of Z for each t ≥ 1, where

h = (h0, . . . , hi) is the h-vector of the i-crosspolytope.

(ii) Let p ≡ 2 (mod 8), then p = 8t+ 2 for some t ≥ 0. Then, from the sequence

· · · → E8t,−8t−1
2 → E8t+2,−8t−2

2 → E8t+4,−8t−3
2 → · · · ,
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we see that E8t+4,−8t−3
2

∼= 0, and

E8t+2,−8t−2
3

∼= H8t+2(Tηi;Z2)/Im[Sq2 : H8t(Tηi;Z2)→ H8t+2(Tηi;Z2)],

which is a finite group for any t ≥ 0.

(iii) Let p ≡ 4 (mod 8), then p = 8t+ 4 for some t ≥ 1. Then, from the sequence

. . .→ E8t+2,−8t−3
2 → E8t+4,−8t−4

2 → E8r+6,−8t−5
2 → . . . ,

we deduce that E8t+4,−8r−4
3

∼= H8t+4(Tηi;Z). Similar to the case (i), the group

E8t+4,−8t−4
3 will survive to E∞ so that the group E8t+4,−8t−4

∞ is of rank h4t+1 for
each t ≥ 1.

As a conclusion, since all groups in our filtration are free, all the extension problems are
trivial, and from the well-known formula

h1 + h3 + h5 + . . . =
(
i

1

)
+
(
i

3

)
+
(
i

5

)
+ . . . = 2i−1,

the group K̃O0(Tηi) is isomorphic to Z2i−1
for any i ≥ 1. For the other cases, we can

obtain the results in the same way as the proof of j = 0. 2

Corollary 3.47 (a) K̃O0(Bn) ∼= Z2 ⊕ Z2n−1−1,

(b) K̃O−2(Bn) ∼= K̃O−6(Bn) ∼= Z2n−1
,

(c) K̃O−4(Bn) ∼= Z2n−1−1.

Proof. Once again, we apply to (3.33), from which we obtain an isomorphism

K̃O2j(Bn) ∼=
n−1⊕
i=0

K̃O2j(Tηi), (3.48)

for any j ∈ Z. On the other hand, it follows from (3.32) that K̃O0(CP 1) ∼= Z2,

K̃O−2(CP 1) ∼= K̃O−6(CP 1) ∼= Z and K̃O−4(CP 1) ∼= 0. Now, the claims follow from
Theorem 3.43 and the formula

20 + 21 + 22 + . . .+ 2n−2 = 2n−1 − 1.
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2

Let us explain what we have gained so far. We first recall that from the fibration

O/U
f−→ BU

r−→ BO, (3.49)

we obtain the associated exact Bott sequence for Bn:

. . .→ K̃O−1(Bn)→ K̃O−2(Bn) χ−→ K̃0(Bn) r−→ K̃O0(Bn)→ K̃O7(Bn)→ . . . ,

which links the real and complex K-theory through the realification homomorphism
r. Here, χ is induced by f and may be identified with z−1 · c by composing the
complexification homomorphism with multiplication by z−1.

When combined with Corollary 3.41, it reduces to a short exact sequence

0→ K̃O−2(Bn) χ−→ K̃0(Bn) r−→ K̃O0(Bn)→ 0. (3.50)

Therefore, if Kn denotes the kernel of r : K̃0(Bn) → K̃O0(Bn), then it follows that

Kn ∼= K̃O−2(Bn) ∼= Z2n−1
by Corollary 3.47. We note that since χ is a monomorphism

in this case, the group Kn can be identified with the set of stably complex structures on
Bn .

References

[1] A. Bahri and M. Bendersky. The KO-theory of toric manifolds. Transaction of American

Mathematical Society, 352, 3: 1191-1202, 2000 .

[2] V.M. Buchstaber and N. Ray. Flag manifolds and the Landweber-Novikov algebra. Geom-

etry and Topology, 2: 79-101, 1998.

[3] Y. Civan. The Topology of Families of Toric Manifolds. PhD Thesis, University of

Manchester, 2001.

[4] Y. Civan and N. Ray. Homotopy decompositions and real K-theory of Bott towers. In

preperation, University of Manchester, 2002.

[5] M. Fuji. KO-groups of projective spaces. Osaka Journal of Mathematics, 4: 141-149, 1967.

[6] H. Miller. Stable splitting of Stiefel manifolds. Topology, 24: 411-419, 1985.

[7] N. Ray. On a construction in bordism theory. Proceedings of the Edinburgh Mathematical

Society, 29: 413-422, 1986.

462
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