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Abstract

We describe a variety of symplectic surgeries (not a priori compatible with
Kaehler structures) which are obtained by combining local Kaehler degenera-
tions and resolutions of singularities. The effect of the surgeries is to replace
configurations of Lagrangian spheres with symplectic submanifolds. We discuss
several examples in detail, relating them to existence questions for symplectic
manifolds with c1 > 0, c1 = 0, c1 < 0 in four and six dimensions.

1. The local model

Given an isolated analytic hypersurface singularity 0 ∈ X0 := {f(z) = 0} ⊂ C
n+1

one can form the smoothing Xt = {f(z) = t} and the resolution X̂ → X0, obtained by
(repeatedly) blowing up the origin. These two associated spaces have the same link – that
is, the intersection S2n+1 ∩ f−1(0) – and there is a smooth surgery which replaces the
smoothing by the resolution, or vice-versa. Thinking of the smoothing as Kähler (and so
symplectic) by restriction of the standard Kähler form on Cn+1, the smoothing also looks
somewhat like a resolution by symplectic parallel transport, described below. The result
is that there is a canonical map or ‘Lagrangian blow up’ X0 ← Xt whose ‘exceptional
locus’ (the inverse image of the singular point 0 ∈ X0) is a Lagrangian cycle, in fact a
collection of Lagrangian spheres [21]. So the surgery replaces configurations of Lagrangian
spheres by complex (symplectic) subvarieties. Symplectic parallel transport also shows
that the Xts are all isomorphic as symplectic manifolds, so denoting any such symplectic
manifold by X, we can denote this surgery by the diagram (motivated by smoothings and
resolutions in algebraic geometry)

X̂
↓
X0 ← X.

(1)

More general singularities, including complete intersections and some non-isolated sin-
gularities, can be treated similarly; for simplicity we will restrict attention to isolated
hypersurface singularities.

We briefly remind the reader about symplectic parallel transport [21]. The total space
X = {Xt}t∈C

p−→ C is naturally a smooth symplectic submanifold of C
n+2: X = {(z, t) ∈
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Cn+1×C : f(z) = t} ⊂ Cn+2. Away from the origin, there is a natural connection on this
family of Xts, whose horizontal subspaces of the tangent bundle TX are the annihilators
under the symplectic form of Tp = ker(dp), the fibrewise tangent bundles of the fibres
TXt. Parallel transport along this connection identifies fibres Xt ∼= Xs (for s, t 6= 0),
and preserves the symplectic form on the fibres, so that the isomorphism is of symplectic
manifolds. Following the transport as t → 0 gives in the limit the map Xt → X0 above,
collapsing the Lagrangian sphere vanishing cycles of the singularity. (That these cycles
are spheres follows from Morsifying f before totally smoothing it to f − t, and invoking
the situation for ordinary double points as described in [21].)

The resolution is also Kähler (and so symplectic) as the blow up of X0 sits naturally
in Cn+1×Pn. (Small resolutions may not be naturally Kähler, however, or there may be
choices involved, leading to obstructions in patching these choices in a global situation;
more of this later.) So in a natural way the surgery (1) is symplectic. This can also be
seen in a different way, as an instance of “gluing along convex boundaries”. Removing
a small tubular neighbourhood of the Lagrangian vanishing cycles, the boundary of the
resulting manifold is ω-convex [7] and (by parallel transport) contactomorphic to the ω-
convex link of the exceptional divisor in the blow-up. The Lagrangian and complex fillings
of this link can then be exchanged by a symplectic surgery [7]. In many cases of interest
(for instance singularities arising from weighted homogeneous polynomials) the link is
fibred by circles – leaves of the characteristic foliation – on which the symplectic form is
degenerate. Quotienting out by these circles gives a space with a symplectic form; this is
the blow up of the singularity. (If it is singular we can blow up again.) The choice of the
size of the neighbourhood of the vanishing cycles goes over to the size of the symplectic
form on the Pn factor of Cn+1 × Pn ⊃ X̂.

This paper describes work still in progress; we discuss several surgeries which fit into
the above framework, but the examples to which they give rise need further study. For
now, we will motivate the idea that they should be useful in addressing various existence
questions for symplectic structures. After clarifying the global symplectic geometry of
the surgeries below, the subsequent sections deal with surgeries relevant to symplectic
manifolds with c1 > 0 (Fano), c1 = 0 (Calabi-Yau) and c1 < 0 (general type) respectively.

2. The global model

Suppose we have a symplectic manifoldX containing a configuration C of Lagrangians,
with a neighbourhood U(C) isomorphic to the neighbourhood of the vanishing cycles of a
Kähler manifold which has a Kähler degeneration collapsing C to an isolated hypersurface
singularity. (We discuss below conditions which can ensure this; see Proposition 7.3 for
instance.) More generally, suppose X contains finitely many disjoint such configurations,
all locally the vanishing cycles of (possibly different) Kähler degenerations.

Collapsing these Lagrangians gives a singular space with a neighbourhood of each
singular point p isomorphic to a neighbourhood V (p) ⊂ Cn+1 of the above singularity.
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Moreover this isomorphism takes the symplectic form ωX on X to the restriction of ωCn+1

to V (p). Pulling back ωX to the blow-up X̂ of X at the singular points gives a 2-form ω
degenerate only along the exceptional locus E.

Assume for simplicity this blow-up X̂ is smooth; if not we can iterate the following
process. Let σ be a closed 2-form on X̂ Poincaré dual to −[E] supported on the neigh-
bourhood of E that is the pull back of the Kähler neighbourhood of the singularity above.
On this neighbourhood σ is cohomologous to the Kähler form used in the local model
above (restricted from Cn+1 × Pn), and so can be taken to be equal to this Kähler form
in a (smaller) neighbourhood U of E. Then we claim that for 0 < ε � 1, ω + εσ is
symplectic globally on X̂ .

Since nondegeneracy is an open condition, this is clear on X̂\U for small enough ε,
and on E itself. On U\E it follows from the fact that both σ and ω are compatible with
the local complex structure inherited from the local Kähler model; therefore any convex
linear combination of the two forms is also symplectic by an observation of Gromov.

The size of ε is determined by the areas of curves inside the exceptional divisor E,
which in turn is related to the volume of the neighbourhood U(C). This phenomenon is
well-known from symplectic blowing up at smooth points [12], cf. (3.1) below.

3. The ordinary double point

Let (X, ω) be a symplectic manifold and L ⊂ X a Lagrangian sphere. According to a
theorem of Weinstein, a neighbourhood of L in X is symplectomorphic to a neighbourhood
of the zero-section L0 in the cotangent bundle T ∗L, equipped with its canonical symplectic
structure. Slightly less well known is the existence of a symplectomorphism({

n+1∑
i=1

z2
i = 0

}
\{0}, i

2

∑
dzj ∧ dzj

)
∼= (T ∗Sn\Sn0 , dp ∧ dq) (2)

although this can be given in a straightforward manner in co-ordinates, for instance by
taking (zj = aj+ibj)j 7→ (aj/|a|,−|a|bj)j. Here we have used the round metric to identify
T ∗Sn and TSn. The same map defines a global isomorphism from T ∗Sn to {

∑
z2
j = t}

when t is real and positive, explicitly exhibiting the cotangent bundle as a smoothing of
the singularity (and there is a similar map for all t ∈ C∗). The space W on the left hand
side of (2) is a punctured neighbourhood of the n-fold ordinary double point or node.
This admits a holomorphic desingularisation by blowing up the origin, which gives an
exceptional divisor a complex quadric Qn−1 ⊂ Pn. The total space of the normal bundle
L to this quadric in the resolution admits two natural maps: the projection to Qn−1, and
a map to Cn+1 (whose image lies inside the singular space W ), which we label

Qn−1
p←− L π−→ Cn+1.
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We can define a model family of symplectic forms on the neighbourhood of the exceptional
divisor in the resolution by setting

ρλ = π∗ωCn+1 + λ2p∗ωQn−1

where the form on Qn−1 is the restriction of the Fubini-Study form1 to Qn−1 ⊂ Pn. The
form ρλ gives the generators of H2(Qn−1) equal size πλ2 (the generator is unique unless
n = 3). Moreover let B(δ) denote the ball of radius δ in Cn+1.

Lemma 3.1. There is a symplectomorphism between [π−1B(δ)\Qn−1, ρλ] and the “shell”
[(B(
√
λ2 + δ2)\B(λ)) ∩W,ωCn+1)].

Proof. There is a diagram Pn ← L̃ → Cn+1 arising from blowing up the origin in Cn+1,
with L̃ the total space of the O(−1) line bundle over Pn. Denote by ρ̃λ the form π̃∗ωCn+1 +
λ2p̃∗ωPn , in an obvious notation. Then according to ([12], Lemma 7.11 or Lemma 6.40 in
the 1st edition) there is a symplectomorphism z 7→ F ◦ π̃(z) between (π̃−1B(δ)\Pn, ρ̃λ)
and (B(

√
λ2 + δ2)\B(λ), ωCn+1 ), where F is the radial map z 7→ (

√
|z|2 + λ2/|z|)z. The

map F preserves the quadric W , so there is an induced map F ◦π between the spaces given
in the Lemma. Since the symplectic structures on these are induced from the ambient
Pn × Cn+1 by restriction, this is a symplectomorphism.

This formalises the way in which we can perform the obvious surgery, by removing
B(
√
λ2 + δ2) and gluing back π−1B(δ), in a manner compatible with symplectic forms.

It is worth emphasising that although the blow-up of a singular projective variety will
always remain projective (hence Kähler), in general there may be more symplectic degen-
erations of a projective variety than exist holomorphically; we can perform the symplectic
surgery above starting with any Lagrangian sphere, and not just a vanishing cycle for a
complex degeneration. Of course, the difference between these two classes (if any) is
largely mysterious.

The formalism above motivates the question of determining the maximum possible value
of λ that one can take in (3.1). This is analogous to “symplectic packing” questions, only
looking not for symplectically standard balls but for symplectically standard (Lagrangian)
disc bundles over Lagrangian submanifolds. One reason to focus on this variant of a
packing number is given by the following (itself a variant of ideas of symplectic inflation).
Fix once and for all a model of T ∗Sn as {(u, v) ∈ Rn+1 ×Rn+1 | |u| = 1, 〈u, v〉 = 0}, and
regard all Lagrangian spheres as parametrised by the zero-section in this model equipped
with the standard form du∧ dv. Let us say a symplectic manifold is a symplectic Fano if
[ω] = c1(TX, ω) ∈ H2(X,Z). These are essentially the well-known “monotone” symplectic
manifolds, although to fix the constants in the next Lemma it is important that [ω] and
c1 co-incide and are not just positively proportional.

1Our convention throughout the paper is that the (Fubini-Study) symplectic form on Pn is given by
quotienting the Hopf circles in the unit sphere in Cn+1 and descending the standard form

P
dxj ∧ dyj ,

and this gives a line P1 ⊂ Pn area π.
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Lemma 3.2. Let (X, ω) be a symplectic Fano 6-manifold and L ⊂ X a Lagrangian
sphere. If {v ∈ T ∗S3 | |v| ≤ µ} symplectically embeds inside X for any µ > 1

2π then
the manifold Y obtained by surgery along L admits symplectic structures in the cohomol-
ogy class c1(Y ).

Proof. The first Chern class of X is zero on the Lagrangian L, so lifts to a class c1(X) ∈
H2(X,L) ∼= H2(Y, E) → H2(Y ), with E ∼= P1 × P1 the exceptional divisor. By the
adjunction formula its image satisfies c1(Y ) = c1(X) − [E]. On the other hand, the
cohomology class of the form ρλ given above is given by [ωX ]−πλ2E. (We again identify
[ωX ] with an element of H2(Y ), and the factor of π enters because a line in projective
space, equipped with the Fubini-Study form as per our conventions, has area π.) We
would therefore like to take λ = 1/

√
π in performing the surgery. On the other hand,

using the local model (2), one can check that the ball (B(
√

1/π + δ2), ωC3) symplectically
embeds inside {v ∈ T ∗S3 | |v| ≤ 1/2π + δ2/2}. This is just because |z|2 ≤ R ⇒ |v| =
|<(z)||=(z)| ≤ R/2. The result follows.

In four dimensions, it is known that every symplectic Fano is in fact a del Pezzo surface
[11], and so Kähler. (The above surgery would not be relevant in 4 dimensions, as it
produces a symplectic −2-curve on which c1 is zero, not positive.) In higher dimensions,
there is no analogous result, nor is any counterexample known. Lemma (3.2) provides
a symplectic surgery that preserves the class of symplectic Fanos. It can be applied
in two directions. On the one hand, there is a classification of Fano 3-folds [14] and
one can look for symplectic non-Kähler Fanos; on the other, restrictions on symplectic
Fanos will translate into packing-type bounds for neighbourhoods of Lagrangian spheres.
For instance, there is a Lagrangian sphere inside (P2 × P1, 1

π
(−3ωFS ⊕ 2ωFS)) given as

follows. Embed a ball B(
√

2/π) ⊂ P2 with the standard Euclidean symplectic form on
the left and 3/π times the Fubini-Study form on the right. The boundary S3 of this ball
maps into P2 × P1 via the graph of the Hopf map, and is Lagrangian with respect to the
chosen form (which induces the usual orientation on each factor and is normalised so that
c1 = [ω]). Alternatively, we can remove the minus sign, yielding a symplectic form on
P2 × P1 deformation equivalent to the usual Kähler form, if we compose the Hopf map
with the antipodal map of P1 in the definition of the Lagrangian sphere.

Question 3.1. Is there a symplectic embedding of the µ-disc bundle of T ∗S3 into (P2 ×
P1, 1

π (−3ωFS ⊕ 2ωFS)) for any µ > 1/2π?

If the answer to this question is yes, then there are symplectic Fano manifolds which
are not Kähler. For according to the previous Lemma, the transition of P2 × P1 in the
Lagrangian would be a symplectic Fano. This manifold would have b2 = 4, with two new
H2 classes coming from the rulings of the exceptional divisor (and classes in H4 coming
from the divisor, and the lift of a 4-chain bounded by the Lagrangian). However, the
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almost complex structure underlying this symplectic structure has c31 = 52, which is not
realised by any Fano 3-fold with b2 = 4, according to the classification lists of [14]2.

On the other hand, if the question has a negative answer, this gives a new kind of
packing obstruction: for the volume of the (1/2π)-disc bundle is strictly less than the
volume of P2 × P1 with the Fano symplectic form.

Incidentally, the result of the surgery above again contains a symplectic two-sphere with
trivial normal bundle (coming from the diagonal curve inside P1×P1 viewed inside the to-
tal space ofO(−1,−1)). However, a few moment’s reflection with Gromov’s non-squeezing
theorem shows that the symplectically trivial neighbourhood of this curve is not large
enough to (necessarily) contain a Lagrangian sphere by the prescription above, so we
cannot expect to iterate the surgery symplectically.

4. Small resolutions

The ordinary double point has special features in six real dimensions, where the ex-
ceptional divisor Q2 has two dimensional second homology. In fact, Q2

∼= P1 × P1 and
there are small resolutions of the 3-fold node in which either of the two rulings of Q2 are
contracted (i.e. replace the singular point by just a rational curve). The two possible
small resolutions differ by a flop, as described extensively in [22]. Explicitly, writing the
node as {xy = zw} ⊂ C4, the small resolutions are given by taking the graphs of two
distinct maps to P1, namely (x/z = w/y) and (x/w = z/y).

Now in contrast to blow-ups, small resolutions are not operations within the projective
or Kähler category, but they have another special feature: they preserve the first Chern
class of the manifold. This gives a route to searching not for exotic Fano manifolds, as
above, but exotic Calabi-Yaus, at least under appropriate conditions for the surgery to
exist symplectically at all. These were investigated in [22], where the surgeries given
by replacing a Lagrangian 3-sphere by a symplectic two-sphere were called “conifold
transitions”.

Theorem 4.1. Let X be a symplectic six-manifold containing disjoint Lagrangian spheres
L1, . . . , Ln for which

∑
λi[Li] = 0 ∈ H3(X,Z) (with all λi 6= 0). Then at least one of the

conifold transitions of X in the {Li} admits a symplectic structure.

Sketch. We regard the existence of the homology relation as given by a four-chain with
boundary the union of the Lagrangian spheres. The boundary is collapsed in the nodal
space, giving a closed four-cycle which lifts to any small resolution. Flopping gives a
cycle D hitting each resolving P1 positively (with intersection number |λi|). This cycle
now plays the role taken by the exceptional divisors of blow-ups in the argument given
in “The Global Model”; it is at least cohomologically positive on the exceptional curves.
Some local analysis then shows that we can choose a two-form σ Poincaré dual to D such
that the form ωX + εσ is globally symplectic for all 0 < ε� 1: see [22] for details.

2Recently, Mori has announced a gap in [14]; there is an additional Fano 3-fold with b2 = 4, but with
c31 = 26, given by the blow-up of P1×P1×P1 along a (1,1,3) curve.
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As explained in [22], this theorem is related via mirror symmetry to an operation on
complex 3-folds studied by Clemens, Friedman and Tian – this operation being the obvious
inverse process, in which rational curves are contracted to give ordinary double points,
and one looks for sufficient conditions to have a complex smoothing of the resulting nodal
variety. It is not hard to find examples in which the theorem can be applied; for instance,
the Lagrangian 3-sphere exhibited as the graph of a Hopf map, embedded in X × P1

for any symplectic four-manifold X ⊃ S3 and an appropriate product symplectic form
ωX ⊕ (−ωFS), certainly satisfies [L] = 0 ∈ H3. In general, the resulting manifolds can
be Kähler; for instance, if the Li are the vanishing cycles of a Kähler degeneration and
satisfy a relation as in (4.1) the result reduces to an old theorem of Werner [25].

Here is an illustrative (and suggestive) example. Cohomology classes of Kähler forms
always have special properties [9]. For instance, if ω is a Kähler form on a six-manifold
then the pairing H4×H4 → R given by (A,B) 7→ A ∩ B ∩ PD[ω] is non-degenerate
(Hard Lefschetz theorem) and of signature (1 + 2h2,0, h1,1− 1) (Hodge-Riemann bilinear
relations). If b2(X) = 3 the latter condition implies that the matrix of the bilinear
form ∩[ω] has positive determinant, having an odd number of positive eigenvalues. Fix
a split Kähler structure βωP2 ⊕ αωP1 on P2 × P1, with α, β > 0. The manifold contains
a Lagrangian sphere L, the graph of the composition of the Hopf map and the antipodal
map on P1, precisely when β > α. (To see this, note that the volume β2π2/2 of P2 is
exactly filled by a symplectic ball of radius

√
β in C2, whilst the boundary of the ball

of radius
√
α induces a form on P1 of volume πα.) Both conifold transitions along L

admit symplectic structures; if we flop the resolving sphere then change D 7→ −D, in the
notation of the proof of Theorem (4.1). The symplectic forms guaranteed by the theorem
have the form Ωε = π∗ω± εPD[D], for some small ε. By computing Chern numbers, one
can see that the conifold transitions are not given by (say) blowing up a rational curve
inside P1 × P2, so they seem to have no obvious Kähler construction.

Proposition 4.2. The determinant of the matrix given by cap product with Ωε is positive
for small ε if and only if β > α.

Proof. We will work in the standard complex orientations on both factors. However, to
simplify some formulae and remove the antipodal maps, we will take the flipped symplectic
structure αωP1 ⊕−βωP2 . To describe the intersection form of the conifold transitions, we
will first need to describe the cycles on these spaces. According to [1], the twistor space
of R4 is isomorphic to the total space of O(1) ⊕ O(1) → P1, so taking duals we obtain
an isomorphism between O(−1)⊕2 and S2

J × (R4)∗. Here the first factor parametrises the
complex structures on (R4,

∑
dxi ⊗ dxi) and at a point j ∈ S2

J the complex structure on
{j} × (R4)∗ is that induced from the natural isomorphism (over R) between the complex
dual of (R4, j) and the real dual space (R4)∗. Combining with (2) and bearing in mind
the discussion of ([22], Appendix) we obtain a map

S2
J × (R4\{0}) → T ∗S3; (j, v) 7→ (v/|v|, jv). (3)
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This is a diffeomorphism off zero-sections, and we use this map to exhibit a small resolu-
tion; in other words, we replace L by S2

J via this map.

Consider the 3-sphere U = {([w], w) ∈ P1 × S3} where S3 = ∂B ⊂ P2 is the boundary
of a standard embedded Euclidean ball B4 of appropriate radius. Fix a vector v ∈ C2

of length 1. U intersects [v] × P2 transversely along a Hopf circle S1 = {([v], eiθv)}, and
locally about this S1 the copy of P2 can be smoothly identified with

T ∗S3|S1 ∼=
{

(eiθv, λjeiθv) | λ ∈ (0,∞), j ∈ S2
J

}
⊂ T ∗S3.

Via the map (3) this corresponds to a (non-complex) real rank two bundle

S2
J ×R〈v, iv〉 ⊂ S2

J × R4. (4)

Let |P2| denote the proper transform of the chain [v] × P2 in the small resolution, given
by taking the closure of its image under (3) when we include back the zero-section on the
LHS. Since [v] × P2 and [w] × P2 are disjoint for [v] 6= [w] the proper transforms meet
only along the exceptional curve S2

J , and hence the triple intersection (|P2|)3 is given by
the Euler class of the normal bundle of S2

J inside |P2|. However, we have argued that
locally near the resolving sphere |P2| looks like (4), and hence this Euler class is trivial:
|P2|3 = 0.

Now let R denote the chain {([w], w) ∈ P1 × C2 | |w| ≤ 1} with boundary U . Abstractly,
this is isomorphic to the disc bundle of the O(−1) line bundle over P1, or the blow-up
of the disc D4 at the origin. Write |R| for its proper transform in the small resolution.
We claim that |R|2 · |P2| = −1. First, we try to move R off itself. Let Φt be the flow
w 7→ w cos(t) + jw sin(t) giving

R′ =
{

([w],Φ1−|w|(w)) ∈ P1 × B4 | |w| ≤ 1
}
.

This flow fixes the P1 at the origin, the U = S3 at the boundary, and nothing else. Hence
|R′| ∩ |R| comprises the P1 at the origin, together with a contribution from S2

J ; moreover,
locally about the P1 both |R| and |R′| look like O(−1). We have already observed that
|P2| ·S2

J = 0 and hence |R|2 · |P2| can be computed inside P2×P1 as ([v]×P2) · [−P1] = −1.
To justify the sign, argue as follows. If [w] ∈ P1 is fixed, the cycle R is given by a fibre
〈w, iw〉 of O(−1), which is a complex line, whilst Φ is a perturbation in the direction
〈jw, jiw = −kw〉, where these span an anticomplex line. It follows that R and R′ meet
transversely but negatively along the zero-section.

From these two intersection calculations, we can deduce the result. Take as ordered
basis for H4 of the conifold transition the cycles |P2|, |P1 × P1| and |R|. Thinking of the
P1 × P1 ⊂ P1 × P2 as having a line at infinity in the second factor, it is immediate that
|R| ∩ |P1 × P1| = ∅, from which we deduce:

|P1 × P1| · |P2|2 = 0; |P1 × P1|2 · |P2| = 1; |P1 × P1| · |R|2 = |P1 × P1|2 · |R| = 0.

Denote the remaining triple intersection numbers |P2|2 · |R| = A and |R|3 = B for integers
A,B. From ([22], Proof of Theorem 2.9) it follows that A = ±1, since near U our four-
chain R is exactly a collar neighbourhood as described in (op.cit). (Locally, then, R
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defines a complex surface in the small resolution which either meets the exceptional P1

transversely in a point or contains it with normal bundle O(−1).) The symplectic forms
on the two conifold transitions have Poincaré dual homology classes

PD[Ωε] = α[|P2|]− β[|P1 × P1|]± ε[|R|]

with α, β both strictly positive. (Note that here the second term is −β because with
respect to −ωP2 we reverse the sign of the generator of H2(P2). However, the only non-
trivial triple product involving the four-cycle P1×P1 is |P1×P1 |2 · |P2|, where it occurs as
a square and the sign is irrelevant.) In the given ordered basis, the matrix which encodes
the bilinear form ∩[Ωε] on H4 is the following: ±εA −β αA∓ ε

−β α 0
αA∓ ε 0 −α± Bε

 =

 0 −β αA
−β α 0
αA 0 −α

 + O(ε).

The determinant of this matrix is β2α − α3A2 + O(ε) = α(β2 − α2) + O(ε), which is
positive if β > α, and this completes the proof.

The possibility of finding non-Kähler examples of the surgery is made more interesting by
a question of Donaldson [5], who asked if every Lagrangian sphere in a complex algebraic
variety arises as the vanishing cycle for some Kähler degeneration. Given a symplectic
six-manifold X containing a Lagrangian sphere which is trivial in homology, we can form
the conifold transition and the blow-up of the nodal space, and by Theorem 4.1, resp.
Section 2, each has a distinguished deformation class of symplectic forms (at least once
we fix the four-chain bounding the Lagrangian).

Proposition 4.3. In the situation above, suppose that X is Kähler with h2,0 = 0, and
that the Lagrangian can be collapsed in a Kähler degeneration. Then the above symplectic
forms on the conifold transition are Kähler.

Proof. h2,0 is constant in the Kähler degeneration (by the constancy of h2,0 + h1,1 + h0,2

and the upper semicontinuity of each term), and by standard technology (e.g. mixed
Hodge structures) h2,0 remains zero on the big resolution. Also using h2,0 = 0 we see
that X and the big resolution are in fact projective, with hyperplane class [H ] arbitrarily
close to a high multiple of any given symplectic form in the distinguished family. So we
may as well choose the original symplectic form on X to be projective.

Since [L] = 0 ∈ H3(X) the proper transform of a chosen bounding four-chain gives a
cycle on the big resolution which hits one P1 in the exceptional divisor and not the other
([22] Theorem 2.0); h2,0 = 0 implies that this cycle can be taken to be a divisor D.

Since D intersects one ruling of the exceptional divisor but on the other, we can find a
linear combination of D and H which is ample except that it evaluates to zero on precisely
one of the two rulings. Taking the map to PN associated to the linear system of a high
multiple of such a class will contract (only) this ruling and yield the small resolution. By
varying the linear combination we get all (high multiples of) the symplectic forms ωX+εσ
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(using the notation of the proof of Theorem 4.1) with ε rational. The others follow by
continuity.

Hence, if the (distinguished deformation class of forms on the) conifold transition of a
projective variety with h2,0 = 0 (e.g. P1×P2) in a single Lagrangian L is non-Kähler, this
Lagrangian is not a vanishing cycle for any Kähler degeneration. (More general conifold
transitions presumably give rise to configurations of Lagrangians that are not simulta-
neously realised as vanishing cycles.) This opens another approach to proving certain
Lagrangian spheres are not vanishing cycles of Kähler degenerations: employ Lemma 3.2
to see that the full blow-up is Fano, and then invoke the Mori-Mukai classification of Fano
3-folds. (We would like to use Fano-ness since there is no general classification of 3-folds
and, as above, it seems hard to violate other topological constraints such as the Hard
Lefschetz theorem via conifold transitions.)

The following is also relevant to Donaldson’s question, tackling it from a Calabi-Yau,
rather than Fano, perspective. Recall that a Calabi-Yau 3-fold is rigid if b3 = 2; equiva-
lently h2,1 = 0 = h1(TX), i.e. it has no complex deformations.

Lemma 4.4. An essential Lagrangian sphere in a rigid Calabi-Yau 3-fold Z is never a
vanishing cycle.

Proof. If we have a flat family of varieties over the disc, with one fibre Z and central
fibre nodal, then we may pick a fibrewise holomorphic 3-form varying holomorphically
and not tending to zero at the central fibre (the pushdown of the relative canonical sheaf
is torsion free rank 1, and so a line bundle, so we may pick a nowhere zero section). Thus
the period

∫
L

Ω does not tend to zero and L is not collapsed.

If we could find sufficiently “degenerate” Lagrangian spheres, we would certainly have
non-algebraic surgeries.

Lemma 4.5. If L ⊂ X is a Lagrangian three-sphere which bounds a smoothly embedded
four-ball in X, the conifold transition of X in L is not homotopy Kähler.

Proof. On collapsing the S3, the D4 becomes an S4 that lifts to one of the small resolutions
[22] (and P2 in the other). Its H4 class is nonzero (it intersects the exceptional P1 in +1)
but has intersection zero with all other H4 classes (as the intersection factors through
H2(S4) = 0). This would contradict the Hard Lefschetz theorem, so the manifold is not
Kähler, though it is symplectic by (4.1).

It is not clear if such “contractible” Lagrangian 3-spheres can ever exist in closed sym-
plectic six-manifolds, although the existence of such spheres in fake symplectic R6s [15]
indicates that any obstruction would be global. In the Calabi-Yau context, there are
no known examples even of homologically trivial Lagrangian 3-spheres. Nonetheless, the
existence of the symplectic conifold transition makes it very plausible that there are fami-
lies of symplectic non-Kähler Calabi-Yaus. For instance, the quintic hypersurface Q ⊂ P4

is a Calabi-Yau with b3(Q) = 204. There are well-known examples of nodal quintics
containing as many as 130 nodes [23], whose projective small resolutions are rigid.
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Question 4.1. Is there a rigid Calabi-Yau 3-fold Q containing a Lagrangian 3-sphere ?

As in the previous section, all answers to the question are interesting. Suppose first
the answer is positive, and that there are two disjoint essential Lagrangian spheres which
(necessarily) satisfy a relation as in (4.1). Then the small resolution given by the Theorem
above would be a symplectic Calabi-Yau 3-fold with trivial third Betti number. This could
not be Kähler, since the cohomology class of a holomorphic volume form on a Calabi-
Yau is necessarily non-zero. If an essential sphere exists but satisfies no good homology
relation, we obtain examples of Lagrangian spheres in algebraic varieties that can never
arise as vanishing cycles for complex degenerations, via (4.4). Finally, as remarked above,
there are no known examples of homologically trivial 3-spheres in Calabi-Yaus, so even
the existence of an inessential sphere in Q would be novel.

In a slightly different direction, one can show that the existence of the surgery (4.1)
implies that either there are quintic 3-folds with j nodes for every large j ≤ 130 – itself
rather surprising – or there are non-Kähler symplectic Calabi-Yaus, given by conifold
transitions on the examples from [23].

5. Fibre products and triple points

Let us consider one more complicated instance of passing from a configuration of
Lagrangian vanishing cycles to a new symplectic manifold containing a symplectic ex-
ceptional divisor. This will show that these more complicated surgeries can indeed be
amenable to explicit computation and construction. Again motivated by a desire to find
new symplectic manifolds with c1 = 0, we pass from double points to 3-fold triple points,
that is isolated singularities of the form

R = {x3 + y3 + z3 +w3 = 0}.
The singularity at the origin can again be resolved by a single blow-up, and now the
exceptional divisor E is a cubic surface in P3 (abstractly diffeomorphic to the six-fold
blow up of P2, so b2(E) = 7). Its normal bundle in the resolution is OP3(−1)|E = KE , so
by the adjunction formula the blow-up has trivial canonical bundle over E; in particular
the transition preserves the Calabi-Yau condition.

Before describing the smoothing of the singularity, it will be helpful to introduce a
pretty construction of Lagrangian spheres (hence of degenerations, or Lagrangian blow-
downs), often appropriate to the Calabi-Yau setting. Given a pair of smooth surfaces Si
fibred over a curve C, we can form their fibre product S1×C S2, as used so effectively by
[18], for example. To analyse its singularities, we look at the local model

Si = {fi(xi, yi) = t)} ⊂ C2 ×C,
fibred over C by the t variable. The fibre product, then, is locally the threefold

S1 ×C S2 = {f1(x1, y1) = f2(x2, y2)} ⊂ C2 × C2.

So we see that there are only singularities (x1, y1, x2, y2) if both points (xi, yi) lie on
singular fibres above the same point t of C, at the singular points. So for instance if both
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fi define double point singularities in the curve fibres over t = 0, fi(xi, yi) = xiyi, say,
then the threefold also has a double point x1y1 = x2y2. More generally degree n curve
singularities fi = xni + yni give degree n threefold singularities xn1 + yn1 = xn2 + yn2 . We
discuss the n = 3 triple point case presently.

To smooth such singularities we can first Morsify the fi to reduce to double points, then
move one fibration by an automorphism of the base to move its singular fibres away from
those of the other surface. The Lagrangian S3 vanishing cycle of this latter smoothing is
easily described. Take a path γ in the base from the image of the singular fibre of S1 to
that of S2. Over this, by symplectic parallel transport, lies a fibration by S1 vanishing
cycles for the curve double point in the curve fibres of Si. Taking the fibre product of
these two fibrations over γ gives a T2 = S1 × S1-fibration with the property that one S1

factor collapses at one end of γ and the other at the other end. See Figure 1. Thus over
each half of γ we get a solid torus handlebody, glued together to form an S3. This is
easily seen to be Lagrangian by putting the fibre product into the full product, equipped
with the product symplectic form.

γ

⊆ S2

⊆ S1

⊆ P
1

π

ba

× × ×

Figure 1. Fibred Lagrangian three-spheres.

With this background, we can study the smoothing of the 3-fold triple point singularity.
A helpful picture of the configuration of vanishing cycles, similar to a description given
already by Ebeling [3], is given in the following (note that the singularity has Milnor
number 16):

Lemma 5.1. Let R′ be the smoothing of a triple point singularity. Then R′ contains a
configuration of 16 Lagrangian spheres with intersections as indicated in Figure 2.
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)3+η t = ( ε
3

)3

Figure 2. The vanishing cycles of the 3-fold triple point, T2-fibred over the
paths in P1 on the left

Proof. We take as model for the triple point a fibre product of two elliptic fibrations
Ei → P1 each of which contain a two-dimensional triple point {xy(x + y) = 0} inside a
torus fibre. So locally the surfaces look like xy(x+y) = t and uv(u+v) = t; the threefold
fibre product then is locally xy(x + y) = uv(u+ v) – a triple point.

To smooth this, we move the fibre products apart by changing t to t− η in the second
fibration, and then Morsify them both by replacing xy(x + y) = t by xy(x + y + ε) = t.
(So the threefold is now locally xy(x+ y + ε) = uv(u+ v + ε) + η.) This new surface has
only nodes in its fibres, at

(x, y, t) ∈
{

(0, 0, 0), (0,−ε, 0), (−ε, 0, 0),
(
−ε

3
,−ε

3
,
( ε

3
)3)}

.

That is, the fibre over t = 0 is 3 P1s, with the vanishing cycle of the node over t =
(
ε
3

)3
being the essential loop (“triangle”) in this triangle of P1s; this is contracted to the original
curve triple point (3 coincident lines) as ε→ 0. (In Kodaira’s notation [2], these triangles
of rational curves are called I3 singular fibres.)

Labelling the 3 nodes over t = 0 (and their S1 vanishing cycles in nearby fibres) by
1, 2, 3, and the other vanishing cycle by γ, we get 16 Lagrangian S3 vanishing cycles by
taking any one of these four in the first surface and any one of them in the second, and
taking their fibre product to give a T2-fibration over the path between the points in P1

at which they collapse, as above (Figure 1). Since γ intersects each of 1, 2, 3 in one point
and there are no other intersections in the fibres, the intersection pattern of the resulting
S3 is easily determined to be as in Figure 2.

Now given two elliptic fibrations, we can often detect these triple point degenerations by
hand, and hence give examples of the triple point transition. One example is given by
studying one of Schoen’s rigid Calabi-Yau fibre products from [18]. There is a rational
elliptic surface π : E(1) → P1 with four I3 singular fibres. This can be obtained from
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the pencil of cubic curves {x3 + y3 + z3 + 3txyz = 0}t∈P1 , which has an I3 fibre when
t ∈ {eiπ/3, e5iπ/3,−1,∞}. Let Z denote the fibre product E(1)×π E(1), which has 3-fold
nodes at the 36 points (N,N ′) with N,N ′ nodes in some fibre π−1(t) of π. There is a
small resolution Z̃ of Z at these 36 points which is a projective rigid Calabi-Yau 3-fold.

Lemma 5.2. In a suitable basis, the monodromy of the elliptic surface E(1) is given by

t(a)3 · t(b)3 · t(a+ b)3 · t(2a+ b)3 = 1

where a, b are the standard meridian / longitude curves on T2 and t(C) denotes the Dehn
twist in a simple closed curve in the homology class C. (Here the generating loops are
ordered clockwise around the base-point.)

Proof. It is well-known that one can construct a holomorphic elliptic surface from any
appropriate monodromy representation, and moreover that there is a unique elliptic sur-
face with exactly four I3 singular fibres (see [13] and [16]). Hence it is enough to see that
the product of the four cubes of Dehn twists above is indeed the identity. In standard
conventions one has

t(a) =
(

1 1
0 1

)
; t(b) =

(
1 0
−1 1

)
;

t(a+ b) =
(

0 1
−1 2

)
; t(2a+ b) =

(
−1 4
−1 3

)
from which the result follows by a direct computation.

It is important to notice that the a and b vanishing cycles are adjacent in the monodromy
representation; if we perturb the I3(b) fibre into an I1 and an I2 fibre, the I3(a) and the
I1(b) give the right configuration of cycles to degenerate to an elliptic surface with a fibre
containing a triple point, as in the proof of Lemma (5.1).

This perturbation is certainly possible symplectically, so separate the I3(b) singular fi-
bre into an I1 and I2. We can re-degenerate E(1) to an elliptic surface with a triple
point singularity. The new fibre product has a 3-fold triple point, which can be blown up
preserving c1 = 0. In this case, the resulting manifold is apparently Kähler; the degener-
ations can all be realised holomorphically, since monodromy data is enough to guarantee
the existence of rational elliptic surfaces, according to the theory of Miranda and Persson
[13, 16]. However, this is not to say that the surgery is uninteresting. The manifold we
obtain is a new rigid Calabi-Yau which is not itself the small resolution of a fibre product
of elliptic fibrations, and hence not on Schoen’s list. (Blowing up a triple point singularity
increases the Euler characteristic by 24, from which one can compute its Betti numbers.)
In general constructions of rigid Kähler Calabi-Yaus are not plentiful, and it is likely that
other examples can be found by arguments such as above. In any case, the fibred nature
of these three-folds makes it very easy to find large collections of Lagrangian spheres
(and compute their intersections from intersections of plane curves), something that is of
considerable importance in the general programme of mirror symmetry.
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6. A four-dimensional interlude

So far we have always passed from a smoothing to a resolution. If we go in the other
direction, we can try (as in the minimal model programme) to eliminate curves on which
the canonical class is negative, and find some consequences for symplectic manifolds which
are neither Fano nor Calabi-Yau but of “general type”; that is, for which the canonical
class of a given almost complex structure itself contains symplectic forms. In general,
the difficulty here is that one needs a family of symplectic structures which degenerate
(as forms, and not just in volume) along the locus which one wants to contract; as yet,
there is no good theory of “symplectic extremal rays” in this general sense. However,
this situation is often provided by algebro-geometric arguments. The canonical class of
a complex surface cannot contain a Kähler form if the surface contains a holomorphic
−2-curve. By contrast:

Proposition 6.1. If X is a complex surface of general type, then X has symplectic gen-
eral type.

Sketch. The multicanonical linear system is an embedding away from ADE trees of ra-
tional curves which are contracted to isolated singularities. These have local smoothings
in which the complex curves become Lagrangian two-spheres. By replacing one model
with the other, in the vein of the first section, and noticing that the symplectic form is
cohomologically unchanged since exact in a neighbourhood of the vanishing cycles, one
quickly arrives at the result above. For details see [22] (the result was independently
proven by Catanese in [4], although the former proof is more relevant for the discussion
here).

The small resolution of 3-fold double points goes over to the simultaneous resolution of
surface double points, due to Brieskorn. This has been notably exploited by Seidel [19]
and Kronheimer [10]. There is a family of symplectic manifolds over the disc D which
for every t 6= 0 contains a Lagrangian two-sphere, and which at t = 0 contains a rational
−2-curve (on which the symplectic structure is completely degenerate) – the resolution of
the singular point fits into a family of smoothings (after passing to a double cover of the
base). The total space of this family, containing the rational curve in the central fibre, is
exactly the small resolution of a 3-fold ordinary double point which arises from the base
change {x2 + y2 + z2 = t2} 7→ {x2 + y2 + z2 = t}. The smooth monodromy of the family
{
∑3
j=1 x

2
j = ε} over the disc has order two, but the symplectic monodromy – given by a

generalised Dehn twist in the Lagrangian vanishing cycle – has infinite order [19].

The resolution and smoothing are diffeomorphic precisely for simple singularities, so if
we move beyond these then we obtain surgeries which have a non-trivial topological
effect. For instance, there are examples analogous to that above in which the isolated
complex curve has higher genus: a degree d surface singularity has a resolution with a
degree d curve in P2 as exceptional set. This leads to a surgery in which configurations
of Lagrangian spheres in symplectic four-manifolds can be blown down and replaced by
symplectic surfaces of high genus and negative square. In particular cases, these surgeries
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(or more properly their inverses) can be related to familiar operations on symplectic four-
manifolds. We give the following proposition in the case d = 3, parallel to the discussion of
triple points in 3-folds in the previous section, but it is not hard to generalise to arbitrary
degree.

The resolution of the surface triple point {x3
1 + x3

2 + x3
3 = 0} is a genus one curve with

normal bundle having first Chern class −3. Introduce the notation C3 for an open neigh-
bourhood of the configuration of vanishing cycles of the smoothing, which we can assume
is diffeomorphic to an affine cubic. The singularity has Milnor number 8, but – as with
all non-simple surface singularities – the intersection matrix of the vanishing cycles is not
negative definite. Recall also that we can define the proper transform of a symplectic
surface C2 ⊂ X4 inside the blow-up of X along C by making C J-holomorphic for some
compatible almost complex structure J on X integrable near C, and then taking the usual
Kähler blow-up and the holomorphic proper transform.

Proposition 6.2. Let X be a symplectic four-manifold which contains a symplectic torus
T2 of square zero. The following two operations are smoothly equivalent. (i) Blow up T2

three times, and then replace a tubular neighbourhood of its proper transform (a square
−3 torus) by C3. (ii) Fibre sum X with a rational elliptic surface E(1) along T2 and a
fibre respectively.

Proof. We regard the total space of the smoothing {x3
1 +x3

2 +x3
3 = t}, for an appropriate

polynomial t, as the complement of the hyperplane at infinity in a cubic surface Z =
{
∑3
j=1 x

3
j = tx3

4} ⊂ P3. TopologicallyZ is the six-fold blow-up of P2, and the hypersurface
{x3 + y3 + z3 = 0} is a torus of square 3. The complement Z\T2 of the torus – which
has b2 = 8 – can be identified with the complement of a fibre and three sections in the
rational elliptic surface P2#9P2 ∼= E(1)→ P1. The result now follows from the following
equivalence: fibre summing the square 3 torus given by blowing up six base-points in a
pencil of cubics with a −3 torus given by blowing up a square zero torus three times,
is the same as fibre summing E(1) along the original square zero torus. This equality
in turn follows from considering Gompf’s pairwise version of the symplectic sum, which
enables one to perform the first fibre sum so the three −1-curves transverse to the −3
torus are glued onto the three base points of the linear system of square three tori.

Thus, in the situation of the Proposition, the “degenerate-resolve” surgery is smoothly
equivalent to “de-fibre-summing” with a copy of E(1) and then blowing up three times.
If d > 3 there is a similar interpretation; the “contract-deform” direction of the surgery
– contracting a curve C ⊂ X of genus g = (d − 1)(d − 2)/2 and square −d which was
obtained as a d-fold blow-up of a square zero curve – is smoothly equivalent to a fibre
sum of X along a particular genus g Lefschetz fibration. The fibre-sum with E(1) has
been an extremely useful surgery [8] and it is encouraging that it can be recovered from
this point of view.
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7. Tree-like configurations

After isolated Lagrangians, the simplest situation to consider is that of contracting
linear chains of spheres. In four real dimensions the An singularities have diffeomorphic
resolutions and smoothings, but this is no longer true in six dimensions. These surgeries,
however, still don’t produce any more (diffeomorphism types of) symplectic manifolds
than those one can obtain from the ordinary double point surgery, at least when working
with small resolutions. One can see this as follows.

Lemma 7.1. The link of an An chain of spheres is diffeomorphic to S5 if n is even and
S2 × S3 if n is odd.

Proof. The link is a series of connect sums of S3×S2s, across S2×S2s (given by removing
a ball in S3 to give S2 boundary, and timesing everything by S2). So inductively it is
enough to prove that

(S3 × S2)#S2×S2(S2 × S3) ∼= S5.

Here the ordering of the factors is meant to indicate that the first factor in the gluing
locus S2 × S2 is the boundary of a ball in the first S3 factor, but is the full S2 factor in
the second S3 × S2, and the opposite for the second S2 factor in the gluing locus. In the
same notation, the connect sum is

(D3 × S2) ∪S2×S2 (S2 ×D3),

since S3 minus a ball is D3. But this is isomorphic to taking S2 × S2 ⊂ R5 ⊂ S5 and
filling it inside R5 to give the first D3 × S2 in the union, and filling it ‘outside’ in the
S5 to give the other. (This is analogous to realising S3 as a union of two genus one
handlebodies. The embedding S2 × S2 ⊂ S5 comes from {(z1, z2, z3) ∈ C3 | |z1|2 + |z2|2 =
1
2 = |z2|2 + |z3|2}.)

We employ this as follows. It is well-known that the singularity given by contracting an
An-chain of Lagrangian 3-spheres has a small resolution if and only if n = 2k+ 1 is odd.
This resolution is given by a k-fold cover of the ordinary double point resolution, lifting
the obvious cover {

∑
x2
i = t2k} → {

∑
x2
i = t2} given by t 7→ tk. The exceptional locus is

a k-times thickened P1. In this case, we can talk about conifold transitions in the entire
An-chain, but:

Lemma 7.2. The conifold transition of X in the An-chain (n = 2k + 1 odd) is diffeo-
morphic to a manifold obtained by performing conifold transitions in isolated Lagrangian
spheres.

Proof. Algebraically, we can collapse alternate Lagrangians in the chain by using the
partial smoothing

∑3
i=1 x

2
i = pk(t2) of the full degeneration

∑
x2
i = t2k; here pk is

a degree k polynomial with simple zeros. Taking conifold transitions along alternate
spheres in the An-chain is equivalent to taking small resolutions of the double points in
this partial smoothing. The interpolating 3-spheres acquire boundary, lifting to S2×[0, 1]
homotopies between the exceptional loci of the small resolutions. The small resolution
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of the An singularity described earlier arises in the limit pk(t2) → t2k, and the k-times
thickened P1 is then the limit of bringing the k P1s from the ODP conifold transitions
together.

Alternatively, the conifold transition in the An-chain is given by dividing out a suitable
circle action (determined by k) on the S2×S3 boundary of (7.1), and then collapsing one
factor of the resulting P1 × P1. This clearly gives a filling of the link S2 × S3 with one-
dimensional H2.

As Eliashberg pointed out in [6], these chains and trees of Lagrangians are nonetheless
not without interest. The contact structures induced on S5 and S2× S3 are, for instance,
distinct as n varies. By looking at boundaries of more complicated trees, one can obtain
distinct contact structures on 5-manifolds – distinguished by the topologies of their fillings
(or by contact homology?) – in cases where the underlying classical invariants of the plane
fields are equal.

With the triple point above, we dealt with configurations of Lagrangian spheres that arose
from some projective degeneration, and the question of the modulus of the symplectic
structure in a neighbourhood of the vanishing cycles did not really enter into the question
of whether a surgery exists. For the ADE contractions on surfaces, the Kähler form can
be assumed standard in a neighbourhood of the contracted spheres ([22] using a result
from [21]). More generally, one ingredient in running a symplectic surgery via a transition
in some collection of Lagrangians is the following (well-known folk-theorem).

Proposition 7.3. Let {L1, . . . , Ln} be a collection of Lagrangian spheres in X for which
all intersections are transverse. Suppose the associated intersection graph is a tree (has
no loops). Then the symplectic structure in a neighbourhood of the Lagrangians is unique
to symplectomorphism.

Proof. The proof is a “plumbed” version of Weinstein’s theorem [24]. His argument
shows that for any Lagrangian immersion φ : L → X there is an immersion Φ from a
neighbourhood of the zero-section in T ∗L to X such that Φ∗ωX = dp∧dq. To deduce the
result, recall that symplectomorphisms act transitively on pairs of transverse Lagrangian
subspaces of a symplectic vector space, so we can assume at each intersection point (say
of Li and Lj) Φ pulls back Li to a fibre in the cotangent bundle of Lj and vice-versa. Fix
an intersection point P , giving two preimages φ−1(P ) lying in Li and Lj . We can define
two box neighbourhoods (Dn ×Dn)i,j of these preimages in qnj=1T

∗Lj, the total spaces
of embedded symplectic balls lying in fixed Darboux charts, and such that the first factor
in the i-box describes fibres of T ∗Li and the second factor in the j-box describes fibres of
T ∗Lj . By construction, Φ is assumed to be the immersion (quotient map) which identifies
(Dn×{t})i with ({t}×Dn)j (and is an embedding away from the boxes). Given two forms
ωX , ω̃X both making the same Lj Lagrangian, we obtain two such models comprising a
collection of copies of T ∗Sn with the standard symplectic structure and a quotienting
relation describing the immersion on the boxes around intersection points. These models
can be identified symplectically by lifting a diffeomorphism qLi → qLi whose differential
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matches the appropriate box neighbourhoods. This descends to give a diffeomorphism
of the open neighbourhoods of φ(qLi) inside X which intertwines the two symplectic
structures.

At least for tree-like configurations, this says that if a symplectic manifold contains a
graph of Lagrangian spheres that is combinatorially the same as the graph obtained
by smoothing some complex singularity, then there is an associated symplectic surgery
which collapses the spheres and blows up the (locally analytic) singular point that results.
There are well known lists and techniques for identifying these configurations coming from
singularity theory.

In fact, it seems that a generalisation of the above Proposition is not much harder. For
any configuration of Lagrangian spheres, there is a homological invariant – the relative
intersection numbers for a choice of orientations on all the Lagrangians – but the argu-
ment above suggests this is the unique invariant. (Maslov classes play no role, indeed
are not defined, since the loops in a configuration of Lagrangians are not locally spanned
by discs.) Such more general configurations of Lagrangians can be produced from simple
configurations by Dehn twist automorphisms à la Seidel [19].

Acknowledgements: The authors are very grateful to Denis Auroux for many helpful
suggestions.
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