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Abstract

In this article, we define an action of Ẑon the A∞ category whose objects are

rational Lagrangian submanifolds together with some other data. The group Ẑ
is a Galois group of the (universal) Novikov ring (field) over Laurent polynomial
field. By mirror symmetry it will corresponds to the algebraic fundamental
group of a punctured disk which parametrize the maximal degenerate family
of the mirror complex manifold.

1. Introduction

The Floer cohomology of a Lagrangian submanifold defined in [Fl, Oh, FOOO] is in
general a module over a kind of formal power series ring, which is called the Novikov ring
[No]. In [FOOO, Fu2] we used the universal Novikov ring ΛC, which consists of a formal
sum ∑

i

aiT
λi (1)

where ai ∈ C and λi ∈ R such that λi < λi+1, limi→∞ λi = +∞ and T is a formal
parameter.

For a rational Lagrangian submanifold (we define it later in Definition 2.2), we take a
smaller ring ΛQ

C which consists of elements (1) satisfying in addition λi ∈ Q.
Both of them are complete non-Archimedean valued fields whose norm is defined by∥∥∥∥∥∑

i

aiT
λi

∥∥∥∥∥ = exp (−min{λi|ai 6= 0}) . (2)

The continuous Galois group of ΛQ
C

over C[[T ]][T−1], the Laurent power series ring, is Ẑ,
the profinite completion of Z. In fact, the (topological) generator ρ ∈ Ẑ acts by∑

i

aiT
λi 7→

∑
i

aie
2π
√−1λiTλi (3)

We denote the map (3) by x 7→ xρ. The rationality of λi implies that the Z action defined
by (3) can be extended to a Ẑ action.

In the same way, Z acts as automorphisms on ΛC/C[[T ]][T−1] by the formula (3).

Partially supported by Grant in-Aid for Science Research 13852001.

11This article was presented at the 9th Gökova Geometry-Topology Conference

Turk J Math
27 (2003) , 11 – 32.

c© TÜBİTAK
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In this article, we discuss an action of Ẑ on Floer cohomologies which are compatible
with the Galois action on Novikov rings.

In section 2, we state our main result (Theorem 2.4) which establishes a Ẑ action on
the filtered A∞ category defined in [Fu2]. (See [Fu2] also for the definition of filtered
A∞ category.) In section 3 we prove it. In section 4 we discuss briefly how the Ẑ action
constructed in this article is related to mirror symmetry. Sections 3 and 4 are independent
of each other.

The reader will easily notice that there is influence of the paper [KS] on this article.
Compare also [Fu3] §3.5, some of the argument of which are improved in this article.

2. Statement of main result

Let (M, ω) be a real 2n-dimensional symplectic manifold. We assume c1(M) = 0. (Here
c1(M) is the first Chern class of the tangent bundle of M . We remark that a symplectic
structure on M determines an almost complex structure on M uniquely up to homotopy.
Hence the first Chern class of the tangent bundle of M is well defined.) We also assume
that the cohomology class [ω] is contained in the image H2(M ;Z)→ H2(M ;R).

Definition 2.1. A pair (ξ,∇ξ) of a complex line bundle on M and a unitary connection
on it is called a prequantum bundle if F∇ξ = 2π

√
−1ω as differential 2-forms. Here F∇ξ

is the curvature of ∇ξ.
By our assumption [ω] ∈ H2(M ;Z), a prequantum bundle (ξ,∇ξ) exists. We choose

and fix it throughout this article. Let L be a Lagrangian submanifold of M . Namely, L
is an n-dimensional submanifold of M such that ω|L = 0. By definition, the restriction
of (ξ,∇ξ) to L is flat. Hence it determines a representation holξ : π1L→ U(1).

Definition 2.2. L is called a rational Lagrangian submanifold if the image of holξ :
π1L→ U(1) is a finite group.

We remark that L is called a Bohr-Sommerfeld orbit if holξ : π1L→ U(1) is trivial.
In [Fu2], the author defined a filtered A∞ category whose objects are system (L,L, s̃, b)

consisting of a Lagrangian submanifold L, a flat U(1) bundle L on it, together with some
additional data (s̃, b). In this article, we consider the case when L is rational. Let us very
briefly review the other data. See [Fu2] for details.

We first assume that L is oriented. We also fix st ∈ H2(M ;Z2). We can then define
the notion that L is relatively spin in M as in [FOOO] or [Fu2] Definition 2.4. We assume
that L is relatively spin and fix a relative spin structure.

We next define the grading (see [Se, Fu2]). Let Lag(M) → M be the bundle on M
whose fiber at x ∈M is the set of all Lagrangian linear subspaces of TxM . Note that the
fundamental group of Lagrangian Grassmanian (= the fiber of Lag(M)→M) is Z. It is
proved in [Se] that, under our assumption c1(M) = 0, there exists a Z cover L̃ag(M) of
Lag(M) such that its restriction to each fiber of Lag(M)→M is the universal covering.
Let x ∈ L. We put s(x) = TxL ∈ Lag(M). We say that L is graded if there exists a lift
s̃ : L→ L̃ag(M) of s, and call s̃ a grading of L.
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Now an object of our A∞ category is (L,L, s̃, b). Here:

(1) L is a rational Lagrangian submanifold equipped with an orientation and relative
spin structure.
(2) L is a flat line bundle on L.
(3) L is assumed to be graded and s̃ is its grading.

To explain b, we need to review the main result of [FOOO]. In [FOOO], we developed
an obstruction theory to the well-definedness of the Floer cohomology of a Lagrangian
submanifold. We also found, even in the case the obstruction vanishes, the Floer coho-
mology is not uniquely determined but depends on some extra parameter b. In the case
when L is graded, b is represented by a chain

b =
∑

Tλibi

where bi is a singular (n − 1)-chain which we regard as a 1-cochain. More precisely, b is
a solution of some formal equation, which we describe below. (See [FOOO] Theorem D,
more precisely.) We consider the cohomology group Hk(L; ΛC) or Hk(L; ΛQC). In [FOOO]
Theorem D, we constructed a “map”

Q : H1(L; ΛC)→ H2(L; ΛC) (4)

which is a kind of formal power series on T in the following sense.

Q =
∞∑
i=1

Qi ⊗ Tλi (5)

here
Qi : H1(L;C)→ H2(L;C)

is a formal power series, and λi ∈ R, with limi→∞ λi = +∞.
Q and Qi depend on L,L,s̃ and λi depends on L,s̃. Hereafter we write QL,L and Qi,L,L

in place of Q, Qi, in case we need to specify L, L.
We put “map” in quotes since Q(b) is not well defined in general for two reasons. One

is that Qi is a formal power series whose convergence (in the usual topology of C vector
space) is not known. The other is that the sum (5) is an infinite sum, whose convergence
is not yet proved. However Q(b) is well defined if b ≡ 0 mod Λ+

C , namely if b =
∑

biT
λi

with all λi > 0.
Now we put

M(L,L; ΛC) = {b ∈ H1(L; ΛC) | b ≡ 0 mod Λ+
C , Q(b) = 0}. (6)

We also put
M(L,L; ΛQC) =M(L,L; ΛC) ∩H1(L; ΛQC).

We call a 1-cochain representing an element of M(L,L; ΛQC) a bounding cochain. The
fourth data b consisting the objects of our category is a bounding cochain.

We thus described an object (L,L, s̃, b) of our filtered A∞ category.
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Remark 2.1. In [FOOO] our Novikov ring has one additional formal parameter e of
degree 2. In the case of graded Lagrangian submanifolds, we do not need it. In general,
a bounding cochain has various degrees. In our case of graded Lagrangian submanifold,
the bounding cochain is of degree 1.

Remark 2.2. We introduced b as an element of a cohomology group satisfying the equa-
tion Q(b) = 0. In order to do so, we first need to work on the chain level, introduce
gauge equivalence and then identify the gauge equivalence class with an element of the
first cohomology. This is performed in [FOOO]. (In its revised version we will present it
more algebraically. Compare also [Fu3].) We omit it here.

Actually the chain complex CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC) over ΛQC in Propo-
sition 2.1 defining Floer cohomology does depend on the representative of b in each gauge
equivalence class. However it is well defined up to chain homotopy. So we choose a
representative in each gauge equivalence class, and fix it.

The set of morphisms of our A∞ category is Floer cohomology. In [FOOO], we defined
Floer cohomology

HF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛC). (7)

The Floer cohomology (7) is a module over ΛC (here bi ∈M(L,L; ΛC)).

Proposition 2.1. If Li is rational and if bi ∈M(L,L; ΛQC) then Floer cohomology is de-
fined over ΛQC . Namely we have a cochain complex CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC)
over ΛQC which defines HF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC).

Off course, the Floer cohomology in Proposition 2.1 will become (7) when tensored
with ΛC.

We prove Proposition 2.1 in §3.
In the case of rational Lagrangian submanifolds, the operations mk (that is, the (higher)

composition homomorphisms of our A∞ category) are also defined over ΛQC . More pre-
cisely, we can prove the following Proposition 2.2. We take a countable set LA of rational
Lagrangian submanifolds equipped with relative spin structure, and will consider only the
Lagrangian submanifolds contained in this set. We assume that each pair of elements of
LA is transversal.

Proposition 2.2. There exists a filtered A∞ category LAG whose objects are (L,L, s̃, b)
where L ∈ LA, L is a flat bundle on it, s̃ is a grading of L and b ∈ M(L,L; ΛQC).
The set of morphisms between two objects is CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); Λ

Q
C) in

Proposition 2.1.

The A∞ operations mk are defined in a similar way as [FOOO, Fu2]. We prove Propo-
sition 2.2 in §3. We remark that Proposition 2.2 implies that the operations mk are
multilinear over ΛQC.

The main result of this article asserts that the Galois group Ẑ acts as automorphisms
of LAG. To state it precisely we first describe the action of Ẑ on the set of objects. We
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put

Lρ = L ⊗ ξ|L. (8)

The rationality of L implies that there exists m such that

Lρ
m

= L. (9)

(9) implies that our action of ρ induces a Ẑ action.
The Galois action does not move L, s̃.
We next discuss the Ẑ action on the set of bounding cochains b. If the defining equation

(4) of our moduli space M(L,L; ΛQC) was defined over C[[T ]][T−1] then Ẑ would act on
M(L,L; ΛQC) and (4) would be defined over C[[T ]][T−1] if λi in (5) were integers. However
this is not the case.

Proposition 2.3. The following diagram commutes.

H1(L; ΛQC)
QL,L−−−−→ H2(L; ΛQC)

1⊗ρ
y 1⊗ρ

y
H1(L; ΛQC)

QL,Lρ−−−−→ H2(L; ΛQC)

Here the vertical arrow is 1 ⊗ ρ : Hk(L; ΛQC) → Hk(L; ΛQC), where Hk(L; ΛQC) =
Hk(L;C)⊗ ΛQC.

Proposition 2.3 implies that there exists a map

ρ :M(L,L; ΛQC)→M(L,Lρ; ΛQC).

We write ρ(b) = bρ.
Now we state the main result of this article.

Theorem 2.4. There exists a Ẑ action on LAG, which is compatible with the Ẑ action
on ΛQC and whose action on objects is given by

ρ(L,L, s̃, b) = (L,Lρ, s̃, bρ).

In place of defining the notion “Ẑ action on LAG compatible with Ẑ action on ΛQC” in
general, we explain it in the case of Theorem 2.4.

We have already defined a Ẑ action on the set of objects. We recall that the set of
morphisms of LAG is Floer cohomology (more precisely a chain complex defining Floer
cohomology). Existence of the Ẑ action on the set of morphisms means that there exists
a (canonical) isomorphism:

ρ : HF ((L1,L1, s̃1, b1),(L2,L2, s̃2, b2); ΛQC)
∼= HF ((L1,Lρ1, s̃1, b

ρ
1), (L2,Lρ2, s̃2, b

ρ
2); Λ

Q
C).

(10)
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Here ρ is linear over C[[T ]][T−1] and satisfies

ρ(xv) = xρρ(v) (11)

for x ∈ ΛQC, v ∈ HF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC).
Note that in the case when L1 and L2 are different from each other (and hence transver-

sal to each other) we will define (see §3)

CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); Λ
Q
C) =

⊕
p∈L1∩L2

ΛQC.

Hence the isomorphism

CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC) ∼= CF ((L1,Lρ1, s̃1, b
ρ
1), (L2,Lρ2, s̃2, b

ρ
2); Λ

Q
C) (12)

satisfying (11) obviously exists. Thus the essential point to check is that (12) commutes
with the boundary operator m1. We will prove it in §3.

As we mentioned above, m1 commutes with the isomorphism (11). The other part of
the statement of Theorem 2.4 is that (12) also commutes with higher compositions mk.
The operator mk is a ΛQC multi-linear map

mk :
k−1∏
`=0

CF ((L`,L`, s̃`, b`),(L`+1 ,L`+1, s̃`+1, b`+1); ΛQC)

→ CF ((L0,L0, s̃0, b0), (Lk,Lk, s̃k, bk); ΛQC).

(13)

Theorem 2.4 implies that

mk ◦ (ρ⊗ · · · ⊗ ρ) = ρ ◦mk. (14)

We have thus described the statement of our main theorem. The proof is given in the
next section. Actually the proof is not so difficult. We only need to check the consistency
of the action. The main idea of this article is contained in the statement of the theorem
and the definitions in this section.

3. Proofs

We start with the proof of Proposition 2.3. During the proof we review briefly the
definition of QL,L. Let β ∈ π2(M, L). We put

E(β) =
∫
D2

ϕ∗ω (15)

where ϕ : D2 →M is a map representing the homotopy class β. We also put

H(β;L) = holL(ϕ(S1)) ∈ U(1) (16)

where the right hand side is the holonomy of the flat bundle L along the curve ϕ(S1).
The key observations in the proof of Proposition 2.3 are the following Lemmata 3.1, 3.2.

Lemma 3.1. If L is rational then E(β) ∈ Q.
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Proof. By the definition of prequantum bundle we have

2π
√
−1E(β) =

∫
D2

F∇ξ . (17)

Hence

exp(2π
√
−1E(β)) = holξ(∂β), (18)

where the right hand side is the holonomy of the prequantum bundle along the curve
ϕ(S1). By the rationality of L there exists m such that holξ(∂β)m = 1. Hence E(β) ∈ Q
as required.

Lemma 3.2. exp(2π
√
−1E(β))H(β;L) = H(β;Lσ).

Proof. Immediate from (18) and the definition.

We next need a moduli spaceMk+1(L; β). We fix a compatible almost complex structure
J on M . Mk(L; β) is the moduli space of pseudoholomorphic maps ϕ : (D2, S1)→ (M, L)
of homotopy class β, together with k marked points on the boundary ∂D2 = S1 . Namely:

Definition 3.1. M̃k+1(L; β) is the set of (ϕ; ~z). Here ϕ : (D2, S1) → (M, L) is J holo-
morphic and of homotopy class β, and ~z = (z1, · · · , zk+1) ∈ (∂D2)k+1, such that the zi
are mutually distinct and respect the cyclic order on ∂D2 .

Aut(D2, JD2) ∼= PSL(2;R) acts on M̃k+1(L; β) by

u · (ϕ; z1, · · · , zk+1) = (ϕ ◦ u−1; u(z1), · · · , u(zk+1)).

We denote the quotient space by Mk+1(L; β).

Mk+1(L; β) can be compactified by including stable maps. (See [FOOO] §3). The
compactification CMk+1(L; β) is a space with Kuranishi structure with corners of dimen-
sion n + k − 2. We remark that the dimension is independent of β. This is because we
assumed that c1(M) = 0 and L is graded. (We refer to [FO] for the definition of Kuranishi
structure with corners and to [FOOO] for the proof of this statement.) Moreover, since
we fixed a relative spin structure on L, it follows that CMk+1(L; β) is oriented in the
sense of Kuranishi structure. (See [FOOO] Chapter 6.) We remark that there exists an
evaluation map

ev : CMk+1(L; β)→ Lk+1. (19)

Namely

ev(ϕ, ~z) = (ϕ(z0), · · · , ϕ(zk)). (20)

We put ev = (ev0, · · · , evk).
Using the machinery developed in [FO], we can use CMk+1(L; β) to define a Q cycle

on Lk+1. We will use CMk+1(L; β) to define Q. (To justify the construction below we
need to work out carefully the transversality issue. We omit it since it is discussed in
detail in [FOOO].)
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By Gromov compactness, there exist β1, β2, · · · ∈ π2(M, L), with the following prop-
erties: E(βi) ≤ E(βi+1): for each C there exist only a finite number of indices i with
E(βi) ≤ C: if β /∈ {β1, β2, · · · } then CMk+1(L; β) is empty. (See [FOOO] Proposition
5.8 for detail.)

Let S
k
(L;C) be the set of all distribution valued k-forms on L which are represented

by a singular (n−k)-chain. (See [FOOO] §A1 for the details of this argument.) We choose
a countably generated subcomplex of it satisfying appropriate transversality conditions.
We denote it by Ck(L;C). The module Ck(L; ΛQC) is the completion of Ck(L;C) ⊗C ΛQC
with respect to the norm (2). The map Q is constructed by using

mk,βi : (C1(L;C))⊗k → C2(L;C). (21)

Here (21) is defined by

mk,βi(P1, · · · , Pk) = ±ev0,∗ (CMk+1(L; β)ev1,··· ,evk ×Lk (P1 × · · ·Pk)) .

We omit the discussions on sign which is given in detail in [FOOO] Chapter 6. Using
mk,βi we define a formal map

Q′L,L : (C1(L; ΛQC))⊗k → C2(L; ΛQC)

by

Q′L,L =
∑
i

Q′L;βi ⊗H(βi;L)TE(βi). (22)

Here

Q′L,L;βi
: C1(L;C)→ C2(L;C)

is a formal map defined by

Q′L,L;βi(b) =
∑
k

mk,βi(b, · · · , b).

In the case b ≡ 0 mod ΛQC , Q′L,L(b) converges in the topology induced by the norm of
ΛQC. We also remark that Lemma 3.1 implies that E(βi) is a rational number. Hence the
right hand side of (22) is contained in C2(L; ΛQC).

Lemma 3.3. The following diagram commutes.

C1(L; ΛQC)
Q′L,L−−−−→ C2(L; ΛQC)

1⊗ρ
y 1⊗ρ

y
C1(L; ΛQC)

Q′L,Lρ−−−−→ C2(L; ΛQC)
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Proof. We remark that Q′L;βi
is defined over Q and is independent of L. Hence by (22)

and Lemma 3.2, we have

ρ(Q′L,L(b)) =
∑
i

Q′L;βi
(bρ) ⊗ ρ(H(βi;L)TE(βi))

=
∑
i

Q′L;βi(b
ρ) ⊗ exp(2π

√
−1E(βi))H(βi;L)TE(βi)

=
∑
i

Q′L;βi(b
ρ) ⊗H(βi;Lρ)TE(βi) = Q′L,Lρ(b

ρ).

The proof of the lemma is complete.

The formal map QL,L is obtained from Q′L,L by homological algebra. (See [FOOO] §A6.)
Inspecting the construction there it is easy to see that Lemma 3.3 implies Proposition
2.3. The proof of Proposition 2.3 is now complete.

We next prove Proposition 2.1. We only consider the case L1 6= L2. The case L1 = L2

is easier. We remark that then L1 is transversal to L2. We begin with the following
lemma.

Lemma 3.4. We assume that L1 and L2 are rational. If ϕ : S1× [0, 1]→M is a smooth
map such that S1 × {0} ⊂ L1, S1 × {1} ⊂ L2, then∫

S1×[0,1]

ϕ∗ω ∈ Q.

The proof is similar to the proof of Lemma 3.1 and is omitted.
Now we recall that in [FOOO, Fu4], we defined Floer’s chain complex by:

CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛC) =
⊕

p∈L1∩L2

Hom(L1,p,L2,p)⊗C ΛC. (23)

(The case when Li is trivial is written in [FOOO]. The case when Li is nontrivial is in
[Fu4].)

We need to modify boundary operator m1 a bit so that it is defined over ΛQC. Let
p, q ∈ L1 ∩ L2. We assume that the degree (Maslov-Viterbo index) of q is 1+ the degree
of p.

Remark 3.1. We do not discuss the definition of degree. We need the grading s̃ for this
purpose. See [Se, Fu2].

Hereafter we denote by m′1 the boundary operator defined in [FOOO, Fu4] in order to
distinguish it from one we use in this article. A component of the boundary operator m′1
is

m
′p,q
1 : Hom(L1,p,L2,p)⊗C ΛQC → Hom(L1,q,L2,q)⊗C ΛQC. (24)
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It is defined by using the moduli space of pseudoholomophic disks, which we discuss now.
Let us put

∂1D
2 = {z ∈ ∂D2 | Imz < 0}, ∂2D

2 = {z ∈ ∂D2| Im z > 0}.

Definition 3.2. We denote by π2(M ; L1, L2; p, q) the set of all homotopy classes of maps
ϕ : D2 →M such that

(1) ϕ(1) = q, ϕ(−1) = p.
(2) ϕ(∂1D

2) ⊂ L1, ϕ(∂2D
2) ⊂ L2.

For β ∈ π2(M ; L1, L2; p, q), we put

E(β) =
∫
D2

ϕ∗ω,

where ϕ is a map in the homotopy class of β. (Note that the right hand side depends only
on the homotopy class of ϕ since Li are Lagrangian submanifolds.) Lemma 3.4 implies
that

E(β) − E(β′) ∈ Q (25)

for any β, β′ ∈ π2(M ; L1, L2; p, q). We next define

H(β;L1,L2) ∈ Hom(Hom(L1,p,L2,p), Hom(L1,q,L2,q)),

by

H(β;L1,L2)(v) = PalL2(ϕ(∂2D2)) ◦ v ◦ (PalL1(ϕ(∂1D
2)))−1. (26)

Here PalL1(ϕ(∂1D
2)) : L1,p → L1,q is the parallel transport of the flat bundle L1 along

the path ϕ(∂1D
2).

We next define the moduli space we use. Let β ∈ π2(M ; L1, L2; p, q). We consider
the set of maps ϕ : D2 → M which are J holomorphic and in the homotopy class β.
We denote the set of all such ϕ by M̃(L1 , L2; p, q; β). The group of automorphisms of
D2 which preserve ±1 is isomorphic to R. It acts on M̃(L1, L2; p, q; β). We denote by
M(L1, L2; p, q; β) the quotient space. Using stable maps it has a compactification which
we denote by CM(L1, L2; p, q; β). (See [FOOO] §3.) If the difference of the degrees of p
and q is 1, then CM(L1, L2; p, q; β) has a Kuranishi structure of dimension 0 with corners.
(See [FOOO] Chapter 5.) Hence we obtain a rational number ]CM(L1, L2; p, q; β).

We now review the boundary operator m
′p,q
1 defined in [FOOO, Fu4]. Its leading term

m
′p,q
1;0 is defined as follows.

m
′p,q
1;0 =

∑
]CM(L1, L2; p, q; βi)H(βi;L1,L2)⊗ TE(βi). (27)

Here βi are elements of π2(M ; L1, L2; p, q) such that CM(L1, L2; p, q; βi) is nonempty. By
using Gromov compactness we can prove that the right hand side converges in the norm
of ΛC.

In general, we need correction terms to define m
′p,q
1 , satisfying m′1 ◦m′1 = 0. However,

in the case b1 = b2 = 0, we have m
′p,q
1 = m

′p,q
1;0 . See [FOOO] for the definition of correction
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terms. For simplicity, we only consider the case b1 = b2 = 0 here. (In general Q(0) 6= 0.
Hence we do need to include correction terms.)

We remark that E(βi) is not necessary a rational number even in the case when L1, L2

are rational. So the homomorphism m
′p,q
1;0 in (30) is not defined on ΛQC . We need to modify

m
′p,q
1;0 so that it is defined over ΛQC .
First we remark that there is an obvious map

π2(M ; L1, L2; p, q)× π2(M ; L1, L2; q, r)→ π2(M ; L1, L2; p, r),

which we write (β, β′) 7→ β]β′. Clearly

E(β]β′) = E(β) + E(β′), H(β]β′;L1,L2) = H(β′;L1,L2) ◦H(β;L1,L2). (28)

Next we fix p0 ∈ L1 ∩L2. For each p ∈ L1 ∩ L2 we fix βp ∈ π2(M ; L1, L2; p0, p).

Definition 3.3. Let p, q ∈ L1 ∩ L2, β ∈ π2(M ; L1, L2; p, q). We define

E′(β) = E(β) −E(βp) + E(βq),

H ′(β;L1,L2) = H(βq ;L1,L2)−1 ◦H(β;L1,L2) ◦H(βp;L1,L2).

We remark that

H ′(β;L1,L2) ∈ Hom(L1,p0 ,L2,p0), Hom(L1,p0 ,L2,p0)) ∼= C.

Moreover H ′(β;L1,L2) ∈ U(1).

We remark that Lemma 3.4 implies that E′(β) ∈ Q.
Now we put

CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); Λ
Q
C) =

⊕
p∈L1⊕L2

ΛQC [p]. (29)

Remark 3.2. More precisely we put

CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC) =
⊕

p∈L1∩L2

ΛQC [p]⊗C Hom((L1)p0 , (L2)p0).

where we fixed p0 ∈ L1 ∩L2 as before. But, since Hom((L1)p0 , (L2)p0 ) is independent of
p, we omit this factor.

We define

m
p,q
1;0 =

∑
βi∈π2(M ;L1,L2;p,q)

]CM(L1, L2; p, q; βi)H ′(βi;L1,L2)TE
′(βi) ∈ ΛQC , (30)

and then
m1,0([p]) =

∑
q

m
p,q
1;0[q].

In the case when b1 = b2 = 0 we can prove m1,0 ◦ m1,0 = 0. In general we need to add
correction terms which we do not discuss here. (See [FOOO].) We put m1 = m1,0 + · · ·
where · · · are correction terms we do not define. We have thus defined the chain complex
(CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC), m1). We prove the following:
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Lemma 3.5. The chain complex (CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC), m1)⊗̂ΛQC
ΛC is

isomorphic to the chain complex (CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛC), m′1).

Here ⊗̂ is the completion of the algebraic tensor product.

Proof. We recall

CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛC) =
⊕

p∈L1∩L2

Hom(L1,p,L2,p) ⊗C ΛC.

We first define an isomorphism

I : CF ((L1,L1, s̃1, b1),(L2,L2, s̃2, b2); ΛQC)⊗̂ΛQC
ΛC

∼= CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛC).
(31)

Let p ∈ L1 ∩ L2. We take ϕ : D2 → M which is in the homotopy class βp. We then put:

I0([p]) = PalL2(ϕ(∂2D2)) ◦ (PalL1(ϕ(∂1D
2)))−1 ∈ Hom(L1,p,L2,p)

where the notation is as in (26) and

I([p]) = I0([p])⊗ TE(βp).

It is easy to see that I induces an isomorphism (31). It is easy to check that I is a chain
map.

The proof of Proposition 2.1 is now complete.
The proof of Proposition 2.2 is similar to the proof of Proposition 2.1. Namely we need

to modify the operations mk so that they are defined over ΛQC. We can do it in the same
way as the proof of Proposition 2.1. We leave the details to the reader.

Now we are in the position to prove Theorem 2.4. We already constructed an action
on the set of objects. We next define the action on the set of morphisms. Namely we
define:

ρ : CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC)→ CF ((L1,Lρ1, s̃1, b
ρ
1), (L2,Lρ2, s̃2, b

ρ
2); Λ

Q
C).

Actually CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC) is a free ΛQC module with basis [p], p ∈
L1 ∩ L2 and is independent of Li, bi by (29). We define

ρ(
∑

xi[pi]) = xρi [pi].

We will prove that ρ is compatible with mk, k = 1, 2, · · · . We prove it only in the case
k = 1. The other case is similar. Namely we prove the following:

Proposition 3.6. The following diagram commutes.

CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC) m1−−−−→ CF ((L1,L1, s̃1, b1), (L2,L2, s̃2, b2); ΛQC)

ρ

y ρ

y
CF ((L1,Lρ1, s̃1, b

ρ
1), (L2,Lρ2, s̃2, b

ρ
2); Λ

Q
C) m1−−−−→ CF ((L1,Lρ1, s̃1, b

ρ
1), (L2,Lρ2, s̃2, b

ρ
2); Λ

Q
C)
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Proof. We need the following:

Lemma 3.7. Let ϕ : S1 × [0, 1] → M be a smooth map such that S1 × {0} ⊂ L1,
S1 × {1} ⊂ L2; then we have

exp

(
2π
√
−1
∫
S1×[0,1]

ϕ∗ω

)
holL1 (ϕ(S1 × {0}))−1holL2 (ϕ(S1 × {1}))

= holLρ1 (ϕ(S1 × {0}))−1holLρ2 (ϕ(S1 × {1})).

Proof. It is easy to see from the definition of prequantum bundle that

exp

(
2π
√
−1
∫
S1×[0,1]

ϕ∗ω

)
= holξ(ϕ(S1 × {0}))−1holξ(ϕ(S1 × {1})). (32)

Lemma 3.7 follows easily from (32) and the definitions.

Let β ∈ π2(M ; L1, L2; p, q). Then Lemma 3.7 and the definition implies

exp(E′(2π
√
−1β))H ′(β;L1,L2) = H ′(β;Lρ1,L

ρ
2).

Proposition 3.6 in the case when bi = 0 then follows immediately. The proof of the general
case is similar.

The proof of Theorem 2.4 is now complete.

4. Relation to Mirror symmetry

In this section, we describe what the Ẑ action of Theorem 2.4 corresponds to, in the
mirror, the complex manifold. The argument of this section is rather sketchy since the
construction here is not actually new. The author describes it in a way so that it will be
the direct analogue of the construction of §2 in the complex category.

Before starting the construction we review several points which are widely believed
(though not proved) among the workers of mirror symmetry. Let us consider a symplectic
manifold (M, ω) such that c1(M) = 0 and [ω] ∈ H2(M ;Z). Let us assume that there exists
a mirror M∨ of M . The manifold M∨ is a complex manifold whose complex structure
depends on ω. So we write it as (M∨, Jω). First, it is believed that the complex structure
of the mirror manifold depends on the complexified symplectic structure. Namely, for
Ω = ω +

√
−1B where B is a closed 2-form and ω is a symplectic structure on M , the

mirror M∨ has a corresponding complex structure J which we denote by JΩ. Ω is called
a complexified symplectic structure.

Moreover it is believed that if [Ω]− [Ω′] ∈
√
−1H2(M ;Z) then the two complex mani-

folds (M∨, JΩ) and (M∨, JΩ′) are isomorphic to each other.
Now we consider a family of complexified symplectic structures (M,−

√
−1τω) where

(M, ω) is as above and τ ∈ C with Im τ > 0. We denote its mirror by (M∨, Jτ). (Namely
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we write Jτ in place of J−
√
−1ω.) Since −

√
−1τω −

√
−1(τ + 1)ω ∈

√
−1H2(M ;Z) we

expect that there exists a biholomorphic map

ψτ : (M∨, Jτ ) ∼= (M∨, Jτ+1).

We put
q = exp(2π

√
−1τ ) ∈ D2

∗.

Here we write D2
∗ = D2 − {0}. Since Jτ depends only on q we write Jq instead of Jτ .

Using ψ as a monodromy we have a holomorphic map

π : M
◦ → D2

∗

whose fiber at q is isomorphic to (M∨, Jq). Thus when we start with a single symplectic
manifold, its mirror is expected to be a family of complex manifold is parametrized by
D2
∗. It is also believed that the family can be compactified to

π : M→ D2 (33)

and the fiber of 0 (= π−1(0)) is singular. Also it is expected that π−1(0) is of maximal
degeneration. (See [LTY] for its definition.)

Actually what I have been describing in this section so far are conjectures which are
not yet proved in the general case. So, logically speaking, we start from here, and the
above arguments are regarded as a motivation. More precisely, we start with the following
situation: There exists a family of complex manifolds (33) such that the fiber π−1(q) is
smooth except for q = 0, and π−1(0) is of maximal degeneration.

Now we consider the category whose objects are families of sheaves on the fibers of
(33). More precisely we proceed as follows. Let Pm : D2 → D2 be the map Pm(z) = zm.
We put

Mm = M π ×Pm D2.

There exist projections πm : Mm → D2 and Pm,m′ : Mmm′ →Mm.
We take a neighborhood U of 0 in D2 and consider a coherent sheaf F on π−1P−1

m (U) ⊆
Mm. Let us consider the set of all such (F, m, U) and define an equivalence relation on it
as follows.

Let (F, m, U),(G, `, V ) be in this set. We say (F, m, U) ∼ (G, `, V ) if there exists a
neighborhood W of 0 with W ⊂ U ∩ V and if there exists a positive integer d and an
isomorphism

Ψ : (P∗m,d`F)|π−1P−1
dm`(W−{0})

∼= (P∗`,dmG)|π−1P−1
dm`(W−{0})

such that qkΨ extends to a morphism : (P∗m,d`F)|π−1P−1
dm`(W) → (P∗`,dmG)|π−1P−1

dm`(W) and
that qk(Ψ−1) extends to a morphism : (P∗`,dmG)|π−1P−1

dm`(W) → (P∗m,d`F)|π−1P−1
dm`(W), for

some k. It is easy to see that ∼ is an equivalence relation.
An object of our category SH(M) is a ∼ equivalence class of such triples (F, m, U).

We denote this set by OB(SH(M)).
Now, for each pair of objects [F, m, U ], [G, `, V ] ∈ OB(SH(M)), we are going to con-

struct a chain complex of ΛQC modules as follows.
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For each object of SH(M), we fix its representative (F, m, U) and its injective resolution
F→ RF∗.

Let [F, m, U ], [G, `, V ] ∈ SH(M) and W ⊆ U ∩ V with 0 ∈W . We consider a complex

Hom
(
P∗`,mRF

∗|π−1P−1
m`(W),P

∗
m,`RG|π−1P−1

m`(W)

)
(34)

of coherent sheaves on π−1P−1
m` (W ). Let OP−1

m`(W) be the sheaf of holomorphic function
on P−1

m`(W ) (⊂ D2). We then obtain a complex of OP−1
m`(W) module sheaves whose stalk

at q ∈ P−1
m` (W ) is

Γ
(
π−1
`m(q); Hom

(
P∗`,mRF

∗,P∗m,`RG
))

.

We denote this complex of sheaves by C∗W (RF, RG).
For any open neighborhood W ′ of 0 contained in W , we consider the set of sections s

of C∗W (RF, RG) on P−1
`m(W ′) − {0} such that qks extends to P−1

`m(W ′) for some k. We
denote this set by Γ(P−1

`m(W ′
∗); C∗W (RF, RG)).

We put:

C∗0 (RF, RG) = lim
←−

Γ(P−1
`m(W ′

∗); C
∗
W (RF, RG)) (35)

Here the right hand side is the projective limit as W ′ → {0}.
We denote by C〈〈q1/`m〉〉[q−1] the set of all germs at 0 ∈ π−1

`m(W ) ⊆ D2 of meromorphic
functions. C∗0 (RF, RG) is a complex of C〈〈q1/`m〉〉[q−1] modules.

We may identify C〈〈q1/`m〉〉[q−1] with a subring of ΛQC by sending q1/mm′ to T 1/mm′ .
Now we put

C∗([F, m, U ], [G, `, V ]) = C∗0 (RF, RG) ⊗̂C〈〈q1/`m 〉〉[q−1 ] ΛQC . (36)

Here ⊗̂ is the completion of the algebraic tensor product.
It is straightforward to check that the right hand side is independent of the represen-

tative (F, m, U), (G, `, V ) and of the resolution up to chain homotopy. (However, since we
are going to construct a filtered A∞ category, we need to work at the chain level. This
is the reason we fixed the representative and the resolution. The resulting filtered A∞
category is independent of the choice of them up to homotopy equivalence of filtered A∞
categories.)

Proposition 4.1. There exists a filtered A∞ category SH(M) such that the set of its
objects is OB(SH(M)), and the modules of morphisms are C∗([F, m, U ], [G, `, V ]).

Moreover there exists a Ẑ action on SH(M) compatible with its action on ΛQC.

Proof. The boundary operator m1 is the boundary operator of the complex C(F, G). m2

is induced by the composition of homomorphisms. We put mk = 0 for k ≥ 3. It is easy
to check the axiom of filtered A∞ category.

We next construct a Ẑ action on SH(M). We note that Ẑ is the algebraic fundamental
group of D2

∗. The Ẑ action on SH(M) is induced from this fact. More precisely we
proceed as follows.
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We first construct an action on the set of objects. Let ρ ∈ Ẑ be the topological
generator. We let it act as the generator of the deck transformation group of P1,m :
Mm →M. Let [F, m, U ] ∈ SH(M). Then [ρ∗F, m, U ] is also an object of SH(M). So we
put

ρ[F, m, U ] = [ρ∗F, m, U ].
It is easy to see that this gives an action of Ẑ on the set of objects.

We choose a resolution so that if F→ RF∗ is the resolution chosen for F then ρ∗F →
ρ∗RF∗ is the resolution chosen for ρ∗F.

Then it is easy to construct a homomorphism

ρ : C∗([F, m, U ], [G, `, V ])→ C∗([ρ∗F, m, U ], [ρ∗G, `, V ])

which satisfies (11) and which is a chain map. It is also easy to see that ρ commutes with
compositions. The proof of Proposition 4.1 is now complete.

We have thus described a filtered A∞ category on which Ẑ acts. Using it and one
constructed in §2,3, we can formulate the homological Mirror symmetry conjecture of
M.Kontsevich at the level of formal power series. (In [Fu1], for example, it was stated
assuming the convergence of mk.) Namely:

Conjecture 4.2. Let M be a Calabi-Yau manifold M with Kähler form ω. We assume
[ω] ∈ H2(M ;Z). Let us assume that there exists a mirror family M→ D2

∗ as above.
Then there exists a filtered A∞ functor Mir : LAG → SH(M) which preserves Ẑ

actions. Moreover the induced homomorphisms Mir : HF ((L1,L1, b1), (L2,L2, b2)) →
H(C∗(Mir(L1,L1, b1), Mir(L2,L2, b2)), m1) on cohomologies are isomorphisms.

We also remark that the Ẑ action described in this section is closely related to the
mixed Hodge structure which plays an important role in Mirror symmetry.

We next exhibit our construction in the case of an elliptic curve T 2. In this case, the
isomorphism of categories was established in [PZ, Ko] for m1, m2 and in [Fu1] for mk,
k ≥ 3. Let us calculate the Ẑ action in this case.

The prequantum bundle ξ is (T 2×C, π
√
−1(xdy−ydx))/Z2 where Z2 acts by ((x, y), v) 7→

((x + 1, y), eπ
√
−1yv), ((x, y), v) 7→ ((x, y + 1), e−π

√
−1xv).

We here apply the construction of [Fu1] to the case of elliptic curves. Let us con-
sider Lagrangian submanifolds Lpt(a) = {(a, y)|y ∈ S1}, Lst(b) = {(x, b)|x ∈ S1},
L = {(x, x)|x ∈ S1}.

It is easy to see that Lpt(a), Lst(b) are rational if a, b ∈ Q. Moreover L is rational and
ξ|⊗2
L is trivial. (ξ|L is nontrivial, however, since we identify (x, y; v) with (x+1, y+1;−v).)
So the object corresponding to (L,C) is fixed by ρ2. (Here C stands for the trivial line

bundle.) The object corresponding to (Lst(0),C) is fixed by ρ. We remark that (Lst(0),C)
will become a structure sheaf on the mirror and (L,C) will become a polarization E, that
is, a line bundle of degree 1. For (x, y∗) we consider the object Lx,y∗ = (Lpt(x),L(y∗)).
Here L(y∗) stands for the complex line bundle on S1 ∼= Lpt(x) with monodromy e2π

√
−1y∗ .

Lx,y∗ corresponds to the skyscraper sheaf at (x, y∗) ∈ T 2
τ by mirror symmetry. Here we
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regard T 2
τ = R2/Z2 such that (x, y∗) 7→ τx− y∗ is a complex isomorphism. (So if we take

z = z(x, y∗) = τx− y∗ as a complex coordinate, we have T 2
τ = C/(Z⊕ τZ).)

Remark 4.1. Let us put τ = a +
√
−1b. Then the complexified symplectic structure is

(b−
√
−1a)ω. We defined a complex structure in [Fu1] so that (b−

√
−1a)x +

√
−1y∗ is

a complex coordinate. It is easy to see that (b−
√
−1a)x +

√
−1y∗ =

√
−1z.

Since the holonomy of the flat bundle ξ|Lpt(x) is

exp
(∫ 1

0

π
√
−1xdy

)
exp

(
π
√
−1x

)
,

where the first factor is the integration of the connection form and the second factor is
induced by the action ((x, y), v) 7→ ((x, y + 1), e−π

√
−1xv), it follows that

ρ(Lx,y∗) = Lx,y∗+x. (37)

Let C be the trivial line bundle on T 2
τ , that is, the structure sheaf. Let Fz be the

skyscraper sheaf supported at z ∈ T 2
τ . We consider the operation (Yoneda product)

m2 : Ext0(T 2
τ ;C, E)⊗ Ext1(T 2

τ ; E, Fz)→ Ext1(T 2
τ ;C, Fz). (38)

It is easy to see that Ext1(T 2
τ ; E, Fz) ∼= E∗z , the dual to the fiber of E at z. On the other

hand, Ext1(T 2
τ ;C, Fz) is canonically isomorphic to C. Moreover Ext0(T 2

τ ;C, E) is one
dimensional. We find that the map (38) is described as follows. Let s ∈ Ext0(T 2

τ ;C, E)
which is a global holomorphic section of E. Let v ∈ E∗z

∼= Ext1(T 2
τ ; E, Fz). Then

m2(s, v) = v(s(z)) ∈ C ∼= Ext1(T 2
τ ;C, Fz).

The mirror of (38) is

m2 : HF 0((Lst(0),C), (L,C))⊗HF 1((L,C), ((Lpt(x),L(y∗)))

→ HF 1((Lst(0),C), ((Lpt(x),L(y∗))).
(39)

Remark 4.2. Here the coefficient ring of the Floer cohomology HF above is C and is
not the Novikov ring. In the case of elliptic curve (or more generally affine Lagrangian
submanifolds of a symplectic torus) the operator mk converges when we put T = e−1, as
was shown in [Fu1]. So Floer cohomology of C coefficient can be defined in those cases.

HF 0((Lst(0),C), (L,C)) is canonically isomorphic to C. We next remark that

HF 1((L,C), ((Lpt(x),L(y∗))) ∼= L(y∗)|(x,0)

(see Remark 3.2) is canonically isomorphism to C. Finally

HF 1((Lst(0),C), ((Lpt(x),L(y∗))) ∼= L(y∗)|(x,x).

We can identify it with C by regarding L(y∗) as the trivial line bundle with connection√
−1y∗dy. Here y is a coordinate of Lpt(x) = {(x, y)|y ∈ R}/Z.
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We thus identify three Floer cohomology groups with C. Then (39) is

Θ(τ ; (x, y∗)) =
∑
n

exp(π
√
−1τ (x + n)2 − 2π

√
−1(x + n)y∗) (40)

(40) was first obtained by [Ko]. See also [PZ]. The above formulation is due to [Fu1].
We recall that ρ2(L,C) = (L,C), ρ(Lst,C) = (Lst,C), ρ(Lx,y∗) = Lx,y∗+x.
By a direct calculation, it is easy to check

Θ(τ + 2; x, y∗ + 2x) = exp(−2π
√
−1x2)Θ(τ ; x, y∗). (41)

We remark that the isomorphism

ξ|Lpt(x) ⊗ (Lpt(x)× C, 2π
√
−1y∗dy) ∼= (Lpt(x) ×C, 2π

√
−1(y∗ + x)dy)

is ((x, y), v) 7→ (x, e−π
√
−1xyv). Hence at (x, x) it is multiplication by e−π

√
−1x2

. Thus
we have a commutative diagram:

HF 1((L,C), ((Lpt(x),L(y∗))) −−−−→ C

ρ2

y exp(−2π
√
−1x2)

y
HF 1((L,C), ((Lpt(x),L(y∗ + 2ρ))) −−−−→ C

Here the horizontal arrow is the isomorphism explained above.
Thus (41) is equivalent to the ρ2 invariance of m2, which is a part of the statement of

Theorem 2.4.
In other words, we can proceed as follows. Let us discuss it at the mirror side. The

canonical generator 1 of HF 0((Lst(0),C), (L,C)) will turn out to be a global section of E
which we write s. The isomorphism HF 1((L,C), ((Lpt(x),L(y∗))) ∼= C explained above
will give a unitary frame of E. We multiply it by exp(π

√
−1τx2 − 2π

√
−1xy∗) to get a

holomorphic frame ez : Ez → C. Using it we obtain

m2(s, ez) = ez(s(z)) = Θ(τ ; x, y) exp(−π
√
−1τx2 + 2π

√
−1xy∗)

=
∑
n

exp(π
√
−1n2τ + 2π

√
−1nz).

(z = τx− y∗). We denote by ϑ(τ, z) the right hand side. We have

ϑ(τ, z) = ϑ(τ + 2, z),

which is a standard identity of theta functions.
We remark that there is another (more interesting) identity

ϑ(−1/τ, z/τ) = e−π
√
−1/4τ1/2ϑ(τ, z) (42)

of theta functions. These two symmetries generate an index two subgroup of PSL(2;Z).
It is harder to see (42) from symplectic geometry side of the story. In fact, the action
T τ 7→ T−1/τ is not well-defined on ΛQC . So, one needs to find a smaller field (whose
Galois group over C(T ) (the field of rational functions on CP 1) might be a completion of
PSL(2;Z)) over which the Floer cohomology and the operations mk are defined.
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In the case of elliptic curve, it seems possible to work out such a construction by using
the fact that there exists such a symmetry at the complex side and that mirror symmetry
is proved in this case. However, to carry it out in detail, one needs to work out what
happens for mk, k ≥ 3, at the complex side of the story. It is nontrivial to do so, since m3

etc. are secondary operators, so in what sense it is symmetric with respect to PSL(2;Z)
is not so obvious.

We can describe the mirror family also as follows. Let us denote by h the upper
half plane. Ws consider the quotient of C × h by the Z2×̃PSL(2,Z) action defined by
(v, σ)(w, z) = (σw + v, σz), where σ acts on h as a fractional linear transformation and
on C ∼= R2 as a linear transformation. We can compactify it by adding an immersed CP 1

which intersects with itself transversaly. (Type I singular fiber.) This is a family defined
over h/PSL(2;Z) ∪ {[∞]}. We restrict ourselves to a neighborhood of [∞] and take the
double cover branched at [∞]. Then we have a family of elliptic curves M → D2 whose
fiber F0 at 0 = [∞] is the type I2 singular fiber. Namely F0 is a union of two embedded
CP 1’s say D1 and D2 such that D1∩D2 consists of two points, where D1 and D2 intersect
transversally to each other. This is the double cover of the mirror family of our symplectic
T 2. Let us denote by F0,reg the regular part of F0. Namely F0,reg

∼= C∗ ∪ C∗. For each
p ∈ F0,reg we can find a section sp : D2 →M such that sp(0) = p. (Such a section is not
unique.)

Let us discuss the following puzzling point here1 . We consider affine Lagrangian sub-
manifolds of T 2 parallel to Lpt. Such a Lagrangian submanifold corresponds to a section
sp : D2 → M if it defines an object fixed by ρ2. (We remark that, in our situation,
C[[T 2]] rational point of the mirror family is such a section.) It is easy to see that there
are exactly two Lagrangian submanifolds parallel to Lpt on which ξ2⊗ is trivial. Namely
they are given by x = 0 and by x = 1/2. Let us write them as Lpt(0), Lpt(1/2). At first
sight, these two are not enough to produce all of the sections sp. (Here p ∈ C∗ ∪ C∗.)

To solve this puzzle, we recall that objects of our category LAG consist of (L,L, s̃, b).
The extra parameter b plays an essential role here. In our case L = Lpt(0), Lpt(1/2),
the map Q : H1(L) → H2(L) defining b is trivial since there is no holomorphic disk
bounding L. So the moduli space of b’s are identified with H1(S1 ;C) ⊗C ΛQC,+. Here
ΛQC,+ = ΛC,+ ∩ ΛQC. (ΛC,+ is defined just before Formula (6).) Namely its element is a
sum

∑
i aiT

λi with λi > 0 (ai ∈ H1(S1 ;C)). We need to assume λi > 0 in the general
situation since otherwise Q may not converge. In the case of elliptic curve, however, we
know that all of the operations, especially Q, converge. This means that we may take
b =

∑
i aiT

λi where λ0 = 0 and λi > 0 for i > 0. Then b will contain a parameter
H1(L;C). The imaginally part of the parameter H1(L;C) coincides with the parameter
deforming the flat connection L and does not give new parameter. However its real part
H1(L;R) is a new parameter. We also remark that the Galois action of Ẑ is trivial
on this factor. If we include this parameter, then each of the Lagrangian submanifolds

1The author thanks to the referee who pointed out this interesting puzzle.
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Lpt(0), Lpt(1/2) produces objects parametrized by C∗ = S1×R+. Here S1 is a parameter
of L and R+ = exp(R) is new parameter. Hence they give C∗ ∪ C∗ as expected.

We also remark that the parameter H1(S1 ; ΛQC,+) in the choice of b corresponds to the
different choices of sp. (Namely various choices of sections s such that s(0) = p.)

Remark 4.3. In the above argument, we considered the mirror family parametrized by
the double cover of the disks. This is only because I want to find the most standard theta
function on the mirror family. Note that L′ = {[x, x + 1/2]|x ∈ R} is a Bohr-Sommerfeld
orbit. Hence, using L′ instead of L, we obtain a family of line bundles parametrized by a
neighborhood of [∞] in the compactification of h/PSL(2;Z) (not by its double cover).

Remark 4.4. In the case of Novikov homology of closed 1-form on a finite dimensional
manifold, the operator m1 is proved to be a rational function (that is, a meromorphic
function on CP 1) by [Pa]. It seems likely to be true for higher mk. In other words, the
“mirror of finite dimensional Novikov homology” gives a family parametrized by CP 1. In
our case of infinite dimensional Floer theory, the story should be more involved even in
the case of an elliptic curve.

It might be possible to generalize the story of elliptic curves mentioned above to the
case of higher dimensional torus and affine Lagrangian submanifolds, by using [Fu1] (at
least as far as m2 is concerned).

However beyond that case, to establish a symmetry bigger than Ẑ symmetry on the
symplectic side of the story is extremely difficult.

Let us consider, for example, the case of the quintic M . We have H2(M) = C, so
the moduli space of complexified symplectic structures of M is one dimensional. Let M∨

be the mirror quintic. The moduli space of its complex structures is a quotient of the
upper half plane by the symmetries τ 7→ τ + 1 and τ 7→ τ cos 2π/5−sin 2π/5

τ sin 2π/5+cos 2π/5 , an element of
PSL(2,R), of order 5 which fixes

√
−1. (See for example [COGP].) The first symmetry

corresponds to the Ẑ symmetry which we now understand. However the second symmetry
at the symplectic side is mysterious and is very interesting.

One may also try to study a similar symmetry in the case of K3 surface. Namely
the action of the group O(3, 19;Z) are supposed to exist on the category of Lagrangian
submanifolds. (In this case we need to move symplectic structure of K3 surface also to
get full symmetry.)

The existence of such symmetries in the symplectic side seems to be one of the deepest
consequences of Mirror symmetry.

Remark 4.5. We remark that there are several works comparing two symmetries by
mirror symmetry. (See [ST, SK]). However in [ST, SK] the symmetry is induced by a
symplectic diffeomorphism (generalized Dehn twist) in the symplectic side, and in the
complex side, it is not induced by a biholomorphic map but is a Fourier-Mukai transform.
In our situation, in the complex side the symmetry is induced by a biholomorphic map,
and in the symplectic side it is not induced by a symplectic diffeomorphism.
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We also remark that the Ẑ action on objects of LAG is easy to calculate. If we assume
that the mirror is obtained by a dual torus fibration as in [SYZ], a point of the mirror
manifold M∨ can be identified with an object of LAG of M . Therefore, Conjecture 4.2
gives a nice description of the monodromy ψτ : (M∨, Jτ ) ∼= (M∨, Jτ+1). For example,
the following will be proved if Conjecture 4.2 is true.

Conjecture 4.3. In the situation of Conjecture 4.2, the monodromy ψτ : (M∨, Jτ) ∼=
(M∨, Jτ+1). can be taken as a “completely integrable system”.

Namely the following holds. There exists a Baire set M∨
0 of M∨ such that if x ∈

M∨
0 then the closure of the orbit {ψkτ (x)|k ∈ Z} is an n dimensional Lagrangian torus.

(n = dimCM∨). Moreover, for any x, the closure of {ψkτ (x)|k ∈ Z} is a finite union of
isotropic tori.

For example, in the case of the elliptic curve, the monodromy is (x, y∗) 7→ (x, x + y∗).
Hence the closure of its orbit is S1 if x is not rational.

Solving Conjecture 4.3 might give a way to find a Lagrangian torus fibration of a
Calabi-Yau manifold near the maximal degeneration point.
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