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Abstract

We argue that G2 manifolds for M-theory admitting string theory Calabi-Yau
duals are fibered by coassociative submanifolds. Dual theories are constructed
using the moduli space of M-five-brane fibers as target space. Mirror symme-
try and various string and M-theory dualities involving G2 manifolds may be
incorporated into this framework. To give some examples, we construct two
non-compact manifolds with G2 structures: one with a K3 fibration, and one
with a torus fibration and a metric of G2 holonomy. Kaluza-Klein reduction
of the latter solution gives abelian BPS monopoles in 3 + 1 dimensions.

1. Introduction

One of the main achievements in string theory during the last decade was the discovery
of string dualities and relations among them. A particularly rich and interesting example
of string duality is mirror symmetry between pairs of Calabi-Yau manifolds. A geometric
framework for understanding this duality was proposed in [32], and involves constructing
the mirror manifold by dualizing a torus fibration. This construction arose from the
correspondence among nonperturbative states of dual theories. M-theory has united the
disparate string theories and promises to reveal the nature of string dualities. In M-
theory, the analogue of a Calabi-Yau manifold is a manifold with G2 holonomy, simply
by the counting of dimensions: what was 10 = 4 + 6 for string theory is 11 = 4 + 7 in
M-theory. According to this simple formula, seven-dimensional G2-holonomy manifolds
are natural candidates for minimally supersymmetric (and phenomenologically interesting
[3]) compactifications of M-theory to 3 + 1 dimensions. If manifolds with G2 holonomy
are M-theory analogues of Calabi-Yau spaces, then what is the corresponding notion of
mirror symmetry, and what is the geometry behind duality? Is there a fibration structure
on G2 manifolds relevant to this and possibly other string/M-theory dualities? These are
the questions that one might naturally ask, and that we attempt to address in this paper.

We argue that, just as Calabi-Yau manifolds involved in mirror symmetry are fibered
by special Lagrangian three-tori, in M-theory G2-holonomy manifolds which admit string
theory duals are fibered by coassociative four-manifolds. M-Theory on a seven-manifold
X, with G2 holonomy, leads to an effective field theory in four dimensions with N = 1
supersymmetry. The same is true for the heterotic string theory on a Calabi-Yau manifold,
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Y, with an appropriate choice of holomorphic bundle.1 Similarly, Type-IIA string theory
on a noncompact Calabi-Yau manifold, Z, with Ramond-Ramond fluxes turned on (or
with a spacetime-filling brane) has N = 1 supersymmetry if the fluxes satisfy certain first-
order equations. Are there pairs2 (X, Y ) or (X,Z) which lead to equivalent theories? If
so, how are the geometry and topology of X related to the choice of Y or Z, as well as
to the bundle or Ramond-Ramond field data? Is there a constructive way of producing
duals?

In this paper we address these questions from two points of view, then produce two
manifolds which may serve as sources of further study in these directions: one a torus
fibration with a G2 metric constructed from Hitchin’s method [17] in Sec. 4, and one a K3
fibration with a G2 structure (but neither closed nor co-closed three-form) constructed in
Sec. 3. The two lines of reasoning are as follows. First, we study the moduli space of an
M-theory five-brane wrapped around a coassociative (internal) four-cycle, C. By allowing
the moduli of C to vary slowly in spacetime directions, one sees that the resulting theory
on the spacetime soliton string is a conventional string theory with target space the M-
brane moduli space. The moduli space is Y or Z, depending on C. This line of reasoning
follows [14]. Second, as in [3], we use fiberwise duality of M-theory on K3 with heterotic
strings on T 3, as well as the “fact” that Calabi-Yau’s admit torus fibrations, to argue that
heterotic string theory on a Calabi-Yau manifold should be dual to M-theory on a K3
fibration. Examples of compact K3 fibrations with G2 holonomy have been constructed
from orbifolds of T 7 [18], and from Fano 3-folds [21].

Remark 1. Some duality conjectures involving G2 manifolds have been proposed in [22]
and [1]. Our arguments don’t involve pairs of G2 manifolds per se, though do lead to
relations. For example, if one takes a Calabi-Yau resulting from the moduli space of a
coassociative fiber, one can look for a different G2 manifold which has that Calabi-Yau
as its Kaluza-Klein reduction. One would then expect that two G2 manifolds related in
this way would be mirror, in the sense of Shatashvili-Vafa [31]. The setting for Acharya’s
arguments in [1] is string theory and duality of G2 manifolds via dual torus fibrations. The
motivation in [22] is more mathematical, where a fiberwise Fourier-Mukai transform leads
to conjectured dual G2 manifolds near limiting points in the moduli space of G2-holonomy
metrics.

Remark 2. Results in Sec. 2 rely on physical arguments, and include some speculative
mathematics. While the metrics of Secs. 3 and 4 are motivated by the physical reasoning,
these sections are purely mathematical in nature, and can be read independently. Sec. 5
is a mixed bag.

1One requires E → Y to obey p1(E) = p1(TY ) and c1(E) = 0 so that there is no anomaly, i.e. the
heterotic theory contains no fivebranes.

2Kachru and Vafa first found heterotic-Type-IIA (Y, Z) pairs in [19]; some (X,Z) pairs are studied in
[4, 5].
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2. Fibrations from Brane Moduli Spaces

2.1. Fibrations from M-theory

The arguments of mirror symmetry as T-duality [32] arise from recognizing that string
duality demands a correspondence among the nonperturbative states of the theory. The
dual theory is then found as a sigma model on the moduli space of a relevant brane. We
shall try to apply similar reasoning to M-theory on a compact G2 manifold, X. Here,
instead of D-branes we have M-theory five-branes.3 On a G2 manifold we can choose a
five-brane whose world-volume is Σ × C, with Σ ⊂ R4 a Riemann surface in flat space,
and C ⊂ X a coassociative four-cycle (this means Φ|C = 0, where Φ is the associative
calibration three-form of the torsion-free G2 structure on X). The five-brane is a string in
the effective theory, the so-called black string, and we have chosen a supersymmetric brane,
in the sense that the theory on the string world-sheet is a two-dimensional N = (2, 0)
supersymmetric theory. Its moduli space equals the moduli space of the five-brane. Recall
that similar reasoning led to the discovery of the heterotic string as a Type-IIA soliton
[14].

The question now arises: What is the effective field theory on the black string obtained
by wrapping a five-brane around the four-cycle C? A proper answer to this question
should consist of two parts: the spectrum of the theory, and the interactions. Here we
address the first part. In order to do this, we need to find all the five-brane excitations
which are light compared to the compactification scale (given by the inverse size of the
four-cycle C).

In the approximation of small C and large Σ, a complete list of the light fields can
be obtained by the usual Kaluza-Klein reduction of the six-dimensional five-brane theory
on the four-cycle C. Since the spectrum of the original six-dimensional theory includes
scalar fields parametrizing transverse motions of the five-brane, as well as a two-form
gauge field with self-dual field strength, we have to consider harmonics for both of these
kinds of fields.

Let us begin with the Kaluza-Klein modes of the two-form. Via reduction on a four-
manifold C, one finds a number of scalar fields on Σ that can be obtained by expanding
the two-form in a basis of harmonic two-forms4 on C. Moreover, the chirality of these
scalars is correlated with the (anti-)self-duality of the two-forms: if β+ is a harmonic,
self-dual two-form on C and α is a scalar on Σ, then self-duality of the field strength
d(αβ+) requires that dα is self-dual on Σ, i.e. α is a right mover (likewise, anti-self-dual
cohomology classes yield left movers). We thus find b+2 (C) right-moving scalars and b−2 (C)
left-moving scalars on Σ arising from the two-form with self-dual field strength in the five-
brane action. In addition to these scalars (which are compact, as we will see below), we

3We recall that the field content of M-theory contains a three-form H with four-form field strength;

it obeys dH = δD, where D is the five-brane world-volume. This leads to a condition that the normal
bundle have trivial Euler characteristic, which is true for the examples (T 4, K3) in this paper.

4One could also consider the Kaluza-Klein modes of the two-form, say, with only one leg along Σ.
These modes, however, give rise to U (1) gauge vector fields on Σ and, therefore, are non-dynamical.
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also have b+2 (C) + 2 scalar modes on Σ of both chiralities that come from transverse
deformations of the five-brane – respectively, from deformations of the coassociative four-
cycle C (b+2 (C) in number) and from the two transverse directions of the world-sheet Σ
in spacetime.

We now note that the scalar fields in the effective theory on Σ that come from
the reduction of harmonic two-forms have compact range. In fact, these scalars lie in
H2(C;R)/H2(C;Z).This result arises from the charge quantization condition in M-theory
corresponding to the four-form field strength of the M-theory three-form, under which five-
branes are magnetically charged and membranes are electrically charged. This compact-
ness condition, in an analogous string theory set-up, was explained in [14]. A more global
way of viewing this result is by studying the moduli space of five-brane world-volume
theories. As derived in [36], the self-duality of the field strength on the five-brane world-
volume D demands a choice of point in the intermediate Jacobian H3(D;R)/H3(D;Z) in
order to define the partition function. Upon Kaluza-Klein reduction, this choice leads to
the compactification condition derived above from considering low-lying excitations. The
compactness result is important in identifying the conjectured dual theory, as we now
describe.

The fields we have found have world-sheet dependencies. The effective string theory
is a supersymmetric sigma model with target space described by the 2b+2 (C) + 2 left-
moving and b+2 (C) + b−2 (C) + 2 right-moving fields found above.5 These fields live in a
compactification defined by the moduli space and the integer lattice H2(C,Z). We will be
interested in two cases: C = T 4 and C = K3. Note that since b+2 (C) = 3 for these cases,
X looks locally like a fibration by C (the fibration is nonsingular when C has a Ricci-flat
metric). Now when C ∼= T 4 we have b+2 = b−2 = 3, and we find eight left-movers and eight
right-movers, equal in number to the transverse oscillations of the Type-II string. When
C ∼= K3 we have b+2 = 3, b−2 = 19, so we get eight left-movers and 24 right-movers, as in
the heterotic string theory.

The chiral fields take values in a torus defined by integral cohomology of two-forms.
Since b+2 (C) = 3 if C = T 4 or K3, one would naively think that the left- and right-movers
live in a three-torus compactification of the Type-II or heterotic theory, respectively.
However, the decomposition into left- and right-movers itself varies as C does. In the
heterotic theory, say, this decomposition determines the Wilson lines, metric and B-field
on the three-torus [25], so we must think of this three-torus as varying over the three-
dimensional space of possible coassociative forms C. In total, we have as target space a
three-torus fibration over a three-dimensional space, with the various fields in the Type-II
or heterotic theory determined by the nature of this fibration.

Employing the reasoning of [32], we think of this torus fibration as a Calabi-Yau,
though we have no evidence beyond supersymmetry in support of this global assertion
about the target space. The gauge fields on the three-tori are varying as well, so the

5The metric is typically derived from the second-order variation of the five-brane action with re-

spect to world-sheet time-dependence of the moduli fields, and the fermionic terms are derived from
supersymmetry.
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total space may be a heterotic Calabi-Yau compactification with gauge bundle, yielding
an N = 1 theory in four dimensions. In the case where C = T 4, the Type-II theory will
have a varying Ramond-Ramond gauge field, again leading to an N = 1 theory in four
dimensions. We expect these black string theories to be dual to the original M-theory on
X.

As with the special Lagrangian (“SYZ”) conjecture [32], the conjectures here are based
on several approximations and assumptions, and are likely to be difficult to formulate
mathematically. They may only be true in some limiting sense where our approximations
are valid. In any case, some interesting questions arise. Do G2 metrics approaching a sin-
gular limit point look like small deformations of a coassociative fibration with small fibers
(so that the Kaluza-Klein reasoning becomes more precise)? With a detailed knowledge
of the fibration structure near such a limiting metric, one would hope to say more about
this duality. Can one build the Calabi-Yau by tracking the self-dual subspace of H2(C;R)
as it varies in its coassociative moduli space, using [25] to determine the fiber metric, etc.?
Do the conditions of G2 holonomy for a coassociative C fibration relate to field equations
for the black string theory on the Calabi-Yau? Does the correspondence become exact in
limit of Ricci-flat fibers, as the analogous correspondence does for semi-flat Calabi-Yau’s?
See Rmk. 3 and Rmk. 4.

In the next two sections, we study other aspects of the dualities discussed here and
summarized in Fig. 1, considering C = T 4 and C = K3 in turn.

2.2. Torus Fibrations and Type-II/M-theory Duality

In the usual equivalence between M-theory and Type IIA string theory, one employs
simple Kaluza-Klein reduction to the fields. In the reduction from M-theory on T 4 to
IIA on a three-torus, the metric field of a four-torus gives a metric on the three-torus, a
Ramond-Ramond gauge field, and a scalar. In our situation, if we take X to be fibered by
C ∼= T 4, then the Ramond-Ramond gauge field will be varying and generically produce
a non-zero field strength. This leads to the generation of a superpotential, for an N = 1
theory6 [12, 23, 33].

However, in the reasoning of Sec. 2.1, we have done something different to arrive at
a Calabi-Yau manifold starting from X, via self-dual forms. What’s the relation? By
analogy with the mirror symmetry argument of [32], we should be performing not the
Kaluza-Klein reduction, but its mirror. Therefore, we should arrive at a Type-IIB theory
on our Calabi-Yau three-fold, and that IIB theory should have a dual torus fibration —
see Fig. 1. (Generalizations of the SYZ conjecture to G2 manifolds with torus fibrations
have been made in [1] and [22].)

To show this is true, we isolate a vector v in the direction of the M-theory circle.
Then, we use the G2 structure to find a perfect pairing between R4/Rv and the self-dual
directions in R4, where R4 is the tangent space to the coassociative fiber. But note that
the G2 three-form Φ0 on R7 already gives an isomorphism Λ2

+R4 ∼= (R4)⊥, so we need

6If the fibration of T 4 over T 3 is not changing, then the dilaton is constant and X ∼= CY × S1, so we
recover N = 2 supersymmetry.
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Figure 1. Various dualities between M-theory on manifold X with G2 holo-
nomy and string theory on Calabi-Yau manifolds.

only find, given a vector v, a pairing between vectors w ∈ R4/Rv and vectors n normal
to the four-plane. This pairing is simply

Φ0(v, w, n), (2.1)

and is perfect.7

Let us call the Calabi-Yau formed from the moduli space of coassociative torus fibers
the “brane reduction” of the G2 manifold X, as opposed to the Kaluza-Klein reduction.
What we have argued then is that brane reduction is mirror to Kaluza-Klein reduction.

Another piece of evidence for this correspondence can be found by studying the effect
of deforming the C-field in M-theory. Such a deformation doesn’t affect the geometry of
the Kaluza-Klein reduction, but it does alter the B-field, hence the complexified Kähler
form. How does it affect the brane reduction? It should enter the equations for the two-
form gauge field on the five-brane, hence change the self-duality condition. This alters
the pairing between base and fiber directions for the brane reduction, hence changes the
complex structure of the Calabi-Yau. We therefore see once again the mirror relation
between brane and Kaluza-Klein reduction.

As described in Remark 1, one would naturally conjecture that the Kaluza-Klein lift
of a brane-reduction would yield a mirror G2 manifold, in the sense of Shatashvili-Vafa
[31]. In fact, B. Acharya informs us that he has constructed G2 orbifolds with T 4 and
T 3 fibrations (and discrete torsion), and finds that dualizing along T 3 or along T 4 fibers
produces G2 manifolds with the same values of b2 + b3, as required by [31]. We thank
him for informing us of these interesting examples, which suggest that mirror Calabi-Yau
manifolds correspond to mirror G2 manifolds.

7For example, if we write

Φ0 = e125 + e345 + e136 − e246 + e147 + e237 + e567 (2.2)

and v = e1, then the duality pairs e2 ↔ e5, as ιvΦ0 = e25 + e36 + e47, etc.
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2.3. K3 Fibrations and Heterotic/M-theory Duality

Consider heterotic string theory on a Calabi-Yau three-fold Y . Following [32], we view
Y as a fibration by special Lagrangian tori over a 3-dimensional base (= S3). Since
heterotic string on T 3 is dual to M-theory on K3, we can apply this duality fiberwise,
and conclude that heterotic string on Y should be dual to M-theory on a G2-holonomy
manifold X, which in turn can be viewed as a fibration by (possibly singular) K3 fibers.

Identifying BPS domain walls in M-theory and in heterotic string, one can obtain a
relation between Betti numbers of X and Y , assuming that both manifolds are smooth.
One could also look at the effective theory in M-theory onX and in heterotic theory on Y .
The spectra of light particles should match. In particular, we should expect the matching
of numbers of chiral/vector multiplets in dual descriptions. In the simple case (when
singularities in the K3 fiber can be resolved or deformed), both X and Y are smooth
manifolds. It follows that the gauge group in the effective four-dimensional theory is
abelian, typically of rank, cf. [28]:

14 = number of N =1 vector multiplets (2.3)

This is the rank of the gauge group in heterotic theory broken to a subgroup by Wilson
lines, which can be continuosly connected to a trivial Wilson line, i.e. we are on the main
branch of the moduli space corresponding to the so-called standard embedding.

On the other hand, in M-theory on G2 manifold X, vector fields come from Kaluza-
Klein modes of the C-field. So, there are b2(X) of them. Therefore, identifying N = 1
vector multiplets in the low-energy effective theory, we seem to find a peculiar condition:

b2(X) ≤ 16 (2.4)

for all G2-holonomy manifolds (with generically non-singular K3 fibers) that have het-
erotic duals. Of course, we assume that the heterotic dual is purely geometrical, i.e. there
are no space-filling five-branes.

In general, one needs space-filling branes to cancel anomalies. For example, in F-theory
on a Calabi-Yau four-fold these are D3-branes, needed to cancel the χ/24 tadpole of the
F-theory compactification. On the other hand, in heterotic string theory on a Calabi-
Yau space Y these are five-branes wrapped on holomorphic curves inside Y . Via duality
to M-theory these space-filling branes become certain singularities of the coassociative
fibration (such that the whole G2 manifold may still be non-singular), and modify the
naive relation (2.3).

Summarizing, we argued that the Calabi-Yau dual of M-theory on X is a heterotic
compactification on a Calabi-Yau three-torus fibered over the moduli space Mcoassoc of
coassociative cycles in the deformation class of C. There are a few important remarks in
place here:

Remark 3. Note that the metric on the torus part of the heterotic compactification is
changing. This scenario is somewhat similar to the stringy cosmic string, in which the
modulus of the compactification has spatial dependence. In that case, the equations of
motion ensured holomorphicity of the total space. We would hope to find that the G2
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holonomy condition is related to the equations of motion for the stringy cosmic string in
this generalized setting [10].

Remark 4. By analogy to the Calabi-Yau case, where a multiple of the holomorphic form
becomes an integral form near the large radius limit,8 one anticipates that near some limit
in G2 moduli space, the self-dual forms can be represented by integral forms, and the
left- and right-moving spaces compactify separately (i.e. the lattice is compatible with the
left/right split). The limiting Calabi-Yau, then, would look like the quotient of T ∗Mcoassoc

by a lattice. This is the G2 analogue of the fact that there is no quantum correction to the
complex structure of the special Lagrangian fibration near the large radius limit. Perhaps
one could then use a Gauss-Manin connection to follow the Calabi-Yau manifold away
from this limit.

We now highlight some features of Mcoassoc which make it a possible candidate for
the base of a Calabi-Yau with torus fibration. The moduli space Mcoassoc has a natural
metric on it, given by the inner product of anti-self-dual forms:

g(V1, V2) = −
∫
C

θ1 ∧ θ2 (2.5)

where θi are the anti-self-dual two-forms corresponding to the tangent vectors Vi ∈
TMcoassoc|C . We also have a correspondence between moduli (harmonic self-dual forms)
and left-moving field strength directions (self-dual cohomology classes). This defines an
almost complex structure on the left-moving target space. In addition,Mcoassoc has a nat-
ural three-form Ω on it, defined as follows. Let V1, V2, V3 be three vectors in TMcoassoc|C ,
and let v1, v2, v3 be the corresponding normal vectors to C in X. We define

Ω(V1, V2, V3)|C =
∫
C

Φ(v1, v2, v3)dV, (2.6)

where Φ is the three-form defining the G2 structure. When b+2 (C) = 3, this is a top-
dimensional form. We expect, by analogy with the special Lagrangian D-brane case, that
this three-form gets complexified, to define a holomorphic three-form on the left-moving
part of the five-brane moduli space. For more about geometric structures onMcoassoc see
[22].

2.4. Mirror Symmetry as Fourier-Mukai Transform

Using various dualities between string theory on Calabi-Yau manifolds and M-theory
on G2-holonomy manifolds, we have argued that such G2-holonomy manifolds should be
fibered by coassociative tori or K3 surfaces. In this subsection, we come to the same
conclusion using only string dualities and interpreting mirror symmetry for G2 manifolds
as a Fourier-Mukai transform on the coassociative fiberes.

For concreteness, consider a K3 fibration, and let B be the base of this fibration:

π : X → B. (2.7)

8This is pointed out in [27], for example.
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Let us analyze in more detail the structure of this fibration. One natural question about
this fibration by K3 surfaces is about the geometric meaning of the Fourier-Mukai trans-
form acting on each fiber. By analogy with the SYZ conjecture [32], it is natural to expect
that this transformation corresponds to a symmetry of the full quantum string theory on
X, viz. to T-duality or mirror symmetry [31]. In order to follow the arguments of [32] in
the G2 case, let us go to Type-IIA theory on X.

We can take a D0-brane on X, with moduli space equal to X. Locally, we can identify
the moduli with (p, q), where q is the position of the D0-brane on B, and p is its position
in a K3 fiber. On the 7-manifold X we can describe a D0-brane as a (non-holomorphic)
skyscraper sheaf, E , supported at (p, q). Now since everything is going to happen in the
fiber, we can think of Ep as a (holomorphic) coherent sheaf on the K3 at q. Let v(Ep) be
the corresponding Mukai vector:

v(Ep) = D-brane charge = ch(Ep)
√
Â(K3). (2.8)

In particular, for a D0-brane we have v = (0, 0,−1).
Naively, one might expect that via Fourier-Mukai transform a D0-brane becomes a

D4-brane wrapped on the entire K3 fiber. It should be also 1/2-BPS, so immediately we
infer that K3 fibers should be volume minimizing, i.e. coassociative submanifolds inside
X.

As the number of deformations of coassociative K3’s in X equals b+2 (K3) = 3, it is
natural to identify position on the base, q ∈ B, with the local coordinate on this moduli
space. But this clearly cannot be the full story since the moduli space of the original
D0-brane was 7-dimensional (a copy of X), and the same should be true for the dual
D4-brane.

The solution is that after we make a Fourier-Mukai transform we obtain the Mukai
vector

vdual = (1, 0, 0). (2.9)

This is not the right charge vector for a D4-brane on K3. Since p1(K3) = 48, the latter
would be v = (1, 0,−1). So, after performing Fourier-Mukai transform we actually get a
bound state of D4-brane and a D0-brane! It has the right charge vector, v = (1, 0, 0), and
the right dimension of the moduli space. In fact, according to Mukai, the real dimension
of the moduli space of a sheaf E with Mukai vector v = (r, l, s) is

dim(M(E)) = 2l2 − 4rs+ 4. (2.10)

which is equal to 4 when v = (1, 0, 0). So, the total dimensional of the moduli space of
the dual D0/D4 bound state is indeed equal to 7, as expected, in complete analogy with
the SYZ case. Note, that instead of K3 we could take T 4 as a coassociative fiber. In this
case, the story is much easier: there is no induced D0-brane charge on the dual D4-brane,
after we make four T-dualities along the T 4. In this case again one has b−3 (T 4) = 3 for
the number of deformations of coassociative T 4 cycle, and b1(T 4) = 4 for the number
of moduli associated with flat connections. Hence, the total dimension of the moduli
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space of dual D4-brane is equal to 7, which is the right dimension to describe mirror G2

manifold. This case was already studied in [2].

Rigidity of the Base ?

In both K3 and T 4 fibrations, we could take an appropriate D7-brane wrapped on the
entire X, and conclude that B is itself a supersymmetric 3-cycle in X — an associative
cycle. Indeed, dualizing the D7-brane along the fibers we find a D3-brane wrapped around
the base B. Since the moduli spaces of these two D-branes should be the same, one
might expect that both are rigid. In fact, the D7-brane does not have any geometric
deformations. Furthermore, Hol(X) = G2 implies b1(X) = 0, which means that the
space of flat U(1) gauge connections on the D7-brane is also zero-dimensional. However,
a complete answer to this question should involve a more careful analysis of the gauge
bundle on the D7-brane, and it would interesting to study it further both from physics
and mathematics points of view.

3. A K3 Fibration

3.1. Idea and Basic Set-Up

Imagine a G2 manifold which is a K3 fibration over a base S3 , with a discriminant
locus ∆, which we assume to be a closed manifold of codimension two — a knot or link.
If we consider the case of a non-satellite knot, then by Thurston’s theorem there exists
a hyperbolic metric on the complement S3 \∆. In this section, we use this reasoning to
look for a G2 structure on a K3 fibration X over a non-compact hyperbolic manifold.9

For simplicitly, we take the contractible hyperbolic space B = SO(3, 1)/SO(3) for our
base, with its hyperbolic metric gB, left-invariant under the action of SO(3, 1). Thus,
X = B ×K3 as a differentiable manifold. We write

π : X → B

for the projection to base. Note that at a point p ∈ X the vertical vectors are defined
as the kernel of π and span a sub-bundle TVX of TX, but there is no canonical notion
of horizontal vectors until we have a connection, i.e. a choice of “horizontal” subbundle
THX of TX. Such a choice allows us to decompose TX as TX = THX ⊕ TVX, and we
write PH and PV for the corresonding projection operators. We will discuss such a choice
in section 3.2.

Choose over a point b ∈ B a marking for the K3 fiber. Recall from Ref. [20] that the
moduli space of Einstein metrics on a marked K3 manifold with unit volume is isomorphic
to

MK3 = SO(3, 19)/[SO(3)× SO(19)].
(Quotienting on the left by SO(3, 19;Z) removes the choice of marking.) Since we will
wish to fiber X with Kähler-Einstein K3’s, we will employ a map from B to MK3. Let

9This construction works for T 4 fibrations too, if in the following we simply replace SO(3,19) and its
maximal compact subgroup by SO(3,3) with its corresponding subgroup.
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τ : B → MK3. The next section now shows that we can choose a family of Ricci-flat
metrics for K3’s over B realizing the family defined by τ, and that we have a natural
connection.

3.2. The Fiberwise Metric and Connection

Let RicMet be the space of unit-volume Ricci-flat metrics on a fixed differentiable
K3 manifold. On RicMet × K3 we have a natural fiberwise metric: at (p, q) we have
the metric p defines at q. Then the group of diffeomorphisms Diff acts on RicMet on
the right via pull-back, and on K3 on the left. The fiber product RicMet ×Diff K3
inherits the fiberwise metric, and defines a universal family of Ricci-flat K3 manifolds
over MK3 = RicMet/Diff. This is universal in the sense that any other family of
Ricci-flat K3 metrics can be mapped to the constructed family by a canonical family of
diffeomorphisms, with the fiberwise metric defined by pull-back.

We now can assume that X has been chosen to realize the map τ, i.e. that X → B is
a family of Ricci-flat K3’s such that the equivalence class of the metric on π−1(b) equals
τ (b). We now construct a canonical connection on X. We need to define the horizontal
sub-bundle of TX.

We will define the horizontal part of a vector V in X at q, a point in the fiber over
b ∈ B. Let U ⊂ B be a neighborhood containing b such that π−1(U) ∼= U ×K3. Using a
trivialization for the fiber bundle X → B, we may assume we have a family of metrics on
a fixed K3. Let t parametrize a path γ(t) in the base through b such that γ̇(0) = π∗V.
Then gt (the metric over γ(t)) defines a family of metrics, and we look for a family of
diffeomorphisms ft : K3→ K3 such that

f0 = id,
d

dt
(f∗t gt) ⊥ gauge orbit of diffeos. (3.11)

Here perpendicularity is in the space of metrics, which is equipped with the natural metric
on symmetric two-tensors. As we will show, this uniquely determines ft. We therefore get
a curve Γ(t) passing through q defined by Γ(t) = (γ(t), ft(q)), and we define the horizontal
component of V to be

VH ≡
d

dt
Γ(t)|t=0.

Lemma 5. The conditions in (3.11) uniquely determine ft.

Proof. In fact we only need the first derivative of ft at t = 0, which is defined by a vector
field ξ̂. Using the metric, we can equate this with a one form ξ = ξµdx

µ, written in local
coordinates xµ. Let η = d

dt
gt|t=0. Then

Aµν ≡
d

dt
(f∗t gt)µν |t=0 = ηµν +∇µξν +∇νξν .

Now perpendicularity of Aµν to the gauge orbit under diffeomorphisms means

∇µAµν = 0. (3.12)
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Imposing this condition leads to the equation

∇µ∇µξν +∇µ∇νξν = −∇µηµν ≡ −Bν , (3.13)

where we have defined the one-form Bν = ∇µηµν. Now note

∇µ∇νξµ = [∇µ,∇ν]ξµ +∇ν∇µξν = Rν
αξα +∇ν∇µξν = ∇ν∇µξν,

where we have used Ricci flatness. Therefore, (3.13) becomes

∇µ∇µξν +∇ν∇νξν = −Bν ,
or

d†dξ + 2dd†ξ = B.

Using Hodge decomposition and the fact that K3 is simply-connected, we can write
ξ = dh+d†k for some function h and two-form k, and we may choose h and k perpendicular
to the kernel of d and d†, respectively. Likewise, B has a decomposition as dH + d†K,
with H and K chosen similarly. Therefore d†dd†k + 2dd†dh = dH + d†K, and we have

k =
1
dd†

K, h =
1

2d†d
H.

This determines ξ, thus dft
dt
|t=0, uniquely. �

The set of vectors VH spans a sub-bundle TH ⊂ TX. Further, we have a splitting
TX = TH ⊕ TV defined on U, where TV is the vertical sub-bundle. The definition of the
splitting is independent of the trivialization, so we have shown:

Corollary 6. The sub-bundle TH is well-defined on all of X and defines a connection or
splitting, TX = TH ⊕ TV .

3.3. Defining the Three-Form, Φ

From the previous construction, we can now form a natural metric on X as follows. Let
p ∈ X, b = π(p) and µ = τ (b), with gµK the metric defined by µ ∈MK3. Let U, V ∈ TpX.
Then we can define

g(U, V ) = gB(π∗U, π∗V )|b + gµK(PV U, PV V )|p (3.14)

(one could also multiply the two terms by positive functions of X), where PV is the
vertical projection. In particular, horizontal and vertical directions are declared to be
perpendicular.

Note that both B andMK3 are homogeneous spaces G/H. Then H acts on the tangent
space of G/H, since the stabilizer of the transitive left G action at [g] is Hg ≡ gHg−1 ∼= H.
This is obvious, since (ghg−1)[g] = [gh] = [g], where [g] denotes the coset gH.

Now let τ̃ : SO(3, 1)→ SO(3, 19) be a group homomorphism such that

τ̃ (SO(3)) ⊂ SO(3) × SO(19)

and
p1 ◦ τ̃ is an isomorphism,
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where p1 is the projection to the first factor. Now τ̃ induces a map

τ : B →MK3,

equivariant in the following sense. Let c ∈ SO(3), which acts on TB. Let C = τ̃ (c) ∈
SO(3) × SO(19) acting on TMK3. Then

τ∗ ◦ c = C ◦ τ∗, (3.15)

where τ∗ is the push-forward of tangent vectors. Namely, we have equivariance under
corresponding SO(3) actions.10

We now try to construct a positive G2 calibration Φ on X, so that Φ is a nowhere-
vanishing, closed three-form form which at every point p ∈ X lies in the GL(TpX) orbit
of the standard associative form Φ0 (encoding the structure constants of multiplication
on the imaginary octonians). Recall that the construction of Φ0 involves writing R7 as
ImH⊕H, then identifying for each orthonormal basis element ei in ImH a self-dual form
αi in Λ2H which encodes multiplication (in H) by ei. For example, α1 = (e4∧e5 +e6∧e7).
Then Φ0 = e1 ∧ e2 ∧ e3 +

∑3
i=1 ei ∧ αi. A G2 form φ defines a metric g by g(u, v)dV =

ιuφ ∧ ιvφ ∧ φ, where dV =
√

detg e1 ∧ ... ∧ e7.
To construct such a Φ then, we must relate the tangential directions on B to self-

dual forms on the fiber. (The metric on B allows us to equate tangent vectors and
one-forms.) Recall that TB|[g] ∼= g/hg, where g = so(3, 1), h = so(3), and we have
defined hg = ghg−1 = Adgh (independent of the representative of the coset [g]). Our key
construction will be the simple observation that

g/hg ∼= h
⊥
g
∼= hg (3.16)

as vector spaces, where the first equivalence comes from the metric on g and the second
comes from the (pseudo-)symplectic structure on g = so(3, 1) ∼= sl(2,C) ∼= C3, by which
h is a Lagrangian subspace.11 This allows us to associate to V ∈ T[g]B an element CV ∈
so(3). Next we shall get from CV a self-dual form on the fiber. Recall now thatMK3 is a
Grassmannian of positive, oriented three-planes in R3,19, which is interpreted as the plane
of self-dual harmonic two-forms inside H2(K3). The first factor SO(3) ⊂ SO(3)×SO(19)
acts on the three-plane. An element of SO(3) singles out a direction defined by its zero
eigenspace (the axis defining the rotation in three-space). Therefore, from V at b we form
CV which maps by p1 ◦ τ̃ to so(3) inside the stabilizer of the three-plane of self-dual forms
on π−1(b). Let θV be a generator of Ker[p1(τ̃ (CV ))], defined up to sign, and normalized

10This construction was meant to mimick the notion of holomorphicity for an an elliptic fibration,
which can be written as the equivariant property τ∗ ◦ j = J ◦ τ∗, where j and J are complex structures

on the base of the fibration and the moduli of elliptic curves, respectively. We thus think of a complex
structure as the π/2 element of an S1 = SO(2) action. In our case, SO(3) is the relevant group.

11Explicitly, if at the identity coset we identify so(3, 1) = sl(2,C) with traceless, 2×2 complex matrices

with the indefinite metric 〈A,B〉 = −1
2

Tr(AB), then so(3) = su(2) are the anti-hermitian ones and the

map g/h → h⊥ sends A 7→ (A−A†)/2. The involution from h⊥ ↔ h is just A 7→ iA†, or
√
−1 times the

Cartan involution. Put physically, the projection to h⊥ eliminates rotational pieces of an infinitesimal

Lorentz transformation, and then the correspondence h⊥ ∼= h associates to a pure boost in some direction
a rotation in the same direction.
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so that
∫

(θV )2/2 = |V |2. (The signs can be chosen consistent with the orientation.12)
This is our sought-after self-dual two-form, and we have found a map

θ : TbB → H2
+(π−1(b)),

defined up to sign. In short, we have described another sequence of isomorphisms

hg
∼= so(3)

p1◦eτ∼= so(H2
+(K3)) ∼= H2

+(K3). (3.17)

θ is the composition of the isomorphisms in (3.16) and (3.17). Note that the forms in H2
+

are harmonic, so no choice of representative class is necessary.
Now let p ∈ X with π(p) = [g] ∈ B. Let {ei} be the pull-back of an orthonormal frame

for T ∗[g]B ∼= g/hg, and let {θi} be the corresponding self-dual two-forms on π−1(b) ∼= K3.
We construct

Φ = V olB +
∑
i

ei ∧ θi, (3.18)

where V olB is the volume form on B and the pull-backs of the various forms to X are
understood. More invariantly, we can write

Φ(U, V,W ) = V olB(π∗U, π∗V, π∗W ) + (θπ∗U (PV V, PVW ) + cyclic) . (3.19)

Note that as τ̃ is an inclusion of groups, then since the ei are orthogonal, the unit-norm
self-dual forms θi are mutually orthogonal, and the metric defined from Φ agrees with
(3.14).

3.4. Explicit Formulas

The constructions above can be made explicit. Let ηµν be a metric deformation of K3,
perpendicular to diffeomorphisms.

Lemma 7. η is locally volume-preserving.

Proof. The globally volume-preserving deformation of the metric η induces a change of
the Riemann tensor. Imposing the gauge condition (3.12) means ∇µηµα = 0. Working in
Riemann normal coordinates and using the fact that the Ricci curvature is zero (Rµαµβ =
0), one can compute that vanishing of the infintesimal variation of the Ricci curvature is
equivalent to

∇µ∇µηαβ + 2Rαµβνηµν +∇α∇βηµµ = 0.

Multiplying by gαβ and summing, using the fact that the metric is covariantly constant
and Ricci flat, gives

2∇µ∇µηαα = 0.

12If we write an element CV of so(3) as aX + bY + cZ, then (a, b, c) defines the axis of rotation in

three-space. After equating the three-planeR3 isometrically with so(3), then θV is simply (a, b, c). That
is, End(E) ∼= E for oriented, three-dimensional metric vector spaces.
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Now 4(ηαα) = 0 means that (ηαα) is a constant, C, but since η is globally volume-
preserving,

∫
C = C · V ol = 0, and so η is pointwise traceless. �

Now let Sa, a = 1, ..., 3, be an orthonormal set of self-dual forms. (In an orthonormal
frame, the Sa are antisymmetric matrices obeying the algebra of the quaternions i, j, k,
and η is traceless.) Then we can define the anti-self-dual forms Aa as follows:

(Aa)µν =
1
2

(Saµσησν + ηµσS
aσ
ν).

Conversely, if we have a trio of anti-self-dual forms Aa we can define a metric deformation

ηµν = −
∑
a

AaµσS
aσ
ν .

These operations are indeed inverses of each other when η is traceless and symmetric.13

To define the self-dual two-form defined by a metric deformation, we can do the follow-
ing. Fix at a point in K3 moduli space a four-plane W in R3,19 ∼= H2(K3) with signature
(3, 1) and containing H2

+(K3). Then choose τ̃ to be an isomorphism SO(3, 1) ∼= SO(W ).
Then at each point b ∈ B there is a unique anti-self-dual form β in W perpendicular to
the Sa, so that Aa = raβ for all a = 1, ..., 3. Now each tangent vector V on B defines a
metric deformation η, which defines a trio of anti-self-dual forms Aa, which then define a
single, self-dual form

θV =
∑
a

raSa.

This is the isomorphism described in (3.16) and (3.17).

3.5. dΦ 6= 0

We have not been able to show that Φ is closed, and in fact this seems unlikely, despite
the fact that the map τ was meant to mimick the (more successful) stringy cosmic string
construction. However, we believe that this may lead to weak holonomy G2, for which
dΦ = λ∗Φ. Then, one would also hope that this construction can be modified to produce
a torsion-free G2 structure, hence a manifold with true G2 holonomy. This is currently
under investigation.

Also, it is worth mentioning that since our constructions are left-invariant under the
transitive action of G on B, the behavior of Φ can be analyzed at a single point, e.g.
the identity coset. Also, if τ̃ maps the discrete subgroup SO(3, 1;Z) to the subgroup
SO(3, 19;Z) then this entire construction will descend to the finite-volume quotient by
this discrete group.

13This depends on some nice facts, including the following identity. Let A be a traceless, symmetric,

four-by-four matrix acting on the quaternionsR4. Let I, J, K be matrices representing multiplication by
i, j, k. Then A = IAI + JAJ +KAK.
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4. A Torus Fibration

4.1. Outline of Hitchin’s Construction

Recently Hitchin has shown how certain functionals on differential forms in six dimen-
sions generate metrics with G2 and weak SU(3) holonomy [16, 17]. Here, we outline his
construction and use his result to construct new G2 metrics. The main point is to consider
the Hamiltonian flow of a volume functional on a symplectic space of stable three- and
four-forms on a six-manifold. When a group acts on the six-fold, the invariant differential
forms can restrict the infinite-dimensional variational problem to a finite-dimensional set
of equations governing the evolution. Including the “time” direction, one is able to create
a closed and co-closed G2 three-form, thus a metric of G2 holonomy.

The key element in the construction is the following:

Theorem 8. [17]: Let M be a 6-manifold, A ∈ H3(M,R) and B ∈ H4(M,R) be fixed
cohomology classes, and let (ρ, σ) ∈ A × B be stable forms of positive type which evolve
via Hamiltonian flow of the functional:

H = V (ρ) − 2V (σ). (4.20)

Here, V (ρ) and V (σ) are suitable volume forms (which we define below), with φ their
integrands: V =

∫
M
φ. If for some t = t0, ρ and σ safisfy the compatibility conditions

ω ∧ ρ = 0 and φ(ρ) = 2φ(σ) (where σ = ω2/2) then the three-form

Φ = dt ∧ ω + ρ, (4.21)

defines a G2 structure on X = M × (a, b) for some interval (a, b).

The converse is also true [17].
Stable forms are defined in an earlier paper by Hitchin:

Defintion 9. [16]: Let M be a manifold of real dimension n, and V = TM . Then, the
form ρ ∈ ΛpV ∗ is stable if it lies in an open orbit of the (natural) GL(V ) action on ΛpV ∗.

In other words, this means that all forms in the neighborhood of ρ areGL(V )-equivalent
to ρ. This definition is useful because it allows one to define a volume. For example, a
symplectic form ω is stable if and only if ωn/2 6= 0.

Relevant to our discussion are 3-forms and 4-forms on a 6-manifold M . If these forms
are stable, we can define the corresponding volumes as follows. Let’s start with a stable
4-form

σ ∈ Λ4V ∗ ∼= Λ2V ⊗ Λ6V ∗.

Therefore, we find
σ3 ∈ Λ6V ⊗ (Λ6V ∗)3 ∼= (Λ6V ∗)2

and

V (σ) =
∫
M

|σ3| 12 . (4.22)
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In order to define the volume V (ρ) for a 3-form ρ ∈ Λ3V ∗, one first defines a map

Kρ : V → V ⊗ Λ6V ∗,

such that for a vector v ∈ V = TM it gives

K(v) = ı(v)ρ ∧ ρ ∈ Λ5V ∗ ∼= V ⊗ Λ6V ∗. (4.23)

Hence, one can define

tr(K2) ∈ (Λ6V ∗)2.

Since stable forms with stabilizer SL(3,C) are characterised by tr(K)2 < 0, following
[16], we define

V (ρ) =
∫
M

|
√
−trK2|. (4.24)

The last fact used in the Hitchin’s theorem is that there is a natural symplectic struc-
ture on the space

A ×B ∼= Ω3
exact(M)× Ω4

exact.

Explicitly, it can be written as

ω ((ρ1, σ1), (ρ2, σ2)) = 〈ρ1, σ2〉 − 〈ρ2, σ1〉,

where, in general, for ρ = dβ ∈ Ωpexact(M) and σ = dγ ∈ Ωn−p+1
exact (M) one has a nonde-

generate pairing

〈ρ, σ〉 =
∫
M

dβ ∧ γ = (−1)p
∫
M

β ∧ dγ. (4.25)

Then, Hitchin shows that the first-order Hamiltonian flow equations in the theorem
quoted above are equivalent to the closure and co-closure of the associative form Φ =
dt ∧ ω + ρ:

dΦ = 0, d ∗ Φ = 0.

In order to construct the metric with G2 holonomy from the form Φ we should take
v, w ∈W, where W = TX is the seven-dimensional vector space and define a symmetric
bilinear form on W with values in Λ7W ∗ by

BΦ = −1
6
ı(v)Φ ∧ ı(w)Φ ∧ Φ. (4.26)

This defines a linear map KΦ : W →W ∗ ⊗∧7W ∗. Then the G2 holonomy metric can be
written as [16]

gΦ(v, w) = BΦ(v, w)(detKΦ)−
1
9 . (4.27)
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4.2. Equations for the Metric

Now let us consider an example of (non-compact) G2 manifold, with principal orbits

M = S3 × T 3.

We think of S3 as a group manifold SU(2). The space M appears as one of the examples
in the recent work of Cleyton and Swann [9], where they classified principal orbits of
cohomogeneity-one G2 manifolds under a compact, connected Lie group.

In order to construct differential forms ρ and σ, let us choose a basis of left-invariant
one-forms on SU(2):

Σ1 = cosψdθ + sinψ sin θdφ,
Σ2 = − sinψdθ + cosψ sin θdφ,
Σ3 = dψ + cos θdφ. (4.28)

which enjoy the su(2) algebra

dΣa = −1
2
εabcΣb ∧ Σc.

We also choose closed, but not exact one-forms αi, which generate the H1(T 3) coho-
mology of the torus:

α1,2,3 ∈ H1(T 3) = R3.

Explicitly, if we define

T 3 = R3/Z3,

where R3 is parametrized by affine coordinates u1, u2, and u3, we can write

αi = dui, i = 1, 2, 3.

Now, we have to fix cohomology classes A and B in H3(M) and in H4(M), respectively.
The cohomology groups are non-trivial:

H3(M ;R) = R⊕ R,
H4(M ;R) = R⊕ R⊕ R,

so that our choice depends on five real parameters that we call m, n, k1, k2, and k3.
As we will see in a moment, the construction depends only on the parameters m and n,
which determine the class A ∈ H3(M ;R). Specifically, m corresponds to the class [T 3]
and n corresponds to the class [S3].

Now we can write the SU(2)-invariant 3-form ρ ∈ A as

ρ = nΣ1Σ2Σ3 −mα1α2α3 + x1d(Σ1α1) + x2d(Σ2α2) + x3d(Σ3α3).

Here, xi(t) are functions of the extra variable t that describe variation of the 3-form ρ
within a given cohomology class (determined by m and n). The radial direction t is going
to play the role of time variable for the Hamiltonian evolution. Clearly, the form ρ is
colsed.
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Similarly, we can write a natural 4-form:

σ = k1Σ1Σ2Σ3α1 + k2Σ1Σ2Σ3α2 + k3Σ1Σ2Σ3α3

+y1Σ2α2Σ3α3 + y2Σ3α3Σ1α1 + y3Σ1α1Σ2α2.

The first line in this expression is cohomologically non-trivial, whereas the second line
contains three exact terms. Indeed,

Σ2α2Σ3α3 = d(Σ1)α2α3 = d(Σ1α2α3),

and similarly for other terms. Therefore, both ρ and σ are closed forms.
In order to see that parameters k1,2,3 are irrelevant, let us evaluate the volume corre-

sponding to the form σ:

V 2(σ) = y1y2y3.

Since it does not depend on the choice of the cohomology class, in what follows we set
k1 = k2 = k3 = 0. Hence, the SU(2)-invariant 4-form σ can be written as

σ = y1d(Σ1α2α3) + y2d(Σ2α3α1) + y3d(Σ3α1α2).

Finally, we want to show that σ can be written as ω2/2 for some two-form ω, and that
ω ∧ ρ = 0. Explicitly, we can write

ω =
√
y2y3

y1
Σ1α1 +

√
y1y3

y2
Σ2α2 +

√
y1y2

y3
Σ3α3.

It is straightfoward to check that this form ω satisfies the required properties, namely

σ =
1
2
ω2,

and

ω ∧ ρ = 0.

The last thing we need to check before we proceed to the Hamiltonian flow is to make
sure that xi(t) and yi(t) are conjugate coordinate and momenta. In other words, we need
to show that there is a non-degenerate pairing between invariant 3-forms and 4-forms:

〈Σ2α2Σ3α3, d(Σ1α1)〉 =
∫
S3×T 3

Σ2α2Σ3α3Σ1α1 = vol(S3) vol(T 3) 6= 0.

Therefore, just as in the model with SU(2) × SU(2) principal orbits [17, 7], it turns out
that the symplectic form is a multiple of

dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3.

Using (4.24) we find a simple expression for V (ρ):

V 2(ρ) = −m2n2 − 4mx1x2x3.

Since both V (ρ) and V (σ) must be real, we have two constraints:

y1y2y3 > 0, 4mx1x2x3 < −m2n2. (4.29)
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Provided these relations are satisfied, we can write the Hamiltonian

H = V (ρ) − 2V (σ)

=
√
−m2n2 − 4mx1x2x3 − 2

√
y1y2y3, (4.30)

which is constrained by the hypothesis of Theorem 8 to be zero.
Now choosing i 6= j 6= k 6= i among 1, 2, 3, the corresponding Hamiltonian flow equa-

tions read

ẏi =
2mxjxk√

−m2n2 − 4mxixjxk
,

ẋi = −
√
yjyk
yi

. (4.31)

A solution to these first-order differential equations define a G2 structure on (a, b) ×
S3 × T 3. Explicitly, the associative 3-form is given by

Φ = dt∧
(√

y2y3

y1
Σ1α1 +

√
y1y3

y2
Σ2α2 +

√
y1y2

y3
Σ3α3

)
+

+nΣ1Σ2Σ3 −mα1α2α3 + x1d(Σ1α1) + x2d(Σ2α2) + x3d(Σ3α3). (4.32)

It follows that for n = 1 the 3-sphere B = SU(2) is an associative submanifold inside
X = (a, b)× SU(2) × T 3, while the non-compact fiber (a, b)× T 3 is coassociative.

Moreover, from the expression (4.32) for the associative 3-form Φ, it follows that the
volume of S3 and T 3 (measured with respect to the G2-holonomy metric (4.27) obtained
from Φ) is bounded below:

Vol(S3) ≥ |n|, (4.33)
Vol(T 3) ≥ |m|. (4.34)

In general, the G2-holonomy metric looks like

ds2 = det(KΦ)−1/9
(√

y1y2y3dt
2 +

√
y2y3

y1
(x2x3Σ2

1 +mnΣ1α1 −mx1α
2
1) +

+
√
y1y3

y2
(x1x3Σ2

2 + mnΣ2α2 −mx2α
2
2) +

√
y1y2

y3
(x1x2Σ2

3 +mnΣ3α3 −mx3α
2
3)
)

(4.35)

where

det(KΦ) = −m3(y1y2y3)3/2
(
x1x2x3 +

1
4
mn2

)3

= (y1y2y3)9/2, (4.36)

where in the last equality we used the conservation of the Hamiltonian, H = 0. Then,
the overall factor det(KΦ)−1/9 in the metric (4.35) cancels the coefficient in front of dt2,
so that the resulting expression looks like

ds2 = dt2 +
1
y1

(x2x3Σ2
1 +mnΣ1α1 −mx1α

2
1) +

+
1
y2

(x1x3Σ2
2 +mnΣ2α2 −mx2α

2
2) +

1
y3

(x1x2Σ2
3 +mnΣ3α3 −mx3α

2
3). (4.37)
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4.3. SU(2) Symmetric Solution and Large Distance Asymptotics

Let us study various limits of the new G2 metric, and try to understand the role of
various parameters, m and n, in particular. It is instructive to look first at the simple
case, where:

x1 = x2 = x3, y1 = y2 = y3. (4.38)

This set of extra conditions restricts us to a class of metrics with extra SU(2) symmetry.
As will be shown below, a study of much simplier SU(2)-invariant metrics illustrates all
important properties of the generic solutions to (4.31).

The extra conditions (4.38) lead to a consistent truncation of the first-order system
(4.31), cf. [8] and [7]:

ẋ = −√y,

ẏ =
2mx2

√
−m2n2 − 4mx3

. (4.39)

Without loss of generality, we can assume that m is positive. It implies that the values
of x(t) and y(t) range in

−∞ < x(t) ≤ −
(
mn2

4

)1/3

,

0 ≤ y(t) < +∞. (4.40)

Since the system (4.39) is Hamiltonian, we have one obvious integral of motion, namely
H(t) = 0 which we express in the form

−mx3 = y3 +
1
4
m2n2. (4.41)

This allows to reduce the system (4.39) to a single differential equation of a hypergeo-
metric type,

dy

dt
=

m

y3/2

( 1
m
y3 +

1
4
mn2

)2/3

, (4.42)

which is exactly solvable:

t = t0 +
1
5

( 27

m5n4

)1/3

y5/2F

([5
6
,
2
3

]
,
[11

6

]
,− 4y3

m2n2

)
. (4.43)

This solution leads to a simple G2-holonomy metric:

ds2 = dt2 +
1
y

3∑
j=1

(x2Σ2
j +mnΣjαj −mxα2

j),

with the isometry group:
SU(2) × SU(2) × U(1)3.
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Figure 2. The behavior of functions x(t) and y(t).

The behavior of x(t) and y(t) is sketched in Fig. 2. Next, let us analyze various limits
of this metric.

Solution with n = 0 and Large Distance Asymptotics

In the special case n = 0, the solution takes a very simple polynomial form:

x = −m
1/3

4
(t− t0)2, y =

m2/3

4
(t− t0)2. (4.44)

The corresponding metric looks like (for simplicity, we put the integration constant
t0 = 0)

ds2 = dt2 +
1
4
t2(Σ2

1 + Σ2
2 + Σ2

3) + m2/3(α2
1 + α2

2 + α2
3). (4.45)

A numerical factor 1/4 in front of the Σi terms is crucial here for these terms to become
the usual Einstein metric on the round 3-sphere. Hence, the above expression is nothing
but the usual Ricci-flat metric on

R4 × T 3. (4.46)

The metric on the regular 3-torus in this solution depends on the value of the parameter
m. Namely, an easy computation gives the asymtotic volume of the T 3 in this metric:

Vol(T 3)|t=∞ = m, (4.47)

which is in complete agreement with the bound (4.34). It is natural to expect that more
general solutions, without the SU(2) symmetry, exhibit a similar behavior. In the next
subsection we will show that this is indeed the case; changing various parameters it is
easy to modify the asymptotic shape of the 3-torus, but not the overall volume, which
is determined only by m. The metric (4.45) is manifestly Ricci-flat for all values of the
parameter m, so it is clearly a modulus.

Another remark is that (4.45) describes the asymptotic behavior of the metric with
non-zero n at large distances. Indeed, if the absolute value of y(t) (and, therefore, of
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x(t) as well) grows as t → ∞, the term with n2 in the first order equation (4.42) can be
neglected and one finds a simple ODE:

dy

dt
= m1/3√y,

which leads to the approximate solution (4.44). Therefore, even for SU(2) symmetric
solutions with non-zero parameter n, the metric is asymptotic to R4×T 3 at large distances.
Of course, for n 6= 0 the metric can no longer have global topology of R4 × T 3 because
the volume of the 3-sphere is bounded by |n|, cf. (4.33). Nevertheless, as we pointed out,
the parameter n does not change the asymptotic behaviour of the metric.

4.4. U(1) Symmetric Solution and Short Distance Asymptotics

We have studied the asymptotic behavior of the SU(2) symmetric solution when the
functions x(t) and y(t) approach one limit in the range of allowed values (4.40). This limit
corresponds to large distance asymptotics of the G2-holonomy metric. Here, we discuss
the other limit,

x→ −
(mn2

4

)1/3

, y → 0,

as t approaches some value, say t→ 0.
In the special case n = 0, we have also seen that the metric is non-singular in this limit

since the principal orbit M = S3 × T 3 degenerates into T 3 at t = 0 in such a way that
the total space has topology (4.46):

X ∼= R4 × T 3

On the other hand, if m 6= 0 and n 6= 0 the constraints (4.33) and (4.34) prevent both S3

and T 3 cycles from shrinking. In such cases one finds a rather exotic metric of the form:

ds2 = dt2 + t−2/5
3∑
j=1

(Σj + αj)2 + . . .

where the dots stand for the terms vanishing in the limit t→ 0.
In order to find other G2-holonomy metrics with more regular behavior at t = 0,

we have to allow some cycle to collapse and relax the SU(2) symmetry condition. The
natural step to consider between SU(2) symmetry and no symmetry at all is when only
a U(1) ⊂ SU(2) symmetry group is preserved. This can be achieved, for example, by
imposing the following conditions:

x1 = x2, y1 = y2.

The corresponding expression for the metric (4.37) looks like:

ds2 = dt2 +
x1x3

y1
(Σ2

1 + Σ2
2) +

mn

y1
(Σ1α1 −Σ2α2)− mx1

y1
(α2

1 + α2
2) +

+
1
y3

(x2
1Σ2

3 + mnΣ3α3 −mx3α
2
3). (4.48)
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This leads to a rather simple system of only four first-order equations:

ẋ1 = −√y3, ẏ1 =
mx1x3

y1
√
y3
,

ẋ3 = − y1√
y3
, ẏ3 =

mx2
1

y1
√
y3
. (4.49)

In some special cases, this system has simple explicit solutions. For example, if n = 0
one finds

t = t0 − x1

(
− B2

βm

)1/4

F

([1
2
,
1
4

]
,
[3

2

]
,−Bx2

1/β

)
, (4.50)

where

β = x3y3 − x1y1 (4.51)

and B ≤ 0 is assumed to be non-zero. In the case B = 0 we recover the SU(2) symmetric
solution (4.44). Notice, β is an integral of motion. In the next subsection we explain this
in more detail and find all the integrals of motion for the general first-order system (4.31).

However, trying to find a general solution to the reduced first-order system (4.49)
amounts, essentially, to solving the general system (4.31). It can be written in terms of
the Weierstrass function and will be studied in the next subsection. Here, let us consider
approximate solutions at t → 0. There are many possibilities corresponding to different
assumptions about the vanishing of the functions xi and yi at t = 0. We consider just
one such possibility corresponding to a solution, where the S3 cycle degenerates into a
two-sphere:

S3 → S2 , t→ 0.

Of course, we also have to assume n = 0 in order to obey the condition (4.33). Specifically,
this solution corresponds to x1(t) and y1(t) vanishing at t = 0, whereas x3(t) and y3(t)
are assumed to take finite non-zero values at this point. Therefore, from the integral of
motion (4.51) we get (β < 0)

y3 ≈
β

x3
, (4.52)

and the conservation of the Hamiltonian (4.30) gives

y1 ≈
√
−m
β
x1x3

For x1 and x3 we find a simple system of the first-order differential equations, which has
a nice trigonometric solution:

x1 = −A sin(γt), y1 =
√
−mβ sin(γt)
γ2A cos2(γt)

,

x3 =
β

γ2A2 cos2(γt)
, y3 = γ2A2 cos2(γt), (4.53)
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with

γ2 =
√

m

4|β| .

The approximation (4.52) is valid for |β| � |x1y1|, which means

tan2(γt) � 2

In particular, this includes the interesting range of small t, where the solution approxi-
mately behaves as

x1 ≈ −Aγt, y1 ≈
√
−mβt
γA

,

x3 ≈
β

γ2A2
, y3 ≈ γ2A2. (4.54)

The corresponding metric looks like

ds2 ≈ dt2 +

√
|β|
m

(Σ2
1 + Σ2

2) +
mA2

2|β| (α2
1 + α2

2) + t2Σ2
3 +

4β2

A4
α2

3. (4.55)

It is natural to expect that for γt � 1 this metric interpolates to R4/Z2 × T 3 Then, we
obtain a smooth manifold X with G2 holonomy,

X ∼= S2 × R2 × T 3, (4.56)

which can be thought of as a resolution of the singular R4/Z2 × T 3 orbifold, where the
volume of the two-sphere is proportional to

√
|β|. In the next subsection we support this

expectation by constructing the explicit solution to the general first-order system (4.31).

4.5. General Solution

Given
H =

√
−m2n2 − 4mx1x2x3 − 2

√
y1y2y3 = V (ρ) − 2V (σ),

we recall that H = 0, i.e. V (ρ) = 2V (σ), along our orbit. Then consider the Hamiltonian

H̃ = V (ρ)2 − 4V (σ)2 = −m2n2 − 4mx1x2x3 − 4y1y2y3.

Since d(V (ρ)2 − 4V (σ)2) = 2V (ρ)(dV (ρ) − 2dV (σ)) along the orbit, the orbits are the
same, though parametrized differently. Indeed,

dt

dt̃
= 2V (ρ) = 4V (σ) = 4

√
y1y2y3. (4.57)

Now the action (~x, ~y ) 7→ (M · ~x,M−1 · ~y ), where M is a diagonal matrix with deter-
minant one, is symplectic and leaves the Hamiltonian invariant. This symmetry group is
two dimensional, and the corresponding conserved quantities are

x1y1 − x3y3 and x2y2 − x3y3.

Now choose i 6= j 6= k 6= i. The equations of motion are

ẋi = −4yjyk; ẏi = 4mxjxk
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where we now are using a dot over a variable to represent d
det
. Let’s define

zi = xiyi.

Then d
det

(zi − zj) = 0, as these are our conserved quantities. Therefore, we may write

z ≡ z1

z2 = z + α (4.58)
z3 = z + β.

Now define

X ≡ x1x2x3 Y ≡ y1y2y3.

Since our Hamiltonian is zero on our orbit, we have

m2n2 + 4mX + 4Y = 0. (4.59)

Now compute

ż = ẋ1y1 + x1ẏ1 = −4Y + 4mX = −m2n2 − 8Y.

But note

Ẏ = 4m(x2x3y2y3 + x1x3y1y3 + x1x2y1y2),

so we see

z̈ = −32m(3z2 + 2z(α+ β) + αβ). (4.60)

Assuming we can solve this equation, we can get

Y = −(ż +m2n2)/8, (4.61)

and we can find the individual xi and yi as follows: ẋ1 = −4y2y3 = −4Y/y1 = −4(Y/z)x1,
so we see

x1 = −A1 exp[−4
∫

(Y/z) dt̃ ], (4.62)

with A1 a (positive) constant. Then y1 = z/x1. The quantities x2, y2, x3, y3 are similarly
calculated, with one of the integration constants fixed by the constraint (4.59). Finally,
to connect with the form of the metric in (4.35) we must rewrite our answers in terms of
t, which means solving (4.57):

dt

dt̃
= 4
√
Y .
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Equation for z

So let’s try to solve the equation (4.60). First note that by a change of variables

u = −96mz − 32m(α+ β)

the equation takes the form

ü = u2 +D (4.63)

where
D = (32m)2(3αβ − (α+ β)2) = −(32m)2(α2 − αβ + β2).

We can try to solve this equation with a solution satisfying a first-order equation u̇ = f(u).
Then ü = f ′u̇ = ff ′, so

(f2)′ = 2(u2 + D),

and f2 = 2
3u

3 +Du+E. Therefore, f = ±
√

2
3u

3 + Du+ E and we see u̇ = f(u) has the
solution

t̃ = C ±
∫

du√
2
3u

3 +Du +E
,

which is the equation for the integral of an abelian differential on the elliptic curve

y2 =
2
3
x3 +Dx +E.

Therefore, to express u in terms of t̃ we need to invert this (Abel-Jacobi) map. This is
precisely what the Weierstrass function does!

To make this explicit, we’ll want to put things in Weierstrass form. So let’s make the
change of variables v = 6u and define

g2 ≡ −D/3.
The equation for v becomes

v̈ = 6v2 − g2/2 (4.64)

with the solutions

t̃ = C ±
∫

dv√
4v3 − g2v − g3

where C and g3 are constants. To invert this, we simply use the Weierstrass function

v = pτ(t̃+ C),

where τ is the modular parameter determined by g2 and the constant g3. Note that this
is a two-parameter family of solutions (since the Weierstrass function is even, we don’t
gain anything by including the solution with −t̃ +C as the argument). To be sure, note
that p famously satisfies the differential equation

(p′)2 = 4p
3 − g2p− g3.
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Differentiating once more, we see

2p
′
p
′′ = 12p

2
p
′ − g2p

′,

so
p
′′ = 6p

2 − g2/2.

Since the lattice of the torus is rectangular when g2 and g3 are real, the Weierstrass
function has complex conjugation symmetry, i.e. it’s real.

For some special examples, when g2 = 8, we have the simple solution

v = csc2(t̃ +C),

and if g2 = 4/3 we have the solution

v = csc2(t̃+ C)− 1/3.

Asymptotics and Behavior Near the Poles

Note that the Weierstrass p-function has a second-order pole. Below we argue that
it corresponds to the asymptotic region of our solution, where the metric has the same
asymptotic R4 × T 3 behavior as in (4.46).

Specifically, near a pole we have
v ≈ t̃−2.

In order to verify that this gives an approximate solution to the eqn. (4.64), note that
for large v the constant term g2/6 can be neglected. Unwinding the definitions gives
(omitting the subleading terms)

z ≈ − u

96m
≈ − v

576m
≈ − 1

576mt̃2
.

Therefore, xi(t̃) and yi(t̃) look like

xi ∼ yi ∼
1
t̃
,

and

Y ≈ 1
2304mt̃3

.

Using the relation (4.57) between t and t̃, we find the asymptotic solution in terms of
the original variable t:

x1 = −A1t
2, y1 =

m

16A1
t2,

x2 = −A2t
2, y2 =

m

16A2
t2, (4.65)

x3 = −A3t
2, y3 =

m

16A3
t2, (4.66)
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where we assume that the integration constants Ai are positive (to agree with our earlier
conventions xi < 0). As we pointed out earlier, one of the integration constants is not
independent due to the constraint (4.59), which reads

64A1A2A3 = m. (4.67)

Hence, we can eliminate one of the constants Ai, say, A3:

A3 =
m

64A1A2
.

It is easy to check directly that (4.65) is an asymptotic solution to the original first
order system (4.31). In the limit when xi are large (equivalently, in the limit n→ 0), the
equations look like

ẏi =
√
−mxjxk

xi
, ẋi = −

√
yjyk
yi

. (4.68)

Analysis, similar to what we have done in the SU(2)-invariant case, shows that xi and yi
have to grow as t2, and straightfoward calculation leads to the solution (4.65).

Now, substituting (4.65) into (4.37), we find the (asymptotic) expression for the G2-
holonomy metric:

ds2 = dt2 +
1
4
t2(Σ2

1 + Σ2
2 + Σ2

3) + 16(A2
1α

2
1 +A2

2α
2
2 +A2

3α
2
3). (4.69)

Note, that the first terms describe the usual metic on R4. The coefficient 1/4 is crucial
for this and comes as follows:

x1x2

t2y3
= A1A2

( m

16A3

)−1

=
16A1A2A3

m
=

1
4
.

Here we used the identity (4.67) satisfied by A’s.
Therefore, the metric (4.69) describes the flat metric on

R4 × T 3.

However, unlike the SU(2)-symmetric metric (4.45), the solution here describes a 3-torus
of arbitrary shape (determined by A1 and A2) with a fixed volume:

Vol(T 3) =
∫
T 3

√
g = 163/2A1A2A3 = m, (4.70)

where we again used the important condition (4.67).
To summarize, we have demonstrated that the general solution is asymptotic to R4×T 3

where the Weierstrass function has a second-order pole. Moreover, the size of the 3-torus
asymptotically saturates the bound (4.34).

At this point we shall remark on the interpretation of various parameters in the general
solution described here. In total we have eight parameters: six integration constants for
the first-order system (4.31) and the original parameters m and n. One of the integration
constants (corresponding to the conservation of the Hamiltonian) is a constant in the
definition of the radial variable t, and therefore does not play an interesting role. The
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remaining five independent constants have been denoted α, β, E, A1 and A2. Two of
them, A1 and A2, affect the behavior of the metric at infinity. Namely, they describe the
asymptotic form of the T 3. Furthermore, the volume of the torus is determined by m. On
the other hand, the parameter n along with the integration constants α, β, and E should
be interpreted as ‘dynamical moduli’ since they don’t change behavior of the metric at
infinity. In particular, the value of n determines the minimal volume of the 3-sphere (cf.
(4.33)), and if n = 0 the value of β determines the volume of the two-sphere in (4.56).

5. Abelian BPS Monopoles from Torus Fibrations

The analysis in this section is motivated by the cosmic string solution [10], where
compactification of Type-II string theory on a two-torus with varying modulus τ was
considered. According to the equations of motion of the effective theory, if τ = τ (z)
depends only on two real directions of space-time (which can be combined in one complex
coordiante z), it must be holomorphic. Then, at the points of space-time where τ →∞,
a real codimension two singularity — a cosmic string — is found. In this way, one
views fibrations by special-holonomy fibers as supersymmetric topological defects in lower
dimension.

Our solutions, constructed in the previous sections, do not have degenerate fibers.
Therefore, one would not expect to find extreme concentration of energy via Kaluza-Klein
reduction. Nevertheless, we will explain below that the dimensionally-reduced field config-
urations carry topological charge. So, they indeed represent stable solitons — monopoles,
cosmic strings, or domain walls, depending on the configuration of energy density. The
soliton obtained by Kaluza-Klein reduction is guaranteed to be BPS because the original
metric admits a covariantly constant spinor.

Disk instanton corrections to the geometry near the cosmic string singularities should
smoothe the metric, and the authors of [10] argued that a smooth, even compact, total
space could result. This line of thinking was given credence by the explicit metrics near
a degeneration found in Ooguri and Vafa in [26]. While our metrics involve the smooth
part of a fibration, we hope that similar effects involving associative three-cycles will
result in compact manifolds of G2 holonomy, fibered over an S3 base which includes the
discriminant locus of a torus or K3 fibration (cf. [11]).

Since the base of a coassociative fibration is three-dimensional, the reduced solution
could be interpreted as a monopole, after we supplement the metric on X with time
direction τ :

Rτ ×X.
Of course, this space-time has the same holonomy as X, so the solution is guaranteed to
be supersymmetric. Mainly interested in abelian monopoles, we shall focus on the torus
fibrations14 found in Sec. 4.

14Kaluza-Klein reduction of certainG2 holonomy metrics to non-abelian monopoles has been discussed
recently in [13].
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Table 1. Relation between extra symmetry of the G2-holonomy metric (4.37)
and rotational symmetry of the corresponding monopole solution.

G2 Manifold X Monopole Solution
SU(2) Symmetry Spherical Symmetry
U(1) Symmetry Axial Symmetry

No Extra Symmetry No Rotational Symmetry

The solutions we found can be classified according to their isometry. After Kaluza-
Klein reduction to 3 + 1 dimensions, this translates to the rotational symmetry of the
monopole solution [13]. Namely, the generic metric (4.37) is expected to give a (3 + 1)-
dimensional monopole metric with no rotational symmetry. On the other hand, solutions
with extra SU(2) (resp. U(1)) symmetry lead to spherically (resp. axially) symmetric
monopoles. We summarize this general pattern in Table 1.

In order to avoid possible confusion with a space-like coordinate t, we introduce a
time-like variable τ and replace t by r, to emphasize that it plays a role of radial variable.
Now, let us rewrite the eight-dimensional metric on Rτ ×X in the new notation:

ds2 = −dτ2 + dr2 +
1
y1

(x2x3Σ2
1 +mnΣ1α1 −mx1α

2
1) +

+
1
y2

(x1x3Σ2
2 +mnΣ2α2 −mx2α

2
2) +

1
y3

(x1x2Σ2
3 +mnΣ3α3 −mx3α

2
3), (5.71)

where xi and yi should be understood as functions of the radial variable r:

xi ≡ xi(r),
yi ≡ yi(r). (5.72)

Since the G2-holonomy manifold X has principal orbits SU(2)×T 3 , it has four natural
U(1) isometries: three from the isometries of the 3-torus, and a U(1) ⊂ SU(2). The latter
is generated by shifts of the angular variable φ, cf. (4.28). In order to treat this latter
U(1) in the same way as the three directions of the T 3, it is convenient to introduce

α4 ≡ dφ.
Then, αi, i = 1, 2, 3, 4 is a natural basis of one-forms on the 4-torus, T 4 = T 3 × U(1).

Now, we are ready to make a Kaluza-Klein reduction on the T 4. We write the metric
in the usual Scherk-Schwarz form [30]

ds2 = ds2
1,3 + hij(αi +Ai)(αj +Aj), (5.73)

where ds2
1,3 is the four-dimensional metric of the static gravitating monopole solution

and Ai is the gauge connection for the i-th U(1) gauge factor. The dilaton-like scalar
fields hij have charge +1 under i-th U(1) gauge factor, and −1 under the j-th U(1). All
these fields appear in the appropriate supermultiplets of the effective four-dimensional
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theory. Summarizing, after the Kaluza-Klein reduction we find the following spectrum of
the effective supersymmetric theory in four dimensions:

4D Theory: Supergravity coupled to 4 vector and 10 matter multiplets.

Straightforward but technical calculations give the scalar field matrix corresponding
to the general solution (4.37):

h =


−mx1

y1
0 0 mn

2y1
sinψ sin θ

0 −mx2
y2

0 mn
2y2

cosψ sin θ
0 0 −mx3

y3

mn
2y3

cos θ
mn
2y1

sinψ sin θ mn
2y2

cosψ sin θ mn
2y3

cos θ h44

 , (5.74)

where
h44 =

x1x2

y3
cos2 θ +

x3

y1y2
(x1y1 cos2 ψ + x2y2 cos2 ψ) sin2 θ.

For a general solution, the gauge connections can be conveniently written as:

Ai =
4∑

k=1

h−1
ik Ãk, (5.75)

where

Ã1 =
mn

2y1
cosψdθ,

Ã2 = −mn
2y2

sinψdθ,

Ã3 =
mn

2y3
dψ,

Ã4 =
x1x2

y3
cos θdψ +

(x2x3

y1
− x1x3

y2

)
cosψ sinψ sin θdθ. (5.76)

Finally, the metric in (3 + 1) dimensions looks like:

ds2
1,3 = −dτ2 + dr2 +

x1x2

y3
dψ2 +

(x2x3

y1
cos2 ψ +

x1x3

y2
sin2 ψ

)
dθ2 −

4∑
i,j=1

Aih
−1
ij Aj.

(5.77)

Evaluating the last term leads to a rather complicated form of the metric, which we write
explicitly only in a few simple examples below.

5.1. Spherically Symmetric Monopoles

The above formulas considerably simplify in the case of the SU(2) symmetric solution
(4.45):

x1 = x2 = x3, y1 = y2 = y3.

For example, the gauge connections (5.75) can be written explicitly:

A1 = −
( n

2x

)
(cosψdθ − cosψ sinψ sin θdψ),
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A2 =
( n

2x

)
(sinψdθ + cosψ cos θ sin θdψ),

A3 = −
( n

2x

)
sin2 θdψ,

A4 = cos θdψ. (5.78)

Note, that A1, A2, and A3 are all proportional to n, unlike A4.
Also, as we alluded to earlier, the SU(2) symmetric solution automatically leads to the

spherically symmetric monopole metric (in the Einstein frame):

ds2
E =

(
− mx

y1/2

)
(−dτ2 + dr2) + y3/2dΩ2

2. (5.79)

In the simple case n = 0, the metric on the G2-holonomy manifold X becomes the flat
metric on R4 × T 3. Specifically, the functions x(r) and y(r) take a simple polynomial
form (4.44):

x = −m
1/3

4
r2, y =

m2/3

4
r2. (5.80)

After reduction to 3 + 1 dimensions, the scalar field matrix (5.74) turns out to be
diagonal:

h = diag(m2/3, m2/3, m2/3, ϕ), ϕ =
1
4
r2, (5.81)

and the resulting metric is spherically symmetric:

ds2
E =

1
2
mr(−dτ2 + dr2) +

m

8
r3dΩ2

2. (5.82)

What is particularly nice about this solution is that the gauge fields A1, A2, and
A3 vanish in this background, so that we end up with a localized particle, magnetically
charged under a single U(1). Furthermore, A4 resembles the gauge connection of the
Pollard-Gross-Perry-Sorkin magnetic monopole [29]:

A4 = cos θdψ. (5.83)

In order to realize (5.81)–(5.83) as a solution in the Kaluza-Klein theory, it is convenient
to combine the (3 + 1)-dimensional metric, the gauge field A4, and the “dilaton” ϕ into
a five-dimensional metric. Then the equations for all of these fields follow from the five-
dimensional supergravity action with the usual bosonic piece

S = − 1
16πκ5

∫
d5x
√
−g5R5.

Unlike the usual Kaluza-Klein monopole [29], however, this solution represents a dis-
tribution of the magnetic charge in the entire three-dimensional space. It follows, for
example, from (5.81) that the dilaton field ϕ has a uniform source in the R3. The reason
is that the size of the circle, parametrized by φ grows at large distances, cf. (5.80). In
order to obtain a solution with localized source, one has to start with a metric (5.71),
where the functions xixj/yk are bounded at large r. This would work, for example, if we
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had a Taub-NUT space instead of R4 in our special solution. It is easy to check, however,
that TN4 × T 3 is not among the metrics of the form (4.37) that we consider here.

Another important observation is that (3 + 1)-dimensional metric (5.77) generically
has the simple asymptotic behavior (5.82) of a Kaluza-Klein magnetic monopole. Indeed,
even for a general solution without SU(2) symmetry, the asymptotic form of the metric
(4.69) describes a flat metric on R4 × T 3, where the shape of T 3 can be different now.
After reduction to 3 + 1 dimensions this may change the asymptotic vevs of the scalar
fields, but not the (3 + 1)-dimensional metric (5.82).

5.2. Axially Symmetric Monopoles

Axially symmetric BPS monopoles follow from the U(1) symmetric solution, just like
spherically symmetric ones follow from solutions with additional SU(2) isometry. The
simplest way to see this is to put x1 = x2 and y1 = y2 in the general expressions for
the scalar fields (5.74), U(1) gauge connections (5.76), and monopole metric (5.77). For
example,

A4 =
z cos θ

z + β sin2 θ
dψ,

where, following the notation of section 4, we use z = x1y1. Notice, that A4 does not
depend on the angular variable ψ, indicating the axial symmetry of the four-dimensional
solution. The same is true for all the other fields. Thus, in the Einstein frame the metric
reads

ds2
E =

√
det h

[
− dτ2 + dr2 − y2

1y3

mz

(
dθ2 +

z sin2 θ

z + β sin2 θ
dψ2

)]
=

=
m
√
z2 + βz sin2 θ

y1
√
y3

(
− dτ2 + dr2 − y2

1y3

mz
dθ2
)
−

y1
√
y3z sin2 θ√

z2 + βz sin2 θ
dψ2. (5.84)

As expected, the metric is manifestly axially symmetric. At large distances, |z| � |β|, the
dependence on θ drops out and the metric takes the asymptotic, spherically symmetric
form (5.82). This is also expected from the general no-hair theorem.

On the other hand, at small distances, the magnetic source is extended in one of the
directions, thus breaking SO(3) ∼= SU(2) rotational symmetry down to U(1) axial sym-
metry. Therefore, it is natural to interpret such metric as a magnetic monopole, which
also carries some dipole charge given by β. Indeed, as β → 0 the solution reduces to a
spherically symmetric monopole. A further argument for this interpretation is that at
large distances the field of a dipole falls off much faster than the field of a monopole, in
agreement with the asymptotic behavior of the axially symmetric solution (5.84). De-
pending on the internal structure of the dipole, one might say that it consists of two
point-like sources connected by a finite string.
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Let us consider a specific solution (4.55) studied in the previous section. As z → 0,
the corresponding four-dimensional metric looks like

ds2
E ≈

m√
2

sin θ
(
− dτ2 + dr2 +

2|β|
m

dθ2 + 2

√
|β|
m
r2dψ2

)
.

It has two cosmological singularities: one at θ = 0, and another at θ = π.
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