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Abstract

To an integral homology 3-sphere Y , we assign a well-defined Z-graded (mono-
pole) homology MH∗(Y, Iη(Θ; η0)) whose construction in principle follows from
the instanton Floer theory with the dependence of the spectral flow Iη(Θ; η0),
where Θ is the unique U(1)-reducible monopole of the Seiberg-Witten equa-
tion on Y and η0 is a reference perturbation datum. The definition uses the
moduli space of monopoles on Y ×R introduced by Seiberg-Witten in studying
smooth 4-manifolds. We show that the monopole homology MH∗(Y, Iη(Θ; η0))
is invariant among Riemannian metrics with same Iη(Θ; η0). This provides a
chamber-like structure for the monopole homology of integral homology 3-
spheres. The assigned function MHSWF : {Iη(Θ; η0)} → {MH∗(Y, Iη(Θ; η0))}
is a topological invariant (as Seiberg-Witten-Floer Theory).

1. Introduction

Since Donaldson [9] initiated the study of smooth 4-manifolds via the Yang-Mills the-
ory, the gauge theory (Donaldson invariants, relative Donaldson-Floer invariants and
Taubes’ Casson-invariant interpretation, etc) has proved remarkably fruitful and rich to
unfold some of the mysteries in studying smooth 4-manifolds. The topological quan-
tum field theory proposed by Witten [37] stimulates the most exciting developments in
low-dimensional topology. In 1994, Seiberg and Witten (see [38]) introduces a new (sim-
pler) kind of differential-geometric equation. In a very short time after the equation
was introduced, some long-standing problems were solved, new and unexpected results
were discovered. For instance, Kronheimer and Mrowka [15] proved the Thom conjecture
affirmatively, several authors proved variants (generalizations) of the Thom conjecture
independently in [11, 24, 29], as well as the three-dimensional version of the Thom con-
jecture [4]. Taubes showed that there are more constraints on symplectic structures in
[32, 33] and the beautiful equality SW = Gr in [34, 35]. See [7] for a survey in the
Seiberg-Witten theory.

Using the dimension-reduction principle, one expects the Floer-type homology of 3-
manifolds via the Seiberg-Witten equation. Indeed Kronheimer and Mrowka [15] analyzed
the Seiberg-Witten-Floer theory for Σ × S1 , where Σ is a closed oriented surface. Later
on Marcolli studied the Seiberg-Witten-Floer homology for 3-manifolds with first Betti
number positive in [21]. For a connected compact oriented 3-manifold with positive
first Betti number and zero Euler characteristic, Meng and Taubes [23] showed that a
(average) version of Seiberg-Witten invariant is the same as the Milnor torsion. The
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interesting class of 3-manifolds as integral (rational) homology 3-spheres is lack of well-
posed theory. Although various authors attempted to resolve the problem on defining a
“Seiberg-Witten-Floer” theory, the new phenomenon of harmonic-spinor jumps and the
dependence of Riemannian metrics is not addressed clearly. The metric-dependence (also
related to the harmonic-spinors) issue is quickly realized by many experts in this field
(see [7, 26]). In [26], the irreducible Seiberg-Witten-Floer homology of the Seifert spaces
is shown to be dependent on the metric and the choice of a connection on the tangent
bundle (as our reference η0 in this paper).

In this paper, we construct a monopole homology from the Seiberg-Witten equa-
tion in the same way as an instanton Floer homology from the Self-Duality equation
in Donaldson-Floer theory [12]. Our key point is that by using the unique U(1)-reducible
solution Θ of the Seiberg-Witten equation on an integral homology 3-sphere Y we make
use of the spectral flow of Θ to capture the dependence in certain perturbation classes of
Riemannian metrics and 1-forms. The same idea was used before by the present author
to establish a symplectic Floer homology of knots in [17], and the original one was in the
study of the instanton Floer homology of rational homology 3-spheres by Lee and the
present author in [16]. We emphasize the Riemann-metric dependence and understand
the role of such a fixing spectral flow of (Θ; η0) in this paper.

Our approach is similar to approaches in [5, 16, 17] to understand the perturbation
data (including Riemannian metrics). The unique U(1)-reducible Θ gives a spectral flow
Iη(Θ; η0) as a Maslov index in [5] Part III. The spectral flow Iη(Θ; η0) = µη(Θ)− µη0 (Θ)
with respect to a reference η0 fixes a class of admissible perturbations consisting of Rie-
mannian metrics and 1-forms. As long as Riemannian metrics and 1-forms give the same
spectral flow Iη(Θ; η0), we prove that the constructed monopole homology is invariant
inside the fixed class of Riemann-metrics and 1-forms (η = (gY , α)) with same Iη(Θ; η0).
The spectral flow Iη(Θ; η0) is not a topological invariant, and is dependent upon the
Riemannian metrics. Without fixing a class of Riemannian metrics with same Iη(Θ; η0),
one cannot obtain well-defined notions such as spectral flow of irreducible Seiberg-Witten
solutions on Y , and the gluing formula as well as the relative Seiberg-Witten invariant.
Hence our results follow from fixing the data Iη(Θ; η0) as a parameter for our monopole
homology.
Theorem A. (1) For an integral homology 3-sphere Y and any admissible perturbation
η, there is a well-defined Z-graded monopole homology MH∗(Y, Iη(Θ; η0)) constructed by
the Seiberg-Witten equation over Y ×R.

(2) For any two admissible perturbations η1 and η2, there is a group homomorphism
Ψ∗ between two monopole homologies MH∗(Y, Iη1 (Θ; η0)) and MH∗(Y, Iη2 (Θ; η0)).

(3) If Iη1 (Θ; η0) = Iη2 (Θ; η0), then the homomorphism Ψ∗ is an isomorphism.
Our fixed-class Iη(Θ; η0) of Riemannian metrics gains control of the birth and death of

irreducible solutions of the Seiberg-Witten equation on the integral homology 3-sphere Y .
Changing the reference η0 into η

′

0 corresponds to an overall degree-shifting by µη′0
(Θ) −

µη0(Θ) for the monopole homologies. The control in the instanton homology of rational
homology 3-spheres is gained by fixing the spectral flows of all U(1)-reducibles from
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the Wilson-loop perturbations (not metrics). The control in the monopole homology of
integral homology 3-spheres is gained by fixing the spectral flow of the unique U(1)-
reducible Θ from the Riemannian metrics (not only 1-forms). Fixing Iη(Θ; η0) enters
crucially in proving Theorem A and Theorem B.
Theorem B. For a smooth 4-manifold X = X0#YX1 with b+2 (Xi) > 0(i = 0, 1) and
Y an integral homology 3-sphere, the Seiberg-Witten invariant of X is given by the
Kronecker pairing of MH∗(Y ; Iη(Θ; η0)) with MH−1−∗(−Y ; Iη(Θ; η0)) for the relative
Seiberg-Witten invariants qX0,Y,η and qX1,−Y,η (see Definition 8); assume that the moduli
space MX does not split to MXi(Θ) through the stretching-neck process,

〈, 〉 : MH∗(Y ; Iη(Θ; η0)) ×MH−1−∗(−Y ; Iη(Θ; η0))→ Z; qSW (X) = 〈qX0,Y,η, qX1,−Y,η〉.

The paper is organized as follows. §2 provides an introduction of the Seiberg-Witten
equation on 3-manifolds. §3 studies the configuration space over Y through Seiberg-
Witten equation and a natural monopole complex. We show that there are admissible
perturbations from Riemannian metrics and 1-forms in §4 via the method similar to [28].
The Seiberg-Witten solution on Y ×R with finite energy has exponentially decay property
at ends, and the regularity of Seiberg-Witten solutions on Y ×R is also proved in §4. The
spectral-flow properties and dependence on Riemannian metrics are discussed in §5. The
gluing and splitting result (Theorem 6.6) is proved in §6, and the proof of Theorem A
(Proposition 6.10 for (1), Proposition 7.1 for (2) and Proposition 7.2 for (3)) is occupied
in §6 and §7. In §8, we study the relative Seiberg-Witten invariant and complete the proof
of Theorem B as Theorem 8.4. The length of the paper is due to the desire to provide
complete and self-contained proofs of transversality, decay estimates and gluing process.

2. Seiberg-Witten equation on 3-manifolds

It is well-known that every closed oriented 3-manifold is spin. The group Spin(3) ∼=
SU(2) ∼= Sp1 is the universal covering of SO(3) = Spin(3)/{±I}. Pick a Riemannian
metric g on Y . The metric g defines the principal SO(3)-bundle PSO(Y ) of oriented
orthonormal frames on Y . A spin structure is a lift of PSO(Y ) to a principal Spin(3)-
bundle PSpin(Y ) over Y . The set of equivalence classes of such lifts has, in a natural
way, the structure of a principal H1(Y, Z2)-bundle over a point. So there is a unique
spin-structure on the integral homology 3-sphere Y .

There is a natural adjoint representation

Ad : Spin(3) × Sp1 → Sp1 ; (q, α) 7→ qαq−1,

and associated rank-2 complex vector bundle (spinor bundle) W = PSpin(3)(Y ) ×Ad C2.
Let L = detW be the determinant line bundle. For the ordinary Spin-structure, one has
a Clifford multiplication

c : T ∗Y ⊗W →W ; c([p, α])⊗ [p, v]→ [p, αv].

127



LI

So c induces a map T ∗Y → Hom(W,W ). The spinor pairing τ : W ⊗W → T ∗Y is given
by

[p, v1⊗ v2]→ τ (
1
4
Im(v1iv2)),

where τ is an orientation preserving isomorphism PSpin(3)(Y )×Sp1 → T ∗Y . A connection
a on L together with the Levi-Civita connection of a Riemannian metric gY on Y form a
covariant derivative on W . This maps sections of W into sections of W ⊗ T ∗Y . Followed
by the Clifford multiplication, one has a Dirac operator

∂gYa : Γ(W ) ∇
gY
a→ Γ(W ⊗ T ∗Y ) c→ Γ(W ).

The determinant line bundle L is trivial for the spin structure, so we may choose θ to be
the trivial connection and ∂gθ : Γ(W )→ Γ(W ) is the usual Dirac operator. Note that all
bundles over the integral homology 3-sphere Y are trivial.

There is a unique spin-structure on Y × R associated to the unique spin-structure
on Y with the product metric gY + dt2 on Y × R. The two spinor bundles W±(4) on
Y ×R can be identified by using a Clifford multiplication by dt, where t is denoted for
the variable on R. Both W+

(4) and W−(4) are obtained by the pull-back of the U(2)-bundle
W → Y from the projection map Y × R → Y . Thus we have the identification of
the map σ : Λ2T ∗(Y ×R) → Hom(W+

(4),W
−
(4)) and the map τ−1 : T ∗Y → Hom(W,W )

through the above identifications: σ(η) = τ−1(∗gη). In other words from the identification
Λ2T ∗(Y ×R) = Λ2T ∗Y ⊕ Λ1T ∗Y and using the Hermitian pairing on W±(4), there is an
induced pairing

τ : W ×W → Λ1T ∗Y.

In fact for every γ : T ∗Y → Hom(W,W ) (a spin structure), that is a way to determine a
spin structure on Y ×R by

σ : T ∗(Y ×R)→ Hom(W ⊕W,W ⊕W ); σ(v, r) =
(

0 γ(v) + r1
γ(v) − r1 0

)
.

The determinant line bundle L(4) = detW±(4)|Y×R (a trivial line bundle) carries U(1)-
connections A = a+ φdt. So the Dirac operator Dg

A for the product metric gY + dt2 over
Y ×R is given by

DgY
A =

(
0 −∇t + ∂gYa

∇t + ∂gYa 0

)
,

where ∂gYa is a twisted self-adjoint Dirac operator on Γ(W )→ Γ(W ), and ∇t = ∂
∂t

+ φ is
a twisted skew adjoint Dirac operator over R.

The curvature 2-form of A = a+φdt can be calculated as FA = Fa+(∂a∂t−daφ)dt. Using
the identification of Ω2(Y ×R) ∼= Ω2(Y )⊕Ω1(Y ), we can write F+

A as ∗gY Fa+(∂a∂t−daφ) ∈
Ω1(Y ) as the self-dual component of the curvature FA. Now the Seiberg-Witten monopole
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equation on 4-manifolds reduces to a Seiberg-Witten monopole equation on 3-manifolds
as {

(∇t + ∂gYa )ψ = 0
∗gY Fa + (∂a

∂t
− daφ) = iτ(ψ, ψ) (2.1)

for ψ ∈ Γ(W ). It is equivalent to the flow equation of (a+ φdt, ψ):{ ∂ψ
∂t = −∂gYa ψ − φ.ψ
∂(a+φdt)

∂t = − ∗gY Fa + daφ+ iτ(ψ, ψ).
(2.2)

The equation (2.1) is invariant under the gauge transformation u ∈ Map(Y, U(1)), where
the gauge group action on (a+ φdt, ψ) is given by

u · (a+ φdt, ψ) = (u∗a+ (φ − u−1du

dt
)dt, ψu−1). (2.3)

There is a temporal gauge to obtain a simpler equation. The temporal gauge u is the
element which u · (a + φdt) = u∗a, i.e., φ− u−1 du

dt
= 0. Then the equation (2.2) can be

reduced to the following form.{
∂ψ
∂t = −∂gYa ψ
∂a
∂t = − ∗gY Fa + iτ(ψ, ψ).

(2.4)

3. Configuration spaces on Y

Fix a trivialization L = Y × U(1), one can identify the space of U(1)-connections of
Sobolev Lpk-norm with the space Apk = Lpk(Ω1(Y, iR)) of 1-forms on Y such that the zero
element in Ω1(Y, iR) corresponds to the trivial connection θ on L. The gauge group of L
can be identified with Gpk(Y ) = Lpk+1(Map(Y, U(1))) acting on Apk × L

p
k(Γ(W )) by (2.3).

We need to assume that k + 1 > 3/p so that GY = Gpk(Y ) is a Lie group. We may take
k = 1 and p = 2.

Let CY be the configuration space

CY = L2
k(Ω1(Y, iR)⊕ Ω0(Y, iR) ⊕ Γ(W )).

The quotient space is BY = CY /GY . Denote C∗Y = {(a, φ, ψ) ∈ CY |ψ 6= 0}. For (a, φ, ψ) ∈
C∗Y , the isotropy group Γ(a,φ,ψ) = {id}. For (a, φ, ψ) ∈ CY \ C∗Y , the isotropy group
Γ(a,φ,0) = U(1), these elements are called reducibles. For example, Θ = (θ, 0, 0) is
reducible by all constant maps from Y to U(1). Note that GY acts freely on C∗Y , so
B∗Y = C∗Y /GY forms an open and dense set in CY /GY .

Proposition 3.1. B∗Y is a Hilbert manifold. For (a0, φ0, ψ0) ∈ C∗Y , the tangent space of
B∗Y can be identified with

T[(a0,φ0,ψ0)]B∗Y = {(a, φ, ψ) ∈ L2
k(Ω1(Y, iR) ⊕Ω0(Y, iR)⊕ Γ(W ))|

‖(a, φ, ψ)‖L2
k−1(Y ) = ‖a‖L2

k−1(Y ) + ‖φ‖L2
k−1(Y ) + ‖ψ‖L2

k−1(Y ) < ε, d
∗gY
a0 ψ + Im(ψ0 , ψ) = 0}.
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Proof: This follows from the construction of slice in [9, 13]. It will be clear from context
to identify (a0, φ0, ψ0) with its gauge equivalence class in our notation. The gauge orbit
of (a0, φ0, ψ0) ∈ C∗Y is given by GY → C∗Y :

g = eiu → (a0 − g−1dg, φ0, ψ0g
−1).

The linearization of this map at Id = e0 is

δ0 : TidGY = Ω0(Y, iR)→ Ω1(Y, iR) ⊕Ω0(Y, iR) ⊕ Γ(W )

u 7→ (−du, 0,−ψ0u).

So the adjoint operator δ∗0 of δ0 is given by

δ∗0ψ = d
∗gY
a0 ψ + Im(ψ0 .ψ).

A neighborhood of [(a0, φ0, ψ0)] ∈ B∗Y can be described as a quotient of T[(a0,φ0,ψ0)],εB∗Y /
Γ(a0,φ0,ψ0) for sufficiently small ε. Every nearby orbit meets the slice (a0, φ0, ψ0) +
T[(a0,φ0,ψ0)],εB∗Y . This is amount to solving the gauge fixing condition relative to (a0, φ0, ψ0),
i.e., there exists a unique u ∈ Ω0(Y, iR) such that eiu · (a0 + a, φ0 + φ, ψ0 + ψ) ∈
T[(a0,φ0,ψ0)],εB∗Y for ψ0 6= 0. Hence it follows from applying the implicit function the-
orem.

There is an associated bundle C∗Y ×GY (Ω1(Y, iR)⊕Γ(W )) over C∗Y because of the free
action of GY on C∗Y . We define a section f : C∗Y → C∗Y ×GY (Ω1(Y, iR) ⊕ Γ(W )) by

f(a, φ, ψ) = [(a, φ, ψ), ∗gYFa − daφ− iτ(ψ, ψ), ∂gYa ψ + φ.ψ].

Note that f is GY -equivariant, f(g · (a, φ, ψ)) = g · f(a, φ, ψ). Hence it descends to B∗Y ,

f : B∗Y → C∗Y ×GY (Ω1(Y, iR) ⊕ Γ(W )).

Now f(a, φ, ψ) ∈ T[(a,φ,ψ)],εL
2
k−1B∗Y = L[(a,φ,ψ)]. So f can be thought of as a vector field

on the Hilbert manifold B∗Y . Over B∗Y , f is a section of the bundle L with fiber L[(a,φ,ψ)].

Definition 3.2. The zero set of f in B∗Y is the moduli space of solutions of the 3-
dimensional Seiberg-Witten equation

f−1(0) = R∗SW (Y, gY ) = {[(a, φ, ψ)] ∈ C∗Y satisfies (3.1)}/GY .{
∂gYa ψ + φ.ψ = 0
∗gY Fa − daφ− iτ(ψ, ψ) = 0 . (3.1)

We will show that R∗SW (Y, gY ) is a zero-dimensional smooth manifold and its algebraic
number is the Euler characteristic of a monopole homology defined in §6 (see also [4] for
instance).

The linearization of f can be computed as the following.

f(a0 + sa, φ0 + sφ, ψ0 + sψ) = (∗gY Fa0+sa − da0+sa(φ0 + sφ) − iτ(ψ0 + sψ,

ψ0 + sψ), ∂gYa0+sa(ψ0 + sψ) + (φ0 + sφ).(ψ0 + sψ)

= f(a0, φ0, ψ0) + sDf(a0 , φ0, ψ0)((a, φ, ψ)) + o(s2).
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So the linearized operator Df(a0 , φ0, ψ0) : T[(a0,φ0,ψ0)]B∗Y → L[(a0,φ0,ψ0)] is given by

Df(a0 , φ0, ψ0) : Ω1(Y, iR) ⊕Ω0(Y, iR)⊕ Γ(W )→ Ω1(Y, iR) ⊕ Γ(W ),

((a, φ, ψ) 7−→
(
∗gY da0 −da0 −iIm(ψ0 , , ·)
c(·ψ0) c · ψ0 ∂gYa0

+ φ0·

) a
φ
ψ

 .

It forms a natural 3-dimensional monopole complex, since ker δ∗0 is the gauge fixing slice.
So

MC• : 0→ Ω0(Y, iR) δ0→ Ω1(Y, iR) ⊕Ω0(Y, iR)⊕ Γ(W )
Df→ Ω1(Y, iR) ⊕ Γ(W )→ 0,

(3.2)

is a short exact sequence. The operator

δ∗0 ⊕Df(a0 , φ0, ψ0) : Ω1(Y, iR)⊕ Ω0(Y, iR) ⊕ Γ(W )→ Ω1(Y, iR)⊕ Ω0(Y, iR) ⊕ Γ(W )

(a, φ, ψ) 7−→

 ∗gY da0 −da0 −iIm(ψ0 , ·)
−d∗gYa0 0 Im(ψ0 , ·)
c(·ψ0) c · ψ0 ∂gYa0

+ φ0·

 a
φ
ψ

 , (3.3)

is a first-order operator with symbol σ(δ∗0 ⊕Df) = σ(δ(a0 , 0, ψ0; gY )), where

δ(a0, 0, ψ0; gY ) =

 ∗gY da0 −da0 0
−d∗gYa0 0 0

0 0 ∂gYa0


is a first-order self-adjoint Dirac operator. Hence

Ind(δ∗0 ⊕Df) = Ind(δ(a0, 0, ψ0; gY ))

= Ind

(
∗gY da0 −da0

−d∗gYa0 0

)
+ Ind∂gYa0

= 0. (3.4)

Since the operator
(
∗gY da0 −da0

−d∗gYa0 0

)
is self-adjoint and every Dirac operator has index

zero over odd (3-)dimensional manifolds, thus we have the zero index for the operator
δ∗0 ⊕Df . Generically, the moduli space RSW (Y, gY ) is zero-dimensional.

Define H0(MC•) = ker δ0, H1(MC•) = kerDf/imδ0 , H2(MC•) = cokerDf . The first
cohomology H1(MC•) is isomorphic for every (a0, φ0, ψ0) ∈ B∗Y , so that (a0, φ0, ψ0) ∈ B∗Y
is a nondegenerate zero of f if and only if ker(δ∗0⊕Df) = H1(MC•) = 0. For Θ = (θ, 0, 0)
and a generic metric gY without harmonic spinors of ∂gYθ , we have that Θ is always isolated
and nondegenerate (in the Bott sense) zero of f on the integral homology 3-sphere Y .
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4. Admissible Perturbation and Transversality

In this section, we prove that there are enough perturbations to make the zero set of
f transverse. There is a 1-form perturbation reduced from 4-dimensional Seiberg-Witten
equation as in [7, 15, 32]. In our 3-dimensional case, the harmonic spinor may vary or jump
as metrics on Y vary. In order to obtain any topological information, one needs to extend
the perturbation-data and understand the harmonic spinors accordingly. The method we
used here is essentially the one used in [13, 16, 17, 28]. See also [4, 21, 22, 27, 30, 36] for
different approaches.

Let PY = ΣY ×Ω1(Y, iR) be the space of perturbation data, where ΣY is the space of
Riemannian metrics on Y . Consider the union ∪(gY ,α)∈PYR∗SW (Y ; gY , α) of the moduli
spaces of 3-dimensional Seiberg-Witten solutions over all metrics and 1-forms. If the
union is a (Banach) Hilbert manifold, then its projection to the space PY is a Fredholm
map. So there exists a Baire first category in PY such that R∗SW (Y ; gY , α) is a manifold
by the Sard-Smale theorem.

Let fη be the parametrized smooth section of the bundle L → B∗Y × PY with η =
(gY , α) ∈ PY . The map fη is given by

fη : B∗Y → Ω1(Y, iR)⊕ Γ(W )

(a, φ, ψ) 7→ (∗gY Fa − daφ− iτ(ψ, ψ) + α, ∂∇0+α
a ψ + φ.ψ),

where ∇0 is the Levi-Civita connection for the metric gY . Let f1η(a, φ, ψ) = ∂∇0+α
a ψ+φ.ψ

be the second component of the map fη on Γ(W ), and f0η(a, φ, ψ) be the first component
of fη .

Lemma 4.1. f1η is a submersion (Df1η is surjective).

Proof: The differential Df1η is given by the formula

Df1η(a, φ, ψ; o, α)(εa, εφ, εψ, 0, εα) = ∂∇0+α
a (εψ) + (εα + εa + εφ).ψ + φ.εψ,

where we vary along {Ω1(Y, iR)⊕Ω0(Y, iR)⊕Γ(W )}×{{0}×Ω1 (Y, iR)} of T [a, φ, ψ]B∗Y ×
PY . We want to show that Df1η is surjective. Suppose the contrary. Then there exists
a spinor χ ∈ Γ(W ) such that it is perpendicular to ImDf1η .

〈∂∇0+α
a (εψ), χ〉 = 0, (4.1)

for all εψ. I.e., χ ∈ ker(∂∇0+α
a )∗. By the elliptic regularity of (4.1), a solution χ is

smooth. Choose a point y ∈ Y such that χ(y) 6= 0. By the uniqueness of continuation of
the solution of the elliptic equation [2], ∂∇0+α

a · (∂∇0+α
a )∗χ = 0, there is a neighborhood

Uy of y such that χ(y) 6= 0 for y ∈ Uy. Thus we can find a 1-form εα + εa ∈ Ω1(Y, iR)
such that (εα+ εa).ψ = λχ with λ 6= 0 in Uy, and εα + εa has compact support. So we
obtain

0 = 〈∂∇0+α+εα
a+εa (εψ), χ〉

= 〈∂∇0+α
a (εψ), χ〉 + 〈(εα + εa).εψ, χ〉

= 〈λχ, χ〉 = λ〈χ, χ〉.
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Therefore χ = 0 in Uy , so χ ≡ 0 by a result in [2]. The contradiction implies that f1η is
a submersion.

By the Hodge decomposition of Ω1(Y, iR) = Imd ⊕ Imd∗gY for Y , we have that
f0η(α, φ, ψ) = ∗gY Fa − daφ− iτ(ψ, ψ) + α is also a submersion onto Ω1(Y, iR).

Corollary 4.2. The spaces f−1
0η (0) and f−1

1η (0) are Banach manifolds.

Now at point (a0, φ0, ψ0; g0, α) ∈ CY × PY , the parametrized smooth section (still
denoted by f)

f(a0, φ0, ψ0; g0, α) = f(g0,α)(a0, φ0, ψ0) = fη(a0, φ0, ψ0)

is a submersion.

Proposition 4.3. The differential Df is onto at all points of the moduli space f−1(0) ⊂
B∗Y × PY .

Proof: The differential Df at (a0, φ0, ψ0; g0, α) ∈ CY ×PY is of the form (Df0, Df1)

Df0 = ∗g0da0a+ (g)∗Fa0 − da0φ− iIm(ψ0 , ψ)− a.φ0 + α (4.2)

Df1 = ∂∇0+α0
a0

ψ + (α+ a).ψ0 + (φ.ψ0 + φ0.ψ) + r(g)) (4.3)

where (g)∗ is the variation of the Hodge star operator (g)∗ = d
ds |s=0∗g0+sg , r(g) is a

zero order operator applied to the variation g0 + sg + o(s2) of metric, a.φ0 is the Clifford
multiplication of 1-form a on the section φ0 ∈ Γ(W ). The surjective of Df0 follows from
Theorem 3.1 of [13], and the surjective of Df1 follows similarly from Proposition I.3.5 of
[28]. It is sufficient to prove that

(0, 0, ψ, 0, α) 7→ ∂∇0+α0
a0

ψ + (α).ψ0 (4.4)

is surjective. Let χ ∈ Γ(W ) be an element perpendicular to the image of (4.4) (χ ∈
ker(∂∇0+α0

a0
)∗). So we obtain

0 = 〈∂∇0+α0
a0

ψ + (α).ψ0, χ〉 = 〈α.ψ0, χ〉,

for all α ∈ Ω1(Y, iR). Hence the pointwise Hermitian product ( , ) on W for α.ψ0 and χ
gives the corresponding function (α.ψ0, χ) = 0 on Y . The sections ψ0 and χ are solutions
of the regular elliptic equations

∂∇0+α0
a0

ψ0 + φ0.ψ0 = 0; (∂∇0+α0
a0

)∗χ = 0.

So both ψ0 and χ cannot vanish on an open subsets by [2]. Thus there exists an open
dense domain U ⊂ Y on which ψ0 and χ are not zero. In the local coordinate {x1, x2, x3}
of y, α = a1dx1 + a2dx2 + a3dx3 as quanterion imaginary part multiplication on the
sections Γ(W ). If {si}i=1,2 is a local basis of W at y ∈ Y , then

ψ0 = s1.e1 + s2.e2; χ = s
′

1.c1 + s
′

2 .c2,
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where s
′

i = γ1(si) with γ1 given by spinor multiplication of ∂
∂x1

. So we obtain the Clifford
multiplication

α.ψ0 = γ(a1dx1).
(
e1

e2

)
+ γ(a2dx2).

(
e1

e2

)
+ γ(a3dx3).

(
e1

e2

)
= {

(
−2a1i 0

0 2a1i

)
+
(

0 −2a2

2a2 0

)
+
(

0 2a3i
2a3i

)
}
(
e1

e2

)
=

(
−2a1i −2a2 + 2a3i

2a2 + 2a3i 2a1i

)
·
(
e1

e2

)
.

Then the Hermitian pairing

0 = (α.ψ0, χ) = Tr(
(

−2a1i −2a2 + 2a3i
2a2 + 2a3i 2a1i

)
·
(
e1.c1 e1.c2
e2.c1 e2.c2

)
),

for all a1, a2, a3. It follows that (
e1.c1 e1.c2
e2.c1 e2.c2

)
= 0,

since the linear span of the matrices of the form
(
−a1i −a2 + a3i

a2 + a3i a1i

)
is the whole

of End(C2) except for scaler a.Id. Up to permutation we have e2 = c2 = 0 and e1, c1 are
orthogonal (e1, c1) = 0. Now ψ0 = s1.e1 and χ = s

′

1 .e1 and (e1, c1) = 0 in the domain U .
We normalize e1 and c1 with the property (e1, e1) = (c1, c1) = 1.

∂∇0+α0
a0

ψ0 + φ0.ψ0 = ∂∇0+α0
a0

(s1)⊗ e1 + s1 .da0e1 + φ0.s1.e1 = 0;

(∂∇0+α0
a0

(s1)⊗ e1+s1 .da0e1+φ0.s1.e1, c1)=(∂∇0+α0
a0

(s1) + φ0.s1)(e1 , c1)+s1(da0e1, c1)=0.

So we have s1(da0e1, c1) = 0. If s1 6= 0, then (da0e1, c1) = 0. From (e1, c1) = 0, one
obtains

(da0e1, c1) + (e1, da0c1) = 0.

This implies (e1 , da0c1) = 0, the connection a0 is reducible. But a0 is not the trivial
connection, so s1 = 0. Hence ψ0 = s1.e1 = 0 and (a0, φ0, 0) ∈ CY \ C∗Y . For any
(a0, φ0, ψ0) ∈ C∗Y , χ = 0 by the same method. Thus the differential Df1 is surjective.

We consider the map f∗ : B∗Y ×PY → Ω1(Y, iR) ⊕ Γ(W ).

Corollary 4.4. There is a dense subset P ′Y ⊂ PY such that for η ∈ P ′Y the space f−1
∗ (0)

is regular (i.e., a smooth Banach manifold).

Proof: Take f∗ as a section of B∗Y × PY to (C∗Y ×GY (Ω1(Y, iR) ⊕ Γ(W )) × PY . So
f−1
∗ (0)|B∗Y = f−1

∗ (0)/GY is a Banach manifold.

B∗Y ×PY
f→ Ω1(Y, iR) ⊕ Γ(W )

↓ π2

PY
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The projection map π2 is a smooth Fredholm map of index zero. It follows exactly from
the same argument in [9, 13] by the transversality.

Corollary 4.5. The inverse image π−1
2 ((gY , α)) of a generic parameter η = (gY , α) ∈

P ′Y , the moduli space RSW (Y, η) of the 3-dimensional monopole solutions is a zero-
dimensional manifold.

In general, the class of reducible elements in CY \ C∗Y forms a singular strata in the
quotient space BY . If it is a solution of 3-dimensional Seiberg-Witten equation, it is
also singular to the space of RSW (Y, gY ). The reducible solutions of the 3-dimensional
Seiberg-Witten equation satisfy

∂∇0+α
a ψ + φ0.ψ = 0
− ∗gY Fa + daφ = 0, (4.5)

for ψ = 0. Applying the temporal gauge g · (a, φ) = (g∗a, 0), we get that g∗a is a flat
connection on Y × U(1) over Y . For the integral homology 3-sphere Y , there is a unique
U(1) reducible connection, namely the trivial one. So the reducible solution is (θ, 0).
There is a unique U(1)-reducible solution of (4.5), denoted by Θ = (θ, 0).

Note that ker(δ∗0 ⊕ Df(a0 , φ0, ψ0)) = ker ∂gYa0
for an integral homology 3-sphere. For

a generic metric gY , ker ∂gYa0
= 0. But ker ∂gta0

may have a nontrivial kernel as the Rie-
mannian metrics vary in an one-parameter family (see [14]). Hence the harmonic-spinor
jump creates and/or destroys irreducible solutions of the 3-dimensional Seiberg-Witten
equation. This is the main problem to understand the new phenomenon that the “Seiberg-
Witten-Floer theory” is not entirely metric-independent (see [7, 26]). In the next section,
we study such a dependence of Riemannian metrics.

Proposition 4.6. R∗SW (Y, η) = RSW (Y, η) \ {Θ} is a zero-dimensional smooth compact
manifold for a first category near η = (gY , α) in P ′Y .

Proof: The results follows from the construction above, Proposition 2c.1 of [12] and the
Sard-Smale theorem. The compactness follows from the standard arguments of elliptic
regularity and maximal principle in [4, 7, 15, 38].

For any solution (a, φ, ψ) ∈ R∗SW (Y, η), we have ker(δ∗0 ⊕ Dfη(a, φ, ψ)) = 0. Thus
δ∗0 ⊕ Dfη(a, φ, ψ) defines a closed essentially self-adjoint Fredholm operator on L[a,φ,ψ],
and its domain is the L2

k-completion of L[a,φ,ψ]. The eigenvalues set is discrete, unbounded
in R \ {0}, and each eigenvalue is of finite multiplicity. Note that there are finitely
many elements in RSW (Y, η) for η ∈ P ′Y . Therefore there is a number δη > 0 which is
smaller than the smallest nonzero absolute value of an eigenvalue of δ∗0 ⊕ Dfη(a, φ, ψ)
with (a, φ, ψ) ∈ f−1

η (0) = RSW (Y, η).
Note that the Chern-Simons type functional with respect to a reference connection a0

is

csη(a, ψ) = −1
2

∫
Y

{(a− a0) ∧ (Fa + Fa0 + 2α) + 〈∂∇0+α
a ψ, ψ〉}dvolgY , (4.6)
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which has the gradient ∇csη(a, ψ) = fη(a, 0, ψ) for the representative with a temporal
gauge. The solution of the deformed Seiberg-Witten equation on Y ×R can be transformed
into:

∂

∂t
(a(t) + φ(t)dt, ψ(t)) = −fη(a(t), φ(t), ψ(t)), (4.7)

and by Proposition 8 of [15] there is always a translation-invariant representative satisfying
(2.4) in a temporal gauge. For (A,Ψ) = (a(t)+φ(t)dt, ψ(t)), the deformed Seiberg-Witten
energy is given by Eη(A,Ψ) =

1
2

∫
Y×R

{|∇tψ(t)|2+|∂∇0+α
a ψ(t)|2 + |∇ta(t)+daφ(t)|2+| ∗gY Fa − iτ(ψ, ψ)+α|2}dvolgY dt,

(4.8)

where ∇t = ∂
∂t + φ. Following the similar calculations in [7, 15, 30, 36], one has

Eη(A,Ψ) = csη(A,Ψ)|t=−∞ − csη(A,Ψ)|t=+∞

+
∫
Y×R

{|F+
A −

1
4
τ (Ψ,Ψ) + α ∧ dt+ ∗(α ∧ dt)|2 + |∂∇0+α

A Ψ|2}dvolgY dt,

where ∗ is the Hodge star operator on Y ×R with respect to the metric gY + dt2. Let
(A,Ψ) be a trajectory flow line in (4.7) with the terms∇tψ(t), ∂∇0+α

a ψ(t), ∇ta(t)+daφ(t),
∗gY Fa − iτ(ψ, ψ) + α are in Lp for some p ≥ 2.

Lemma 4.7. There is a solution (a∞, φ∞, ψ∞) ∈ f−1
η (0) over Y such that (A,Ψ) =

(a(t) + φ(t)dt, ψ(t)) converges to (a∞ + φ∞dt, ψ∞) uniquely up to the gauge equivalence
in the sense that (A,Ψ)|Y×{t} converges in C∞ over Y .

Proof: Let the temporal-gauge representative (a(t), 0, ψ(t)) be the element over Y ×
(0, 1) obtained from the translation of (A,Ψ)|Y×(t,t+1). The finiteness of the integrals
∇tψ(t), ∂∇0+α

a ψ(t),∇ta(t) + daφ(t), ∗gY Fa − iτ(ψ, ψ) + α over the end implies that for
p ≥ 2, as t→ +∞,

‖∇tψ(t)‖Lp(Y×(0,1))→ 0, ‖∂∇0+α
a ψ(t)‖Lp(Y×(0,1))→ 0,

‖∇ta(t)‖Lp(Y×(0,1)) → 0, ‖ ∗gY Fa − iτ(ψ, ψ) + α‖Lp(Y×(0,1))→ 0.

For any sequence tn → ∞, there is a subsequence t
′

n → ∞ and (A(∞),Ψ(∞)) over Y ×
(0, 1) such that after suitable gauge transformations (A,Ψ)|Y×{t′n} → (A(∞),Ψ(∞)) in
C∞ sense over any compact subset of Y ×(0, 1). Hence the limit element (A(∞),Ψ(∞)) =
(a∞, 0, ψ∞) has zero Lp-norm over Y × (0, 1). Therefore we get

∇tψ∞ = ∂∇0+α
a∞ ψ∞ = ∇ta∞ = ∗gY Fa∞ − iτ(ψ∞, ψ∞) + α = 0.

I.e., fη(a∞, 0, ψ∞) = 0. Up to the gauge equivalence, (a∞, 0, ψ∞) ∈ RSW (Y, η) = f−1
η (0).
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Let J(T ) = Eη(A,Ψ)|Y×[T,∞) be the energy functional over Y × [T,∞). For the
Seiberg-Witten solution (A,Ψ) of (2.1), J(T ) = csη(A|T ,Ψ|T )− csη(A|∞,Ψ|∞) from the
calculation above. Thus we have, by (4.7),

dJ(T )
dT

= ∇csη(A|T ,Ψ|T ) · ∂(A|T ,Ψ|T )
∂T

= −‖fη(a(T ), φ(T ), ψ(T ))‖2L2(Y×{T}), (4.9)

where (A|T ,Ψ|T ) = (a(T )+φ(T )dt, ψ(T )). For T sufficiently large, (a(T )+φ(T )dt, ψ(T )) =
(a∞ + φ∞dt, ψ∞) + (a(t) + φ(t)dt, ψ(t)), the Taylor expansion of the functional fη is

fη(a(T ), φ(T ), ψ(T )) = Dfη(a∞, φ∞, ψ∞)(a(t), φ(t), ψ(t)) + N(a(t), φ(t), ψ(t)), (4.10)

where fη(a∞, φ∞, ψ∞) = 0 and N(a(t), φ(t), ψ(t)) is the quadratic term of a(t), φ(t), ψ(t).

Lemma 4.8. For (a, φ, ψ) ∈ {ker(δ∗0 ⊕Dfη(a∞, φ∞, ψ∞))}⊥ (the subspace which is per-
pendicular to ker(δ∗0 ⊕Dfη(a∞, φ∞, ψ∞))), there exist a constant C2 and T0 such that for
t ≥ T ≥ T0,

‖(a, φ, ψ)‖L2
k(Y×{t}) ≤ C2‖fη(a(T ), φ(T ), ψ(T ))‖L2

k−1(Y ),

where ‖(a, φ, ψ)‖L2
k
(Y×{t}) = ‖(a + φdt, ψ)‖L2

k
(Y×{t}) = ‖a‖L2

k
(Y×{t}) + ‖φ‖L2

k
(Y×{t}) +

‖ψ‖L2
k(Y×{t}).

Proof: Note that δη‖(a, φ, ψ)‖L2
k(Y ) ≤ ‖δ∗0 ⊕Dfη(a∞, φ∞, ψ∞)(a, φ, ψ)‖L2

k−1(Y ) from the
smallest number of absolute eigenvalues for (a, φ, ψ) ∈ {ker(δ∗0 ⊕ Dfη(a∞, φ∞, ψ∞))}⊥
with (a∞, φ∞, ψ∞) ∈ f−1

η (0). For T sufficiently large, (a(t) + φ(t)dt, ψ(t)) = (a(T ) +
φ(T )dt, ψ(T ))−(a∞+φ∞dt, ψ∞) is approaching to zero in the C∞ sense, and ‖(a(t), φ(t),
ψ(t)‖L2

k(Y ) is sufficiently small. Note that by the Hölder inequality and the Sobolev
embedding theorem,

‖N(a(t), φ(t), ψ(t))‖L2
k−1(Y ) ≤ C1‖(a, φ, ψ)‖2L4

k−1(Y×{t}) ≤ C
′

1‖(a, φ, ψ)‖2L2
k(Y×{t}).

Let T0 be the number such that C
′

1‖(a, φ, ψ)‖2
L2
k(Y×{T0} ≤ δη/2. Thus the result follows

from (4.10) for any T ≥ T0.
We have the first order Taylor expansion for J(T ) = csη(A|T ,Ψ|T )− csη(A|∞,Ψ|∞):

J(T ) = dcsη(A|∞,Ψ|∞)(A|T −A|∞,Ψ|T −Ψ|∞) + N(a(t), φ(t), ψ(t))
= dcsη(A|∞,Ψ|∞)(a(t) + φ(t)dt, ψ(t)) +N(a(t), φ(t), ψ(t)).

By the same method used in Lemma 4.8, one obtains, for T ≥ T0,

J(T ) ≤ C3‖(a, φ, ψ)‖2L2
1(Y×{T})

≤ C3C2‖fη(A|T ,Ψ|T )‖2L2(Y×{T})

= −C3C2
∂J

∂T
,

by (4.9). Therefore J(T ) ≤ J(T0)e−γ(T−T0) for some γ > 0 and T ≥ T0.
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Proposition 4.9. Let (A,Ψ) be the trajectory flow line of (4.7) over Y ×R. For the end
Y × [T,∞) or Y × (−∞,−T ], there exist a gauge transformation g±, a constant C4 and
γ1 > 0 such that (A,Ψ) = (a(t) +φ(t)dt, ψ(t)) +g∗±(a±∞+φ±∞dt, ψ±∞) for ±t ≥ T , and
for (a(t), φ(t), ψ(t)) satisfying the hypothesis of Lemma 4.8,

sup
Y
{|a(t)|, |φ(t)|, |ψ(t)|, |fη(a(t), φ(t), ψ(t))|} ≤ C4 · e−γ1(|t|−T ),

for |t| > T . Moreover one can choose (A|t,Ψ|t) such that all derivatives decay exponen-
tially:

sup
Y
{|∇la(t)|, |∇lφ(t)|, |∇lψ(t)|} ≤ C5 · e−γ1(|t|−T ), |t| > T,

where the constants C4 and C5 depends continuously on (A,Ψ).

Proof: Let σ be a positive number with σ < γ in the decay J(T ) ≤ J(T0)e−γ(T−T0).
For T ≥ T0, we define Jσ(T ) =

∫∞
T eσt‖fη(a(t), φ(t), ψ(t))‖2L2(Y×{t})dt. By (4.9) for every

t ≥ T , we have

Jσ(T ) =
∫ ∞
T

eσt(−dJ(t)
dt

)dt ≤ J(T0)eγT0 (1 +
σ

σ − γ )e−(γ−σ)T ,

from the integration by part and the decay of J(T ). Thus ‖fη(a(t), φ(t), ψ(t))‖2L2(Y×{t})
decays exponentially, and we can estimate all the covariant derivatives of fη(a(t), φ(t), ψ(t))
in the same way. The term J(T ) controls the L2-norm of fη(a(t), φ(t), ψ(t)) over the
compact subset Y × [T + 1, T + 2], and this gives a bound on all higher derivatives over
Y × (T + 1, T + 2). By the translation and gauge-fixing condition, we have, for some
0 < γ1 < γ and t > T ,

|fη(a(t), φ(t), ψ(t))|L∞(Y ) ≤ C6e
−γ1(t−T ).

For the temporal gauge representative (A,Ψ) = (a(t) + a∞, ψ(t) + ψ∞), the trajectory
flow satisfies ∂

∂t(a(t), ψ(t)) = −fη(a(t), 0, ψ(t)). So

sup
Y
{|∂a(t)

∂t
|, |∂ψ(t)

∂t
|} ≤ C6e

−γ1(t−T ).

Hence (A,Ψ) converges to (a∞, 0, ψ∞) exponentially. The exponential decay of the covari-
ant derivatives of fη(a(t), 0, ψ(t)) on Y for t ∈ [T,∞) implies that (a∞, 0, ψ∞) ∈ C∞(Y ),
and ∇la(t),∇lψ(t) converge exponentially. The gauge equivalence classes [(A|t,Ψ|t)] con-
verge to [(a∞, 0, ψ∞)] with a suitable choice of subsequences, there is a converging se-
quence {gt} to g∞ in the C∞ sense: g∗t (A|t,Ψ|t)→ g∗∞(a∞, 0, ψ∞). Thus we can modify
the representative to the (A|t,Ψ|t) over Y × [T,∞) such that the exponentially decay
estimate holds for t > T . The case for Y × (−∞,−T ] is same.

Note that if (a∞, φ∞, ψ∞) ∈ R∗SW (Y, η), then ker(δ∗0 ⊕Dfη(a∞, φ∞, ψ∞)) = 0. There
is a 1-dimensional subspace ker(δ∗0 ⊕Dfη(θ, 0, 0)) for the reducible solution Θ = (θ, 0).

Define the weighted Sobolev space Lpk,δ on sections ξ of a bundle over Y ×R to be
the space of ξ for which eδ · ξ is in Lpk, where eδ(y, t) = eδ|t| for |t| ≥ 1. For any
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0 ≤ δ = min{δη/2, γ1/2} and any Seiberg-Witten monopole solution (A,Ψ) on Y ×R,
the linearized operator

DA,Ψ : Lpk+1,δ(Ω
1(Y ×R)⊕ Γ(W+

(4)))→ Lpk,δ((Ω
0 ⊕ Ω2

+)(Y ×R)⊕ Γ(W+
(4)))

is Fredholm (the proof is a direct application of Theorem 1.3 of [20] with the choice of δ,
see also [7, 12, 15, 32, 38]). We call (A,Ψ) regular if CokerDA,Ψ = 0 and we call MY×R

(the moduli space of perturbed Seiberg-Witten solutions with finite energy) regular if
it contains orbits of regular (A,Ψ)’s. Note that the weighted Sobolev spaces are mainly
needed for dealing with reducible Seiberg-Witten solutions. If limt→±∞(A,Ψ) ∈ R∗(Y, η),
then DA,Ψ : Lpk+1(Ω1(Y ×R)⊕Γ(W+

(4)))→ Lpk((Ω0⊕Ω2
+)(Y ×R)⊕Γ(W+

(4))) is Fredholm.
Let τY be a smooth cutoff function such that τY (y, t) = |t| and eδ = eδτY (y,t) for

|t| > T0 > 0. We define an element (∇0,Ψ0) on Y ×R such that

∇0|Y×[T0,∞) =
d

dt
+ (a+ + φ+dt), Ψ0|Y×[T0,∞) = ψ+,

∇0|Y×(−∞,−T0] =
d

dt
+ (a− + φ−dt), Ψ0|Y×(−∞,−T0] = ψ−,

where (a± + φ±dt, ψ±) ∈ f−1
η (0). The Fréchet space Ω1

c(Y × R) ⊕ Γ(W ) of compact
supported C∞-sections on T ∗(Y ×R)⊕W can be completed to a Banach space

Apk,δ(Y ×R) = (∇0,Ψ0) + Lpk,δ(Ω
1
c(Y ×R)⊕ Γ(W )),

where ‖(a, φ, ψ)‖Lpk,δ(Y×R) = ‖(a+φdt, ψ)‖Lpk,δ(Y×R) = ‖eδ ·a‖Lpk(Y×R)+‖eδ ·φ‖Lpk(Y×R)+
‖eδ · ψ‖Lpk(Y×R). The gauge group is given by

Gpk+1,δ = {u ∈ Lpk+1,loc(Y ×R, iR)|u = exp ξ for |t| ≥ T0 and ξ ∈ Lpk+1,δ}.

The quotient space Bpk,δ(Y × R) = Apk,δ(Y × R)/Gpk+1,δ is the path space from c− =
(a−, φ−, ψ−) to c+ = (a+, φ+, ψ+) with appropriate Sobolev norm.

Let MY×R be the moduli space of finite-energy Seiberg-Witten solutions of (4.7)
on Y × R. By Lemma 4.7, the moduli space is a disjoint union given by MY×R =∐
c,c
′∈f−1

η (0)MY×R(c, c
′
), where MY×R(c, c

′
) is the solutions (A, Ψ) of (4.7) with

limt→∞(A,Ψ) = c
′

and limt→−∞(A,Ψ) = c. There is a free R-action on MY×R. We set
by

Mbal
Y×R(c, c

′
) = {(A,Ψ) ∈ MY×R(c, c

′
)|J(0) = Eη(A,Ψ)|Y×[0,∞) =

1
2
Eη(A,Ψ)|Y×R}.

It represents the trajectory flow line with t = 0 splitting the energy in half (see [18]
§3.1), and can be identified with M̂Y×R(c, c

′
) = MY×R(c, c

′
)/R in [12]. The moduli

space Mbal
Y×R(c, c

′
) is compact (possibly with boundary) with dimension determined by

the spectral flow IndDA,Ψ.

Proposition 4.10. The set of all perturbations η ∈ P ′Y of which MY×R is regular is of
Baire’s first category.
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Proof: There is an well-defined map l : Mbal
Y×R → BY by restricting the balanced

Seiberg-Witten solutions (A,Ψ) of (4.7) to t = 0 slice as l(A,Ψ) = (a(0) + φ(0)dt, ψ(0)).
By Aronszajin’s theorem in [2], l is injective. The Seiberg-Witten solution is the zero set
of the section

F : Bpk,δ(Y ×R)× PY → Bpk,δ(Y ×R)×Gpk+1,δ
(Ω1(Y, iR)× Γ(W )),

through the identifications in §2, where F (a+φdt, ψ, η) = (∂a∂t −daφ+∗gY Fa− iτ(ψ, ψ) +
α, ∂ψ∂t + ∂∇0+α

a ψ + φ.ψ) = ∂
∂t(a+ φdt, ψ) + fη(a, φ, ψ). We can identify Bpk,δ(Y ×R) as a

path space of Bpk(Y ) with eδ decay in t-direction. Thus we have the following diagram

Ω1(Y, iR)× Γ(W ) = Ω1(Y, iR)× Γ(W )
↓↑ F ↓↑ fη

Mbal
Y×R × PY

l−→ BY × PY ,

where Mbal
Y×R

∼= F−1(0)/R ⊂ Bpk,δ(Y × R)/R. Furthermore we have F = ∂
∂t + fη ◦ l∗

for the injective map l∗ : Mbal
Y×R → B∗Y . Thus DF = ∂

∂t + Dfη(l∗(·)) · Dl∗ is surjective
for Im(l∗) 6= ∅, i.e., (A(0),Ψ(0)) 6= (a(0), 0, 0). If l : Mbal

Y×R → BY \ B∗Y , then we can
shift l[t](A,Ψ) = (A|t,Ψ|t) ∈ B∗ unless (A,Ψ) is a constant c ∈ f−1

η (0) which is regular
solution by Corollary 4.4. Note that l[t] is also injective. SinceMbal

Y×R is a disjoint union of
compact subspaces Mbal

Y×R(c, c
′
). Hence there is a t0 such that l[t0] :Mbal

Y×R(c, c
′
)→ B∗Y

provided thatMbal
Y×R(c, c

′
) is not a constant solution. Therefore the Baire’s first category

P ′Y (c, c
′
) for which Mbal

Y×R(c, c
′
) is regular follows from the Sard-Smale theorem and

Corollary 4.4. Then P ′Y =
⋂
c,c′∈f−1

η (0) P
′

Y (c, c
′
) is again Baire’s first category for our

result. The proof follows exactly from the same method in [12] Proposition 2c.2 with
Chern-Simons Seiberg-Witten functional as defined in [15] §4 and [4, 21, 23].

A perturbation η = (gY , α) satisfying Corollary 4.5 and Proposition 4.10 is called
admissible. We still use P ′Y to denote it for the rest of the paper. Note that the
Seiberg-Witten equation on Y ×R is written as

F (A,Ψ) = (
∂

∂t
+Dfη(c))(a(t), φ(t), ψ(t)) +N(a(t), φ(t), ψ(t)), (4.11)

where the expansion is near the end with the limit c ∈ f−1
η (0), and (A,Ψ) = (a(t) +

φ(t)dt, ψ(t)) and N(a(t), φ(t), ψ(t)) is the quadratic term of (a(t), φ(t), ψ(t)). The index
of DA,Ψ = ∂

∂t
+ δ∗0 +Dfη(c) does not change if δ is varied in such a way that δ avoids the

spectrum of δ∗0 +Dfη(c) over Y . The index of DA,Ψ will change if δ is changed across an
eigenvalue of δ∗0 +Dfη(c) (see the next section).

5. Spectral flow and dependence on Riemannian metrics

In this section, we use the unique U(1)-reducible solution Θ to capture the metric-
dependent relation via the spectral flow. In [16] joined with Lee, the author used the
Walker correction-term around U(1)-reducibles to obtain homotopy classes of admissible
perturbations (realized by a family of Lagrangians), and to show the invariance among
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the same homotopy class of the Lagrangian perturbations. Those Walker correction-term
can be interpreted as the spectral flow in [5, 16].

Proposition 5.1. For an admissible perturbation η = (gY , α) ∈ P ′Y and a nondegenerate
zero (a, φ, ψ) ∈ RSW (Y, η) = f−1

η (0), we can associate an integer µη(a, φ, ψ) ∈ Z such
that for (A,Φ) ∈ BY×R((a, φ, ψ), (a

′
, φ
′
, ψ
′
))

µη(eiu · (a, φ, ψ)) = µη(a, φ, ψ),

IndexDA,Φ = µη(a, φ, ψ)− µη(a
′
, φ
′
, ψ
′
)− dim Γ(a′ ,φ′ ,ψ′),

where Γ(a′ ,φ′ ,ψ′ ) is the isotropy subgroup of (a
′
, φ
′
, ψ
′
).

Proof: Let π1 : Y × [0, 1]→ Y be the projection on the first factor. Let L(4) ×W(4) be
the pullback π∗1(detW±) × π∗1W± such that (A,Φ) ∈ AL(4) ×W(4) satisfies (A,Φ)|t≤0 =
(a + φdt, ψ) and (A,Φ)|t≥1 = (a

′
+ φ

′
dt, ψ

′
). We have DA,Φ = ∂

∂t
+ δt with δt = δ∗0 ⊕

Dfη(A(t),Φ(t)) in (4.2). Then the Fredholm index of DA,Φ is given by the spectral flow
of δt (see [3, 5, 12]). The second equality follows from the same proof of Proposition 2b.
2 in [12]. The first equality follows from

SF (eiu · (a, φ, ψ), (a, φ, ψ)) = IndDA,Φ((A,Φ)|t=0, (A,Φ)|t=0)Y×S1

=
1
4

(c1(L(4))2 − (2χ+ 3σ))(Y × S1) = 0,

where χ and σ are the Euler number and signature of Y ×S1 , and c1(L(4))2(Y ×S1) = 0
for the integral homology 3-sphere Y .

Note that the relative index is gauge-invariant, but depending on the perturbation
η ∈ P ′Y by Proposition 5.1. The absolute index may not be well-defined since µη(Θ)
depends upon η ∈ P ′Y . In the instanton case, we fix the trivialization of a principal
bundle and a fixed tangent vector to the trivial connection to determine µ(θ) = 0 for
the trivial connection θ. It turns out that such a fixation is independent of metrics and
other perturbation data in the instanton Floer theory. But this is no longer true for the
monopole case.

Proposition 5.2. (Definition) Two admissible perturbations η0 and η1 in P ′Y are (called)
homotopic to each other through a 1-parameter family ηt(0 ≤ t ≤ 1) in PY if and only if
µη0(Θ) = µη1 (Θ).

Proof: For two admissible perturbations η0 and η1 in §4, we can connect them into
a 1-parameter family ηt such that there are at most finitely many t ∈ (0, 1) with ηt
corresponding harmonic-spinor jumps. Denote those 0 < t0 < t1 · · · < tn < 1 and
λ1, λ2, · · · , λn, λn+1 = 0 so that λi is not the eigenvalues of δt = δt(θ, 0) for ti−1 ≤ t ≤ ti,
where t−1 = 0 and tn+1 = 1. Define ni = dim (δti − λId) with λ ∈ [λi+1, λi] and
ni = −dim (δti − λId) with λ ∈ [λi, λi+1]. From the operator ∂

∂t + δt(Θ) (denoted by
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DFηt(Θ)) and the well-known facts in [3, 5, 12], we have

IndDFηt(Θ) =
n∑
i=0

ni.

This shows that IndDFηt(Θ) is independent of the construction ηt and that is continuous
in ηt. On the other hand,

IndDFηt(Θ) = µη0 (Θ) − µη1 (Θ).

Thus the obstruction to connect two generic perturbations is the spectral flow along the
metric path in ΣY . The Riemannian-metric space ΣY is path-connected. So IndDFηt(Θ) =
0 provides that η0 and η1 are in the same (homotopy) class of with respect to the spectral
flow.

Thus the dependence of metrics also enters into the definition of relative indices for
(a, φ, ψ) ∈ R∗SW (Y, η). Now we follow the instanton case to fix the relative index

µη(a, φ, ψ) = IndDFη(Θ, (a, φ, ψ)) ∈ Z,

which depends on the value µη(Θ). Any changes of µη(Θ) shift µη(a, φ, ψ) by an integer,
and µη(Θ) is understood with respect to some reference perturbation η0 ∈ P

′

Y . Thus we
call that η ∈ P ′Y lies in the same homotopy class of η

′
provided µη(Θ) = µη′ (Θ).

Lemma 5.3. For an admissible perturbation η ∈ P ′Y , the Seiberg-Witten moduli space
RSW (Y, η) = f−1

η (0) is a compact 0-dimensional oriented manifold. The orientation is
well-defined for a fixed homotopy class η ∈ P ′Y .

Proof: By Proposition 4.6, RSW (Y, η) is a 0-dimensional C∞-compact manifold. The
orientation at each point of RSW (Y, η) is defined by its spectral flow which depends on
the perturbation homotopy class of η. (This is different phenomenon from the (instanton)
Casson invariant of integral homology 3-spheres.) Hence the orientation for the monopole
case is not globally defined for all η ∈ P ′Y . It is only locally defined for a homotopy class
with same spectral flow at Θ.

Note that the monopole number #R∗SW (Y, η) (counted with sign) is not a topological
invariant. The number #R∗SW (Y, η) depends on the metric with harmonic-spinor jumps
and the homotopy class η ∈ P ′Y .

6. Monopole homology of integral homology 3-spheres

For an admissible perturbation η ∈ P ′Y , we have a new gradient vector field fη for
which the irreducibles are all nondegenerate in §4. Since zeros of fη are now isolated
finite-many points, we use them to generate the monopole chain groups. The transitivity
is proved in terms of gluing and splitting Seiberg-Witten solutions over Y ×T R. This
gives the general structure of the Seiberg-Witten trajectory flow lines of (4.7) to obtain
a homology result.

142



LI

Lemma 6.1. For any c, c
′ ∈ R∗(Y, η) and p ≥ 2, there exists a positive constant Cp

such that for all (A,Ψ) ∈Mbal
Y×R(c, c

′
) in one component and (a, φ, ψ) ∈ Lp(Ω1(Y, iR)⊕

Ω0(Y, iR) ⊕ Γ(W )), we have

Cp‖(a, φ, ψ)‖Lp(Y×R) ≤ ‖(
∂

∂t
+ δ∗0 +Dfη(A,Ψ))∗(a, φ, ψ)‖Lp(Y×R),

where ( )∗ denotes the adjoint operator with respect to the L2-norm.

Proof: Proposition 4.10 implies that (DA,Ψ)∗ has trivial kernel for (A,Ψ) ∈Mbal
Y×R(c, c

′
),

where the operator DA,Ψ = ∂
∂t

+ δ∗0 ⊕ Dfη(A,Ψ) from the gauge-fixing condition and
c, c
′ ∈ R∗(Y, η). Thus we obtain

C(A,Ψ),p‖(a, φ, ψ)‖Lp(Y×R) ≤ ‖(
∂

∂t
+ δ∗0 +Dfη(A,Ψ))∗(a, φ, ψ)‖Lp(Y×R),

for (a, φ, ψ) ∈ Lp(Ω1(Y, iR) ⊕ Ω0(Y, iR) ⊕ Γ(W )). The constant C(A,Ψ),p is continuous
in (A,Ψ). Any one component of Mbal

Y×R(c, c
′
) ∩ Bpk(c, c

′
) is compact. Hence Cp is the

smallest constant of C(A,Ψ),p for this compact set.
Note that the components of Mbal

Y×R(c, c
′
) are described by the spectral flow µη(c) −

µη(c
′
) depending upon Iη(Θ, η0). For a fixed Iη(Θ, η0), there is a unique component

Mbal
Y×R(c, c

′
). Unlike the instanton case, there are possibly infinitely many components

for the instantons over Y ×R with fixed asymptotic.
Let χ−(t) be a smooth cutoff function with χ−(t) = 1 for t ≤ T1− 1 and χ−(t) = 0 for

t ≥ T1 and |dχ−| ≤ C0 for some constant C0, where T1 is a parameter to be determined
(≥ T0). Let (A−,Ψ−) ∈ Mbal

Y×R(c−, c
′
) with our fixed Iη(Θ, η0). Define (Ã−, Ψ̃−) =

(1−χ−)c
′
+χ− · (A−,Ψ−) to be the cutoff element as a path element of the configuration

space Ω1(Y, iR) ⊕ Γ(W ) ⊕ Γ(W ).

Lemma 6.2. There exist T4 ≥ T0 + 1 and C7 independent of (A−,Ψ−) such that for
T1 > T4 and (A−,Ψ−) ∈Mbal

Y×R(c−, c
′
), p, q ≥ 2, we have

‖(Ã−, Ψ̃−)− (A−,Ψ−)‖Lq(Y×R) ≤ C7e
−δ(T1−T4), ‖F (Ã−, Ψ̃−)‖Lp(Y×R) ≤ C7e

−δ(T1−T4),

where (A
′
,Ψ
′
)− (A,Ψ) = (A

′ −A,Ψ′ −Ψ).

Proof: Note that (Ã−, Ψ̃−)−(A−,Ψ−) is support on Y × [T1−1,∞). By Proposition 4.9,

sup
Y
|(Ã−, Ψ̃−) − (A−,Ψ−)| = sup

Y
|(1− χ−)(c

′
− (A−,Ψ−))| ≤ C4,(A−,Ψ−)e

−γ1(t−T0),

for t ≥ T0. Hence

‖(Ã−, Ψ̃−)− (A−,Ψ−)‖Lq(Y×R) ≤ C4,(A−,Ψ−)(
V ol(Y, gY )

γ1q
)1/qe−γ1(T1−T0−1),

from the integration. Note that γ1 > δ, and e−γ1(T1−T0−1) ≤ e−δ(T1−T0−1). Similarly,
(Ã−, Ψ̃−) does not satisfy the Seiberg-Witten equation (4.7) on Y × [T1 − 1, T1]. Thus
the estimate follows from Proposition 4.9. The constant C4,(A−,Ψ−) is bounded by its
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maximal value for the compact component Mbal
Y×R(c−, c

′
). Hence for T4 ≥ T0 + 1 and

T1 > T4, we obtain our estimates with a constant C7 independent of (A−,Ψ−).
Now we define a neighborhood ofMbal

Y×R(c−, c
′
). Let

Uε− = {(B,Φ) ∈ BY×R(c−, c
′
)|there exists a (A,Ψ) ∈Mbal

Y×R(c−, c
′
) such that

‖(B,Φ) − (A,Ψ)‖Lq(Y×R) < ε−, ‖F (B,Φ)‖Lp(Y×R) < ε−}.

By Lemma 6.2 with T−1 such that C7e
−δ(T1−T4) = ε−/2, we have (Ã−, Ψ̃−) ∈ Uε− for

T1 ≥ T−1 .

Lemma 6.3. There exists ε−0 such that for 0 < ε− < ε−0 there is a constant C−8 indepen-
dent of ε− with

‖(a, φ, ψ)‖Lp1(Y×R) ≤ C−8 ‖(
∂

∂t
+ δ∗0 +Dfη(B,Φ))∗(a, φ, ψ)‖Lp(Y×R),

for all (B,Φ) ∈ Uε−.

Proof: From (B,Φ) ∈ Uε− and the difference of first order operators, we have

‖( ∂
∂t

+ δ∗0 + Dfη(B,Φ))∗(a, φ, ψ)‖Lp(Y×R) ≥ ‖(
∂

∂t
+ δ∗0 +Dfη(A−,Ψ−))∗(a, φ, ψ)‖Lp(Y×R)

−‖((B,Φ) − (A−,Ψ−)) · (a, φ, ψ)‖Lp(Y×R).

The expression ((B,Φ)− (A−,Ψ−)), as zero-th order operator D∗B,Φ −D∗A−,Ψ− acting on
(a, φ, ψ), can be estimated by Hölder inequality and the Sobolev embedding theorems:

‖((B,Φ)− (A−,Ψ−)) · (a, φ, ψ)‖Lp(Y×R)≤‖(B,Φ)− (A−,Ψ−)‖Lq(Y×R)‖((a, φ, ψ)‖L4(Y×R)

≤Cε−‖((a, φ, ψ)‖Lp1(Y×R).

By Lemma 6.1 and changing a reference element (∇0,Ψ0) to (A−,Ψ−) for Lp1-norm over
Y ×R,

‖(a, φ, ψ)‖Lp1(Y×R) = ‖(a, φ, ψ)‖Lp1(∇0,Ψ0)

≤ C9‖(a, φ, ψ)‖Lp1(A−,Ψ−)

≤ C10‖(
∂

∂t
+ δ∗0 + Dfη(A−,Ψ−))∗(a, φ, ψ)‖Lp +C9‖(a, φ, ψ)‖Lp

≤ (C10 + C9/Cp)‖(
∂

∂t
+ δ∗0 + Dfη(A−,Ψ−))∗(a, φ, ψ)‖Lp(Y×R).

Choosing ε−0 such that C(C10 +C9/Cp)ε−0 ≤ 1/2. Then there is a constant C−8 (≥ 2C−1
p )

satisfies the desired inequality.
By Lemma 6.3 and the Sobolev embedding theorem, we have Lp1 ↪→ Lq for 1/4 +

1/q ≥ 1/p and the bounded right inverse operator Q(B,Φ) = D∗B,Φ ◦ (DB,Φ ◦D∗B,Φ)−1 of
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( ∂
∂t

+ δ∗0 + Dfη(B,Φ)) = DB,Φ satisfies

‖Q(B,Φ)(a, φ, ψ)‖Lq(Y×R) ≤ C11‖Q(B,Φ)(a, φ, ψ)‖Lp1(Y×R) ≤ C11C
−
8 ‖(a, φ, ψ)‖Lp(Y×R),

(6.1)

for all (B,Φ) ∈ Uε− . The importance of (6.1) is that the constant C11C
−
8 is independent

of (B,Φ) ∈ Uε− . Similarly, the results above hold exactly same for the neighborhood

Uε+ = {(B,Φ) ∈ BY×R(c
′
, c+)|there exists a (A,Ψ) ∈Mbal

Y×R(c
′
, c+) such that

‖(B,Φ)− (A,Ψ)‖Lq(Y×R) < ε+, ‖F (B,Φ)‖Lp(Y×R) < ε+},

where c
′
, c+ ∈ R∗(Y, η). We can define (Ã+, Ψ̃+) = (1 − χ+)c

′
+ χ+(A+,Ψ+) for

(A+,Ψ+) ∈ Mbal
Y×R(c

′
, c+), where χ+ = 1 for t ≥ −T1 + 1 and χ+ = 0 for t ≤ −T1 .

There exist T+
1 > 0, ε+

0 > 0 and C+
8 such that for T1 > T+

1 and 0 < ε+ < ε+
0 we have

(Ã+, Ψ̃+) ∈ Uε+ , and the bounded right inverse operator Q(B,Φ) is bounded by C11C
+
8 as

in (6.1) for all (B,Φ) ∈ Uε+ .
For the balanced monopole (A±,Ψ±), we can choose ε+ = ε− and T1 ≥ max {T+

1 , T
−
1 }

such that the deformed monopole (Ã±, Ψ̃±) is an almost solution of Seiberg-Witten equa-
tion over Y ×R. For T3 > T2 ≥ T1 ≥ max {T±1 }, the 4-dimensional annulus Y × [T2, T3]
will be used as the gluing region in forming the patching transitivity. For gluing (Ã−, Ψ̃−)
on (Y ×R, g−) with (Ã+, Ψ̃+) on (Y ×R, g+) and any real positive numbers T3 > T2, we
set N− = Y × [T2, T3] and N+ = Y × [−T3,−T2], where g± = gY + dt2 and T3 = T2K for
another parameter K > 4.

Let θ− be a smooth cutoff function from modifying the function χK = − 1
lnK

ln t
T2K

on
Y × [T2, T2K] ⊂ Y ×R with χK = 0 at t = T2K, χK = 1 at t = T2 and ‖∇χK‖L4(Y×R) =

CT
−3/4
2

(1−K−3)1/4

lnK
→ 0 for T = T2 = max{T±1 } + 1 and K → ∞. Here exists K0 > 4

such that K ≥ K0 with ‖∇χK‖L4(Y×R) sufficiently small. We fix such a parameter K.
Then define fT : N− → N+ by fT (y, t) = (y,−t) which sends the “inner part” Y ×

{T} ⊂ N− to the “outer part” Y × {−T} ⊂ N+ and reduces an orientation-reversing
diffeomorphism from N− to N+. Note that fT is the identity map on the 3-manifold Y .
In the usual sense, we define the gluing Y ×T R to be

Y ×T R = Y × (−∞, TK] ∪fT Y × [−TK,∞),

where the “annuli” N± are identified by fT with a fixed K ≥ K0. The Riemannian
metric on Y ×T R is again a product metric gY + dt2 since the map fT is isometric and
orientation-reversing on the overlap.

Lemma 6.4. Let F : E1 → E2 be a C1-map between Banach spaces with first order Tay-
lor expansion F (ξ) = F (0)+DF (0)ξ+N(ξ). Assume that DF (0) has a finite dimensional
kernel and a right inverse Q such that

‖QN(ξ1)−QN(ξ2)‖E1 ≤ C(‖ξ1‖E1 + ‖ξ2‖E1)‖ξ1 − ξ2‖E1 ,
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for some constant C. Let ε = 1/(8C). If ‖QF (0)‖E1 ≤ ε/3, then there exists a C1-
function u : Kε → ImQ with F (ξ + u(ξ)) = 0 for all ξ ∈ Kε, and furthermore we have
the estimate

‖u(ξ)‖E1 ≤
4
3
‖QF (0)‖E1 +

1
3
‖ξ‖E1 ,

where Kε = kerDF (0) ∩ {ξ ∈ E1 : ‖ξ‖E1 < ε}.

See [12, 18] for the standard inverse function theorem. Applying Lemma 6.4 to F (Ã, Ψ̃)
(the Seiberg-Witten functional on Y ×R) as F (0), to ∂

∂t + δ∗0 + Dfη(Ã, Ψ̃) = DÃ,Ψ̃ as
DF (0), to the quadratic term N(a, φ, ψ) as the remainder term of the first order Taylor
expansion, to Lp1 ∩Lq(T(Ã,Ψ̃)BY×R) as E1 and Lp(Ω1(Y, iR)⊕Ω0(Y, iR)⊕ Γ(W )) as E2,
we have the gluing and splitting result. For (A+,Ψ+) ∈ MY×R(c

′
, c+) and (A−,Ψ−) ∈

MY×R(c−, c
′
) with c±, c

′ ∈ R∗(Y, η), we define the almost Seiberg-Witten solution (Ã, Ψ̃)
by rescaling and identifying,

(Ã, Ψ̃) =


(Ã−(t + 2TK − T ), Ψ̃−(t+ 2TK − T )) t ≤ −(TK − T )
ρ · c′ −(TK − T ) ≤ t ≤ (TK − T )
(Ã+(t− (2TK − T )), Ψ̃+(t− (2TK − T ))) (TK − T ) ≤ t,

where ρ ∈ Γc′ (the isotropic group of c
′
).

T -1 T

θ η
- - -

χ

1 1 T   =  T 2 TK

Figure 1. Smooth Cutoff Functions

Proposition 6.5. For 0 < ε < min {ε±0 } as in Lemma 6.3, T (fixed) in Lemma 6.2,
there is a constant C independent of ε such that the operator DÃ,Ψ̃ has a bounded right
inverse Q(Ã,Ψ̃) with, 1/4 + 1/q ≥ 1/p,

‖Q(Ã,Ψ̃)(a, φ, ψ)‖Lp1(Y×TR) ≤ C13‖(a, φ, ψ)‖Lp(Y×TR),

‖Q(Ã,Ψ̃)(a, φ, ψ)‖Lq(Y×TR) ≤ C13‖(a, φ, ψ)‖Lp(Y×TR).
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Proof: Similarly define a cutoff function θ+ (as we did for θ−) on (Y × R, g+), and
regarding θ+ as a function on Y ×T R, define η− = 1 − θ+ : Y ×T R → R (see [10] for
the same construction). Now η− is simultaneously a function on Y ×T R and (Y ×R, g−)
for (Ã−, Ψ̃−) such that the support of η− is larger than θ−, and η− = 1 on the support
of θ−. Similarly we define η+.

By Lemma 6.3, we have bounded right inverse Q(Ã±,Ψ̃±) for DÃ±,Ψ̃± . Then using the
definition of the gluing almost Seiberg-Witten solution (Ã, Ψ̃) and the standard parame-
terization method, we define

Q̃(a, φ, ψ) = η−Q(Ã−,Ψ̃−)(a, φ, ψ)− + η+Q(Ã+,Ψ̃+)(a, φ, ψ)+,

where (a, φ, ψ)− is the restriction to Y × (−∞, TK] ⊂ (Y × R, g−) and (a, φ, ψ) =
(a, φ, ψ)− + (a, φ, ψ)+. From the definition of η±,

η−(a, φ, ψ)− + η+(a, φ, ψ)+ = (a, φ, ψ).

By a simple calculation, one gets

DÃ,Ψ̃ ◦ Q̃(a, φ, ψ) = (a, φ, ψ) + dη−Q(Ã−,Ψ̃−)(a, φ, ψ)− + dη+Q(Ã+,Ψ̃+)(a, φ, ψ)+.

Note that we use the right inverse Q(Ã±,Ψ̃±) from Lemma 6.3. Thus there is no more term
regarding the metric-difference. Now DÃ,Ψ̃ ◦ Q̃− Id has a C∞-kernel, and ‖dη±‖L4(Y×R)

is sufficiently small. Thus Q(Ã,Ψ̃) = Q̃ ◦ (DÃ,Ψ̃ ◦ Q̃)−1 has the desired properties.
Remark: The method we used in Proposition 6.5 is similar to the one in [9, 10, 18]. For
the second order elliptic differential operator, see [25] for the analysis with obstruction
bundles. One may also adapt the analytic setup in [27] to work out the estimates.

Theorem 6.6. If 0 < ε < min {ε±0 } and T ≥ max{T±1 }+ 1, then there is a well-defined
gluing map

GT :Mbal
Y×R(c−, c

′
) ×Mbal

Y×R(c
′
, c+)× [TK,∞)→M(Y×TR)(c−, c+),

which is a local diffeomorphism with a fixed K ≥ K0.

Proof: From the above construction, we have (Ã±, Ψ̃±) ∈ Uε± for T > max {T+
1 , T

−
1 }

with ε+ = ε− < ε±0 . By Proposition 6.5, the bounded right inverse operator Q(Ã,Ψ̃)

satisfies

‖Q(Ã,Ψ̃)(a, φ, ψ)‖Lq(Y×TR) ≤ C13‖(a, φ, ψ)‖Lp(Y×TR).

Thus we have

‖Q(Ã,Ψ̃)F (Ã, Ψ̃)‖Lq(Y×TR) ≤ C13(ε+ + ε−).

By the Hölder inequality and quadratic expression, we get

‖Q(Ã,Ψ̃)N(a, φ, ψ)−Q(Ã,Ψ̃)N(a
′
, φ
′
, ψ
′
)‖Lq(Y×TR)

≤ C14(‖(a, φ, ψ)‖Lq(Y×TR) + ‖(a′ , φ′ , ψ′)‖Lq(Y×TR)) · ‖(a, φ, ψ)− (a
′
, φ
′
, ψ
′
)‖Lq(Y×TR).
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By Lemma 6.4, there exists a C1-map u : kerDÃ,Ψ̃ →MY×TR(c−, c+) such that (Ã, Ψ̃)+
u((Ã, Ψ̃); ρ) is a solution of (4.7) with ‖u((Ã, Ψ̃); ρ)‖Lq(Y×TR) small and ρ = id ∈ U(1),
and is smooth by standard elliptic regularity. Thus there is a well-defined C∞-map

GT ((A−,Ψ−), id, (A+,Ψ+)) = (Ã, Ψ̃) + u((Ã, Ψ̃); id).

For any (A,Ψ) ∈ Uε(Im (GT )), there is a representative (A,Ψ) = (Ã, Ψ̃) + u((Ã, Ψ̃); id).
Suppose the contrary. There exists a sequence εn → 0 (Tn → +∞) with εn < ε± and
(An,Ψn) ∈ U cεn ∩MY×TnR(c−, c+) cannot be written as the image of GTn , where U cεn
is the complement of the neighborhood Uε(Im (GTn)). By the compactness result from
[7, 15, 30, 38], we have a subsequence converging to (A−,Ψ−)

∐
(A+,Ψ+). Note that

(A±,Ψ±) are Seiberg-Witten solutions of (4.7) (since εn → 0) which has a singular point
at (y0, 0) conformally corresponding to the infinite point. By the removablity result in [31],
we have (A±,Ψ±) are solutions of (4.7) over (Y ×R, g±). Note that limt→±∞(A∓,Ψ∓) =
c
′

since the elements are in the neighborhood of the image GTn which are close to c
′

from
the construction. So we get (A−,Ψ−) ∈ Mbal

Y×R(c−, c
′
) and (A+,Ψ+) ∈ Mbal

Y×R(c
′
, c+)

with possible shifting in the t-direction. Hence we can perform the gluing process to
obtain a GTn((A−,Ψ−), ρ, (A+,Ψ+)) such that

‖(An,Ψn)−GTn((A−,Ψ−), ρ, (A+,Ψ+))‖Lq(Y×TnR) < ε/2,

and (An,Ψn) ∈ Uε/2 ∩ MY×TnR(c−, c+). This shows that (An,Ψn) cannot lie in the
complement of Uεn . The contradiction shows that the gluing map GT is a local diffeo-
morphism.
Remark: The monopole boundary operator requires the consideration of moduli spaces
with dimMY×R(c−, c+) ≤ 2. If c

′
= Θ and dimMY×R(c−, c+) = 2, then

dimMY×R(c−,Θ) + dim ΓΘ + dimMY×R(Θ, c+) = 2.

Hence there will be no boundary stratum M̂Y×R(c−,Θ)×M̂Y×R(Θ, c+) of M̂Y×R(c−, c+)
with dimMY×R(c−, c+) = 2 in a generic sense (see [6, 22]). For c± ∈ R∗SW(Y, η) and
c
′

= Θ, the general gluing result is not needed for our definition of the monopole homol-
ogy, but is needed for the equivariant version of the monopole homology. See [22] §2.4
and §5.2 and [36].

Now our transitivity can be expressed as Theorem 6.6:

GT :Mbal
Y×R(c−, c

′
) ×Mbal

Y×R(c
′
, c+)× [TK,∞)→Mbal

Y×TR(c−, c+) ∼=Mbal
Y×R(c−, c+),

where the gluing parameter is T with T ≥ max{T±1 } and a fixed K ≥ K0.

Definition 6.7. Let (a, φ, ψ) and (a
′
, φ
′
, ψ
′
) be zeros of fη. A chain solution from

(a, φ, ψ) to (a
′
, φ
′
, ψ
′
) is ((A1,Φ1), ..., (An,Φn)) Seiberg-Witten solutions over Y × R

which converge to ci−1, ci ∈ f−1
η (0) as t→ ∓∞ such that (a, φ, ψ) = c0, cn = (a

′
, φ
′
, ψ
′
),

and (Ai,Φi) ∈MY×R(ci−1, ci) for 0 ≤ i ≤ n.

We say that the sequence {(Aα,Φα)} ∈ MY×R((a, φ, ψ), (a
′
, φ
′
, ψ
′
)) is (weakly) con-

vergent to the chain solution ((A1,Φ1), ..., (An,Φn)) if there is a sequence of n-tuples of

148



LI

real numbers {tα,1 ≤ · · · ≤ tα,n}α, such that tα,i− tα,i−1 →∞ as α→∞, and if, for each
i, the translates t∗α,i(Aα,Φα) = (Aα(◦ − tα,i),Φα(◦ − tα,i)) converge weakly to (Ai,Φi).

Theorem 6.8. Let {(Aα,Φα)} ∈ MY×R((a, φ, ψ), (a
′
, φ
′
, ψ
′
)) be a sequence of Seiberg-

Witten solutions with uniformly bounded action over Y ×R. Then there exists a subse-
quence converging to a chain solution ((A1,Φ1), ..., (An,Φn)) such that

IndDAα ,Φα =
n∑
i=1

IndDAi,Φi =
n∑
i=1

(µη(ci)− µη(ci−1)).

Proof: The gluing and splitting theorem shows that the local diffeomorphism G preserves
the energy Eη and the spectral flow. So it follows from the same proof as in [12] §3 and [15],
and the compactness of Seiberg-Witten moduli space on 4-dimensional manifolds.

Proposition 6.9. The compactification of MY×R(c0, cn+1) can be described as

MY×R(c0, cn+1) = ∪(×n+1
i=1MY×R(ci−1, ci)),

the union over all sequence c0, c1, · · · , cn+1 ∈ R∗SW (Y, η) such that MY×R(ci−1, ci) is
nonempty for all 1 ≤ i ≤ n+ 1.

For any sequence c0, c1, · · · , cn+1 ∈ R∗SW (Y, η), there is a gluing map

G : ×n+1
i=1Mbal

Y×R(ci−1, ci) ×∆n+1 →MY×R(c0, cn+1),

where ∆n+1 = {(λ0, · · · , λn) ∈ [−∞,∞]n+1 : 1 + λi−1 < λi, 1 ≤ i ≤ n}.
1. The image of G is a neighborhood of ×n+1

i=1Mbal
Y×R(ci−1, ci) in the compactification

with chain solutions.
2. The restriction of G to ×n+1

i=1Mbal
Y×R(ci−1, ci)×Int (∆n+1) is an orientation-preserving

diffeomorphism onto its image.

Proof: Since there is no bubbling in the Seiberg-Witten moduli space, the map G is the
well-known transitivity in the Morse-Smale theory by repeatedly applying Theorem 6.6
(see also Proposition 3.10 of [19]).

Let RnSW (Y, η) be the set of irreducible zeros (a, φ, ψ) of fη whose relative index
µη(a, φ, ψ) − µη(Θ) = n. The monopole chain group MCn(Y, η) is defined to be
the free Abelian group generated by RnSW (Y, η), where the admissible perturbation η
specifies the spectral flow µη(Θ). We write Iη(Θ; η0) to be the integer µη(Θ) − µη0 (Θ)
with respect to a reference η0 ∈ PY . Hence µη(Θ) is fixed with the fixation of Iη(Θ; η0).
From results in §5, the algebraic number #RSW (Y, η) is an invariant for η ∈ P ′Y in the
fixed homotopy class. Therefore we can use RSW (Y, η) to form a chain group for η ∈ P ′Y
with the fixed number Iη(Θ; η0).

Define the boundary operator ∂ : MCn(Y, η)→MCn−1(Y, η):

∂(a, φ, ψ) =
∑

(a′ ,φ′ ,ψ′)∈MCn−1(Y,η)

#Mbal
Y×R((a, φ, ψ), (a

′
, φ
′
, ψ
′
)) · (a

′
, φ
′
, ψ
′
).

149



LI

Proposition 6.10. Let ∂ : MCn(Y, η)→ MCn−1(Y, η) be defined as above. Then ∂◦∂ =
0.

Proof: The proof follows the same argument as in ([12], Theorem 2) except that we
have to rule out the possibility of reducible connections entering into the picture by
Theorem 6.6. Note that

∂2(c0) =
∑

c1∈Rn−1
SW (Y,η)

∑
c2∈Rn−2

SW (Y,η)

#Mbal
Y×R(c0, c1) ·#Mbal

Y×R(c1, c2)c2,

where ci = (ai, φi, ψi) ∈ R∗SW (Y, η)(i = 0, 1, 2). Consider in this sum all the terms
associated to a fixed c2 ∈ Rn−2

SW (Y, η). For the pair (c0, c2), there is the 2-dimensional
moduli space M2

Y×R(c0, c2). By Proposition 6.9, the ends of Mbal,2
Y×R(c0, c2) consists of

all the componentsMbal,1
Y×R(c0, c1)×Mbal,1

Y×R(c1, c2) with c1 ∈ Rn−1
SW (Y, η). It is impossible

for c1 to be the U(1)-reducible zero of fη because the isotropy subgroup Γc1 would add
to the extra gluing parameter, and as a result would contradict the dimension count by
Proposition 5.1 and Proposition 5.2 with fixed Iη(Θ; η0). For the fixed datum Iη(Θ; η0),
the orientations are consistent from the spectral flow calculations by Lemma 5.3. Thus∑

c1∈Rn−1
SW (Y,η)

#Mbal
Y×R(c0, c1) ·#Mbal

Y×R(c1, c2) = ∂Mbal,2
Y×R(c0, c2) = 0.

As a consequence of Proposition 6.10, for a given integral homology 3-sphere Y and an
admissible data η ∈ P ′Y with the fixed datum Iη(Θ; η0), we have a well-defined definition
of a Monopole Homology

MH∗(Y ; η) = ker ∂∗/Im∂∗+1, ∗ ∈ Z.

Now the monopole homology MH∗(Y ; η) is sensitive to the number Iη(Θ; η0), and
MH∗(Y ; η) is not a topological invariant since its Euler characteristic #R∗SW (Y, η) is
metric-dependent.

7. Homomorphisms induced by cobordisms

From the troublesome path of metrics in ΣY of creating/destroying harmonic spinors
(see [14]), the invariance of the monopole homology of integral homology 3-spheres is
in question. The cobordism argument used in [12] does not apply here. We have to
construct a different cobordism between admissible perturbations with the fixed spectral
flow Iη(Θ; η0) = µη(Θ) − µη0(Θ). In this section, we show that our monopole homology
is independent of admissible perturbations within the homotopy class Iη(Θ; η0).

Let X be an oriented 4-manifold with two cylindrical ends Y1 × R+ and Y2 × R−,
where Y1 and Y2 are integral homology 3-spheres. Let τX : X → [0,∞) be a smooth
cutoff function such that τX(x) = 0 for x lying outside of Y1 × R+ ∪ Y2 × R− and
τX(y, t) = |t| for (y, t) ∈ Y1×R+∪Y2×R− and |t| > t0 > 0 and eδ = eδτX (x). Then using
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the cutoff function τX and a background connection we can extend d
dt

+ α and d
dt

+ β to
a connection ∇0 on X such that

∇0|Y1×[T5,∞) =
d

dt
+ α, ∇0|Y2×(−∞,−T5] =

d

dt
+ β.

Similarly, we can extend sections onW±X . The Fréchet space Ω1
comp(X,AdP )⊕Γcomp(W±X )

of compact supported C∞-sections on (T ∗X⊗AdP )⊕Γ(W±X ) can be completed to a Ba-
nach space

Apk,δ(X) = (∇0, 0) + Lpk,δ(Ω
1(X,AdP )⊕ Γ(W±X )),

where ‖c‖Lpk,δ = ‖eδ · c‖Lpk for c ∈ Ω1comp(X,AdP ) ⊕ Γcomp(W±X ). The gauge group
Gpk+1,δ is given by Lpk+1,δ-norm of Aut(detW±X ). So the quotient space is Bpk,δ(X) =
Apk,δ(X)/Gpk+1,δ. The perturbation data η1 = (gY1 , α1) and η2 = (gY2 , α2) at the ends
provide the gradient vector fields fη1 and fη2 so that the zeros of fη1 on Y1 and of fη2

on Y2 are generic. Clearly these perturbation data η1 and η2 can be pulled back to the
cylindrical ends Y1 ×R+ and Y2 ×R−, and produce perturbations on the time-invariant
monopole equation on Bpk,δ(Y1 ×R+) and Bpk,δ(Y2 ×R−) (same δ as before). According
to ([12] (1c.2) and [15, 32, 38]), there exists a Baire’s first category subset in the space
Met(X)×ΠX of Riemannian metrics gX and perturbation data αX such thatMηX (c, c

′
)

(ηX = (gX , αX)) is a smooth manifold with

dimMηX (c, c
′
) = µη1 (c)− µη2 (c

′
) +

1
2

(2χ+ 3σ)(X). (7.1)

In addition, MηX (c, c
′
) is oriented with an orientation specified by the orientations on

H1(X,R) and H0(X,R)⊕H2
+(X,R) (see [7, 15, 32, 38]).

Define a homomorphism Ψ∗ = Ψ∗(X; ηX) : MC∗(Y1; η1)→MC∗(Y2; η2) of the mono-
pole chain complexes by the formula

Ψ∗(c) =
∑

c′∈R∗SW (Y2,η2)

#M0
ηX

(c, c
′
) · c′ , c ∈ R∗SW (Y1, η1),

whereM0
ηX

(c, c
′
) is the 0-dimensional oriented moduli space connecting c to c

′
on X and

µη1(c) − µη2 (c
′
) = −1

2(2χ+ 3σ)(X).

Proposition 7.1. Given a cobordism X and perturbation data ηX ∈ Met(X) × ΠX as
before, the homomorphism Ψ∗ is a chain map shifting the degree by 1

2
(2χ + 3σ)(X).

Furthermore the induced homomorphism

Ψ∗ = Ψ∗(X; ηX) : MH∗(Y1; η1)→MH∗(Y2; η2)

on the monopole homologies depends only on the cobordism X and the data Iη1(ΘY1 ; η0,Y1)
and Iη2 (ΘY2 ; η0,Y2).
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Proof: By fixing the spectral flows Iη1 (ΘY1 ; η0,Y1) and Iη2 (ΘY2 ; η0,Y2) at Y1 and Y2, the
result follows the same argument as Theorem 3 in [12] and §5 of [16]. Note that ∂Y2 ◦Ψ∗(c)
is given by ∑

c
′∈R∗SW (Y2,η2)

#M0
ηX (c, c

′
) ·

∑
c1∈R∗SW (Y2,η2)

#Mbal
Y2×R(c

′
, c1) · c1,

which is the one end of the 1-dimensional space M1
ηX (c, c1). The other end is given by∑

d
′∈R∗SW (Y1,η1)

#Mbal
Y1×R(c, d) ·

∑
d∈R∗SW (Y1,η1)

#M0
ηX (d, c1).

The c
′

and d cannot be ΘY2 and ΘY1 respectively due to the index reason with our
gluing result in Theorem 6.6. Hence for the fixed data Iη1(ΘY1 ; η0,Y1) and Iη2 (ΘY2 ; η0,Y2),
there are compatible orientations given by the index (or spectral flow) which shows that
∂Y2 ◦Ψ∗(c) = Ψ∗ ◦∂Y1 . Therefore we obtain the induced homomorphism on the monopole
homologies.

We show below that Ψ∗(X; ηX) is functorial with respect to the composite cobordism.
Given two cobordisms (U ; ηU) connecting Y1 to Y2 and (V ; ηV ) connecting Y2 to Y3 so
that ηU and ηV agree on Y2, we can form the composite cobordism (W ; ηW ) connecting
Y1 to Y3. Then

Ψ∗(W ; ηW ) = Ψ∗(V ; ηV ) ◦Ψ∗(U ; ηU). (7.2)

A different strategy from Floer’s has to be taken to prove that MH∗(Y, η) is independent
of admissible perturbations η = (gY , α) within the class of Iη(Θ; η0). We consider the
time-dependent perturbations of the Seiberg-Witten equation and its associated moduli
space. Given two admissible perturbation data of generic metrics g−1

Y and g1
Y and 1-forms

α−1 and α1 with Iη−1 (Θ; η0) = Iη1 (Θ; η0) (here ηt = (gtY , αt)), there is an one-parameter
family of admissible perturbations Λ = {ηt = (gtY , αt)| − ∞ ≤ t ≤ ∞} joining them.
Assume that the pair ηt = (g−1

Y , α−1) for t ≤ −1 and ηt = (g1
Y , α1) for t ≥ 1. On the

cylinder Y ×R, we consider the perturbed Seiberg-Witten equation
∂ψ

∂t
+ ∂
∇gt

Y
+αt

at ψ = 0,
∂at
∂t

+ ∗gtY F (at) + αt = iτgtY (ψ, ψ). (7.3)

Given c ∈ R∗SW (Y, η−1) and c
′ ∈ R∗SW (Y, η1), we denote by MΛ(c, c

′
) the subspace in

Bpk,δ(c, c
′
) consisting of solutions of (7.3). Then there exists a homomorphism

ΨΛ : MCn(Y ; η−1)→MCn(Y ; η1)

of the monopole chain complexes defined by

ΨΛ(c) =
∑

c
′∈RnSW (Y,η1)

#M0
Λ(c, c

′
) · c′ , c ∈ RnSW (Y, η−1).

Proposition 7.2. Let Λ = {ηt = (gtY , αt)|t ∈ R} be an family of admissible perturbations
as defined above such that IndDFηt(Θ) = 0 (the same homotopy class). Then
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1. If Λ is a constant family of admissible perturbations (gtY = gY , αt = α), then ΨΛ =
id.

2. ΨΛ is a chain map: ∂ΨΛ = ΨΛ∂.
3. Given two families Λ and Λ

′
of admissible perturbations joining (g−1

Y , α−1) to (g0
Y , α0)

and from (g0
Y , α0) to (g1

Y , α1), we have ΨΛ◦Λ′ = ΨΛ ◦ΨΛ′ .

4. If a family Λ0 of admissible perturbations connecting (g−1
Y , α−1) and (g1

Y , α1) can
be deformed into another Λ1 by admissible families Λλ(0 ≤ λ ≤ 1), then the two
monopole chain maps ΨΛ0 and ΨΛ1 are chain homotopic to each other.

Proof: (1) If the perturbation is time independent ηt = (gY , α), then M0
Λ(c, c

′
) is just

the space M0
Y×R(c, c

′
). For the 0-dimensional component M0

Λ(c, c
′
), this means time-

invariant solutions ct on Y ×R, and we have [ct] = c = c
′
. Therefore #M0

Λ(c, c
′
) = δcc′

and ΨΛ = id.
(2) We consider the compactification of MΛ(c, c

′
) as developed in [13, 16]. By The-

orem 6.6 and Proposition 6.9 and [15, 32, 38], MΛ(α, β) can be compactified such that
the codimension-one boundary consists of

∪c−1Mbal
Y×R(c, c−1)×c−1 MΛ(c−1, c

′
)
∐
∪c1MΛ(c, c1)×c1 Mbal

Y×R(c1, c
′
). (7.4)

Here c±1 ∈ RSW (Y, η±1) and MY×R(c, c−1) is the moduli space of monopoles on Y ×
(−∞,−1) with respect to the perturbation η−1. SimilarlyMbal

Y×R(c1, c
′
) is obtained from

the perturbation data η1. Consider the 1-dimensional componentsM1
Λ(c, c

′
) ofMΛ(c, c

′
),

whose boundary by (7.4) gives two types of oriented points counted as ∂ΨΛ = ΨΛ∂. We
can rule out the possibilities of the reducible Θ for c±1. If they occurred, then they
would have an additional U(1)-symmetry on these moduli spaces. This is impossible
by the dimension reasoning from Proposition 5.1, Proposition 5.2 and our hypothesis
Iη−1 (Θ; η0) = Iη1(Θ; η0) (see below also).

(3) For a composite cobordism and its induced homomorphism, we study the moduli
spaceMΛ∗Λ′ (T6;α, β) of solutions of the Seiberg-Witten equation on Y ×R with respect
to the following time-dependent admissible perturbation data Λ ∗T6 Λ

′
, where

Λ ∗T6 Λ
′

=


η−1 = (g−1

Y , α−1) −∞ < t ≤ −T6 − 1
Λ = (gt+T6

Y , αt+T6) −T6 − 1 ≤ t ≤ −T6

η0 −T6 ≤ t ≤ T6

Λ
′

= (gt−T6
Y , αt−T6) T6 ≤ t ≤ T6 + 1

η1 T6 + 1 ≤ t < +∞.

Let T6 be sufficiently large. ThusMΛ∗Λ′ (T6; c, c
′
)(T6 ≥ T7) is approximated by the union

∪c0MΛ(c, c0) ×c0 MΛ
′ (c0, c

′
). (7.5)
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where MΛ(c, c0) = MΛ(c, c0)/(Γc × Γc0). Note that the 0-dimensional components in
MΛ(c, c0)×c0 MΛ

′ (c0, c
′
) correspond to the c

′
-coefficients in

ΨΛ
′ ◦ΨΛ(c) =

∑
c0

#M0
Λ(c, c0) ·#M0

Λ′ (c0, c
′
) · c

′
.

On the other hand, as T6 → 0, the 0-dimensional component of the moduli space
MΛ∗Λ′ (T6; c, c

′
) gives the c

′
-coefficients in ΨΛ∗Λ′ (c) =

∑
M0

Λ∗Λ′ (c, c
′
) · c′ . Because

∪0≤T6≤T7M0
Λ∗Λ′ (T6; c, c

′
) is the cobordism between M0

Λ∗Λ′ (0; c, c
′
) andM0

Λ∗Λ′ (T7; c, c
′
),

so the assertion (3) follows by ruling out the reducible Θ. Note that

dimMΛ(c, c0) = µη−1(c) − lim
ηt∈Λ,ηt→η0

µηt(c0) − dimΓc0 ;

dimMΛ′ (c0, c
′
) = lim

ηt∈Λ′ ,ηt→η0

µηt(c0) − µη1 (c
′
). (7.6)

By Proposition 5.1 and Proposition 5.2, we obtain

lim
ηt∈Λ,ηt→η0

µηt(c0) = lim
ηt∈Λ′ ,ηt→η0

µηt(c0) = µ(c0).

So it satisfies the equations µη−1 (c)−µ(c0) = 1 (c0 = Θ) and µ(c0)−µη1(c
′
) = 0. This is

impossible because of µη−1 (c) = µη1(c
′
). If these spectral flows Iη±1 (Θ; η0) are not fixed

to be same, then the above argument becomes invalid.
(4) Let Λi(i = 0, 1) be a family of time-independent admissible perturbations which

connect up η−1 and η1. Suppose that Λ0 and Λ1 can be smoothly deformed from one
to another by a 1-parameter family Λs = {ηst = (gs,tY , αst), 0 ≤ s ≤ 1, −1 ≤ t ≤ 1} of
the same type of admissible perturbations. Set Λs = Λ0 for 0 ≤ s ≤ 1

4 and Λs = Λ1 for
3
4
≤ s ≤ 1. Associated to this situation, there is a 1-parameter family of moduli spaces

denoted by HM̃(c, c
′
) = ∪0≤s≤1M̃Λs(c, c

′
),

HM̃(c, c
′
) = {(Φ, s)|Φ ∈ M̃Λs(c, c

′
), 0 ≤ s ≤ 1} ⊂ Bpk,δ(c, c

′
) × [0, 1],

where HM̃ is the set of regular solutions of Seiberg-Witten equation with respect to ηst ,
and is a smooth manifold with dimension µη−1 (c) − µη1 (c

′
) + 1. The codimension-one

boundary consists of

MΛ1(c, c
′
)× {0}

∐
MΛ0(c, c

′
) × {1},

∪(s,c0)M̃Λs(c, c0)×Mη1(c0, c
′
)
∐
∪(s,γ)Mη−1(c, c0)× M̃Λs(c0, c

′
).

Since M̃Λs(c, c0) and M̃Λs(c0, c
′
) are solutions of the Seiberg-Witten equation with vir-

tual dimension −1, they can only occur for 0 < s < 1. The homomorphism H :
MC∗(Y ; η−1)→MC∗(Y ; η1) of degree +1 is defined by

H(c) =
∑
c0

∑
s

#M̃0
Λs(c, c0) · c0, for c ∈ RnSW (Y, η−1), c0 ∈ Rn+1

SW (Y, η1).
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That c0 is reducible is eliminated by the extra U(1)-symmetries in Mη1(c0, c
′
) and

Mη−1 (c, c0) and Iη1 (Θ; η0) = Iη−1 (Θ; η0). Summing up c
′ ∈ RnSW (Y, η1), we have

ΨΛ0 (c)− ΨΛ1(c) = H ◦ ∂η−1 (c) + ∂η1 ◦H(c).

Therefore ΨΛ0 and ΨΛ1 are monopole chain homotopic to each other.
So the monopole homology groups MH∗(Y ; η±1) associated to two admissible pertur-

bation data are canonically isomorphic to each other whenever Iη1 (Θ; η0) = Iη−1 (Θ; η0)
for the unique U(1)-reducible Θ on Y . Thus it is more appropriate to denote MH∗(Y ; η)
by MH∗(Y ; Iη(Θ; η0)). For an integral homology 3-sphere Y , the monopole homology
can be extended to a function

MHSWF : {Iη(Θ; η0) : η ∈ P ′Y } → {MH∗(Y, Iη(Θ; η0)) : η ∈ P ′Y }.
(Changing a reference η0 corresponds to the same homology groups with grading Iη′0 (Θ; η0)-
shift) This function MHSWF is a topological invariant of the integral homology 3-sphere
Y , up to the degree-shifting of monopole homologies. Hence such a functionMHSWF may
be called a Seiberg-Witten-Floer theory, which is completely different from the instanton
Floer homology, but more related to the treatment in [16]. The set {Iη(Θ; η0) : η ∈ P ′Y }
is the chamber-like structure for the monopole homology of integral homology 3-spheres
Y .

8. Relative Seiberg-Witten invariants

The Seiberg-Witten invariant (see [7, 32, 38]) has proved so useful and at least as
powerful as the Donaldson invariant in many cases, and is much easier to compute. In
this section we are going to extend the Seiberg-Witten invariant to the relative one on
smooth 4-manifolds with boundary integral homology 3-spheres. The “relative Seiberg-
Witten invariants” is no longer a topological invariant since it lies in a monopole homology
depending upon Riemannian metrics of integral homology 3-spheres. But the natural
pairing between “relative Seiberg-Witten invariants” does recover the Seiberg-Witten
invariant of closed smooth 4-manifolds.

Let X be a smooth 4-manifold with b1(X) > 0 and boundary Y (an integral homology
3-sphere). The collar of X can be identified with Y × [−1, 1], and the admissible pertur-
bation data on Y can be extended inside X as we did in §7. Fixing Iη(Θ; η0) should be
understood through this section.

Definition 8.1. For a smooth 4-manifold X with boundary Y (an integral homology
3-sphere), the 0-degree relative Seiberg-Witten invariant is defined by

qX,Y,η =
∑

c∈R∗SW (Y,η)

#M0
X(c) · c,

where R∗SW (Y, η) is the set of all nondegenerate zeros of fη with prescribed Iη(Θ; η0).

By the index calculation and our convention µη(c) = SF (c,Θ), we have

dimM0
X(c) + µη(c) = dimMX(Θ) =

1
4

(c1(π∗(L))2 − (2χ+ 3σ))(X) = −1
4

(2χ+ 3σ)(X),
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since c1(L) = 0 for the integral homology 3-sphere Y . Thus qX,Y,η is in the monopole
chain group with grading −1

4
(2χ + 3σ)(X).

Proposition 8.2. For qX,Y,η ∈ MCµX (Y, η) with µX = −1
4 (2χ + 3σ)(X) and a fixed

class Iη(Θ; η0), we have ∂Y ◦ qX,Y,η = 0, i.e., qX,Y,η is a monopole cycle in the sense of
§6.

Proof:

∂Y ◦ qX,Y,η(c) =
∑

c∈RµSW (Y,η)

∑
c′∈Rµ−1

SW (Y,η)

#M0
X(c) ·#M̂1

Y×R(c, c
′
) · c

′
.

For both c and c
′

irreducible (nondegenerate) zeros of fη , we take one-dimensional moduli
space M1

X(c
′
) for fixed c

′
. Then we count the ends of the moduli space to conclude the

result. Again it is a technical point to avoid the reducible Θ entering the boundary
MX(Θ) ×MY×R(Θ, c

′
). For the reducible Θ, we have the dimension counting

dim{MX(Θ) ×MY×R(Θ, c
′
)} = dimMX(Θ) + dimΓΘ + dimMY×R(Θ, c

′
) ≥ 0 + 1 + 1 = 2.

So c cannot be the reducible Θ, and ∂Y ◦ qX,Y,η = 0. Hence qX,Y,η is indeed a monopole
cycle.

Let qX,Y,η(gX) be the relative Seiberg-Witten invariant with respect to the metric gX
and the admissible perturbation η ∈ P ′Y . Now we show that the monopole homology
class [qX,Y,η(gX)] defined by Proposition 8.2 is independent of metrics gX with gX |Y in
the fixed class of Iη(Θ; η0).

Proposition 8.3. Let giX(i = 1, 2) be two generic metrics on X with induced metric
giY generic such that Iη1(Θ; η0) = Iη2 (Θ; η0) and ηi = (giY , αi). Then there exist c

′ ∈
MCµX+1 with µX = −1

4(2χ+ 3σ)(X) such that we have

qX,Y,η2(g2
X)− qX,Y,η1(g1

X) = ∂(c
′
).

In particular, [qX,Y,η2(g2
X)] = [qX,Y,η1(g1

X)] as the monopole homology class in
MHµX (Y, Iηi (Θ; η0)).

Proof: Let {gt+1
X }0≤t≤1 be a family of metrics on X such that Iηt+1 (Θ; η0) is independent

of t with ηt+1 = (gt+1
X |Y , αt+1) and M0

X(gt+1
X )(c) has virtual dimension 0 with respect

to c irreducible. Therefore {M0
X(gt+1

X )(c)}0≤t≤1 is an one-dimensional moduli space of
Seiberg-Witten solutions on X. The corresponding codimension-one boundary in [0, 1]×
BX(gt+1

X )(c) is given by

∂({M0
X(gt+1

X )(c)}0≤t≤1) =

{0}×M0
X(g1

X)(c)
∐
−{1}×M0

X(g2
X)(c)

∐
∂(

∑
µηt+1 (c)−µηt+1(c′ )=−1

#([0, 1]×M−1
X (gt+1

X )(c
′
))).
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The number 〈∂Y c
′
, c〉 is the algebraic number of ([0, 1]×M−1

X (gt+1
X )(c

′
)). The c

′
cannot

be the reducible Θ by the fixed Iη1 (Θ; η0) with the same argument as before. So

qX,Y,η2(g2
X)(c) − qX,Y,η1(g1

X)(c) = 〈∂Y c
′
, c〉.

Hence qX,Y,ηi(g
i
X)(i = 1, 2) (as a monopole cycle) gives the same monopole homology

class.
Note that orientation reversing from Y to −Y changes the grading from µη(c) to

−1−µη(c) (certainly does not change the solutions of the Seiberg-Witten equation on the
3-manifold), so there is a nature identification between MCµη(Y, η) and CF−1−µη(−Y, η).

Theorem 8.4. For a smooth 4-manifold X = X0#YX1 with b+2 (Xi) > 0(i = 0, 1) and Y
an integral homology 3-sphere, the Seiberg-Witten invariant of the 4-manifold X is given
by the Kronecker pairing of MH∗(Y ; Iη(Θ; η0)) with MH−1−∗(−Y ; Iη(Θ; η0)) for qX0,Y,η

and qX1,−Y,η; assume that the moduli space MX does not split to MXi(Θ) through the
stretching-neck process,

〈, 〉 : MH∗(Y ; Iη(Θ; η0)) ×MH−1−∗(−Y ; Iη(Θ; η0))→ Z; qSW (X) = 〈qX0,Y,η, qX1,−Y,η〉.
More precisely, qSW (X0#YX1) =

∑
c #M0

X0,Y,η
(c) · #M0

X1,−Y (−c), where Iη(Θ; η0) is
fixed. The invariant qSW (X) is independent of the choice of Iη(Θ; η0).

Proof: If Y admits a metric of positive scalar curvature, then the proof is given in
[31, 38] with Iη(Θ; η0) = 0 the special case. The assumption implies that b+2 (X) > 1. So
we can rule out the existence of reducible solutions on X by the standard method (see
[7, 15, 32, 38]). Note that

dimMX0(c) + dim Γc + dimMX1(c) = dimMX .

By the dimension equation and the assumption, we have the term #M0
X0,Y,η

(c)·#M0
X1,−Y,η

(−c) only with c 6= Θ. Then the 0-dimensional moduli space on X is obtained by gluing
the solutions on (X0, Y ) with ones on (X1,−Y ) along irreducible solutions of R∗SW (Y, η).
Using the standard technique on stretching the neck (see [9, 15], similar to our glu-
ing construction in Theorem 6.6, one gets the equality qSW (X) = 〈qX0,Y,η, qX1,−Y,η〉.
Since qSW (X) is a topological invariant, so the pairing is independent of the choice of
Iη(Θ; η0).

For higher degree relative Seiberg-Witten invariants, one can obtain the similar results
as in [16].
Remark: We believe that the assumption in Theorem 8.4 on the splitting through
MX0,Y (Θ) and MX1,−Y (Θ) can be removed. For b+2 (Xi) > 0(i = 0, 1) and fixed
Iη(Θ, η0) for the unique U(1)-reducible solution Θ at Y , the Seiberg-Witten invariant
of X = X0#YX1 should be zero as in the principle of the Donaldson invariant (see The-
orem B of [8] and its proof in §(iv) page 268 - 287 of [8]). One should be able to identify
the Seiberg-Witten invariant for this case from gluing MXi(Θ)(i = 0, 1) to a sum of
Euler number of finitely many U(1)-bundles. The detailed proof of Theorem B in [8] is
quite involved, the similar details for the Seiberg-Witten invariant are expected (even for
Y = S3 the proof in [31] is quite long). We leave this for a future study.
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Computing the monopole homology is extremely complicated due to the Riemannian
metric, the harmonic spinor, the spectral flow and the solution of the first-order Dirac-
type nonlinear differential equation. Even for the 3-sphere, a complete calculation of the
function MHSWF is very difficult at this moment. Understand the harmonic spinors on
S3 with a subfamily of Riemannian metrics (metrics are SU(2)-left invariant and U(1)-
right invariant) is already quite involved by the work of Hitchin [14]. On the other hand,
Theorem 8.4 gives us a flexibility to understand the Seiberg-Witten invariant of closed
smooth 4-manifolds through the relative ones with some preferred Riemannian metric(s)
on the integral homology 3-sphere.
Remark: The method we developed in this paper also can be extended to rational
homology 3-spheres with fixed spectral flows along all U(1)-reducible solutions of Seiberg-
Witten equation on the rational homology 3-sphere (see [16] for more detail).
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