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Abstract

A stronger form of the adjunction inequality is proved for immersed real sur-
faces in non simply-connected Stein surfaces. The result is applied to the
geometry of Stein domains and analytic continuation on complex surfaces.

1. Introduction

A complex manifold X is Stein if it admits a strictly plurisubharmonic exhaustion
function ϕ : X → R. (A C2-smooth function on a complex manifold is called strictly
plurisubharmonic if ddcϕ is a Kähler form.) Every connected component of a regular
sublevel set {x ∈ X | ϕ(x) < r} is a strictly pseudoconvex Stein domain, which provides
an important example of an exact symplectic manifold with contact boundary.

Applying Morse theory to a perturbation of ϕ, one shows that X is diffeomorphic to
the interior of a (infinite) handlebody without handles of index greater than the complex
dimension of X. If X is a Stein complex surface, i. e. dimC X = 2, then there are
further (and subtler) restrictions on the representatives of 2-dimensional homology classes.
Namely, if Σ ⊂ X is a closed oriented real surface of genus g embedded in X, then the
following adjunction inequality holds:

[Σ] · [Σ] +
∣∣〈c1(X), [Σ]〉∣∣ ≤ 2g − 2 (1)

provided that Σ is not an embedded 2-sphere with trivial homology class [Σ] ∈ H2(X; Z).
Inequality (1) was independently derived by Lisca–Matić and the author from similar

inequalities for real surfaces in compact Kähler surfaces and the algebraic approxima-
tion theorem for Stein manifolds (see [16], [8], and [18] for details and bibliography).
Alternatively, one can argue that a strictly pseudoconvex Stein domain has a unique
Spinc-structure with non-zero Seiberg–Witten invariant (in the sense of Kronheimer–
Mrowka [14]) whereas a homologically non-trivial embedded surface violating (1) would
yield another such structure by the work of Ozsváth–Szabó [21].

The present note explores homotopy theoretic consequences of the adjunction inequal-
ity. One result concerns the “exceptional” case of homologically trivial two-spheres.

Theorem 1.1. A smoothly embedded two-sphere in a Stein complex surface violates ad-
junction inequality (1) if and only if its homotopy class is trivial.

Supported in part by INTAS (project no. 00-269) and RFBR (project no. 02-01-01291).

161This article was presented at the 9th Gökova Geometry-Topology Conference

Turk J Math
27 (2003) , 161 – 172.

c© TÜBİTAK
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The proof of a general “homotopically enhanced” adjunction inequality for immersed
real surfaces is given in §4. The argument will be rather simple (modulo (1) and a
classical result of Karl Stein [22]). Two applications of Theorem 1.1 to geometry and
complex analysis are discussed in §2 and §3.

Another application of our methods concerns Stein neighbourhoods of immersed real
surfaces in arbitrary complex surfaces. In the early eighties, Eliashberg and Kharlamov
obtained a version of Gromov’s h-principle for totally real embeddings providing sufficient
topological conditions for an immersed real surface to be ambiently isotopic to a surface
with a base of tubular Stein neighbourhoods. (The state of the art as of 1992 and 2002
was documented by Forstnerić in [6] and [7].) There have been good reasons to believe
that these topological conditions (taken from earlier works of E. Bishop and H. F. Lai) are
actually necessary for the existence of “topologically small” Stein neighbourhoods of im-
mersed surfaces. For embedded orientable surfaces, this is a straightforward consequence
of the adjunction inequality (cf. [18]). With a little more effort, we show:

Theorem 1.2. Let C be an isotopy class of immersed closed real surfaces (not necessarily
orientable) in a complex surface X. Then the following are equivalent :

a) there exists a surface Σ ∈ C with a Stein neighbourhood base;
b) there exist a surface Σ ∈ C and a Stein domain U ⊃ Σ such that the homomorphisms

of homotopy groups π∗(Σ)→ π∗(U) are injective;
c) e(TΣ) + e(νΣ) + |〈c1(X), [Σ]〉| ≤ 0 for every surface Σ ∈ C.

Here e(·) ∈ Z denotes the Euler number of a vector bundle, and 〈c1(X), [Σ]〉 := 0 for
non-orientable Σ.

The implication (a)⇒(b) is obvious. The implication (c)⇒(a) is the existence result
mentioned above. We shall prove that (b)⇒(c). Orientable and non-orientable surfaces
will be treated separately in §4 and §5. The method of proof provides more detailed
information about the homomorphisms π∗(Σ) → π∗(U). Examples of interest include
surfaces in C2 and symplectic immersions into CP 2.

Throughout the paper, our principal tools are the adjunction inequalities and the
following result from complex analysis:

Theorem 1.3 (K. Stein [22]). Any covering of a Stein complex manifold is Stein.

The complex structure on the covering is induced by the projection. Much more
generally, any locally Stein unramified domain over a Stein manifold is a Stein manifold
(see [13] or the original paper [4]). For the benefit of a topologically educated reader, a
proof of Theorem 1.3 for coverings of strictly pseudoconvex domains is presented in §6.

2. Thickenings of three-manifolds

Let Y be an open orientable 3-manifold. Then the product four-manifold Y ×R admits
a handle decomposition without handles of index > 2. Hence, it is homeomorphic to a
Stein complex surface by the results of Gompf and Eliashberg (see [8, Ch. 11]).
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Corollary 2.1. Suppose that Y is an open 3-manifold such that Y × R is diffeomorphic
to a Stein complex surface. Then every embedded 2-sphere in Y bounds a homotopy 3-ball.

Proof. If S ⊂ Y is an embedded 2-sphere in Y , then Σ = S × {0} ⊂ Y × R is an
embedded 2-sphere whose self-intersection index is zero. In particular, Σ cannot satisfy
the adjunction inequality and hence its homotopy class is trivial by Theorem 1.1. Since
the inclusion Y × {0} ⊂ Y × R is a homotopy equivalence, it follows that S is null-
homotopic in Y . It is a standard result that a null-homotopic embedded 2-sphere in a
3-manifold bounds a homotopy ball (see, for instance, [11, Prop. 3.10]).

Example 2.1. Let M be a closed orientable three-manifold and M (n) the open three-
manifold obtained by removing n ≥ 1 points from M . If the smooth manifold M (n) × R
admits a Stein complex structure, then n = 1 and M is a homotopy 3-sphere. Indeed, let
us apply the previous corollary to the boundary of a small ball about one of the punctures
in M . It follows that this 2-sphere bounds a homotopy ball in M (n), which is only possible
if n = 1 and M is a homotopy sphere. In other words, if the three-dimensional Poincaré
conjecture holds true, then the standard R4 is the only example of a diffeomorphism class
of Stein surfaces obtained by thickening punctured 3-manifolds.

3. Analytic continuation from two-spheres in C2

In a different vein, let us consider an application to complex analysis which improves
on a result in [18, §5.1]. Let U be any domain (= open connected subset) in C2. Suppose
that U contains an embedded 2-sphere S ⊂ U .

Corollary 3.1. All holomorphic functions in U can be holomorphically extended to a
Riemann domain Ũ ⊃ U in which S becomes homotopically trivial.

Recall that a Riemann domain over C2 is a connected complex surface V together with
a locally biholomorphic projection pV : V → C2. Given two Riemann domains V and
W , we write W ⊃ V if there is a holomorphic map j : V → W such that pW ◦ j = pV .
(Warning : The map j is not necessarily injective. However, if pV is injective so that
V ⊂ C2 is a usual domain, then j is automatically a genuine inclusion.) Holomorphic
extension to Riemann domains is the geometric equivalent of analytic continuation in the
sense of Weierstraß.
Proof. Let us define Ũ to be the maximal Riemann domain containing U such that all
holomorphic functions in U can be extended to Ũ . This Riemann domain is called the
envelope of holomorphy of U . The fundamental result of Cartan–Thullen–Oka asserts
that Ũ is a Stein manifold (see e. g. [10] or [13]).

The two-sphere S ⊂ Ũ has self-intersection index zero because S is embedded in
U ⊂ C2. (In general, Ũ is not a domain inside C2 and can contain real surfaces of
arbitrary self-intersection!) It follows that S violates the adjunction inequality in the
Stein complex surface Ũ , so it must be homotopically trivial there by Theorem 1.1.

Corollary 3.1 extends a long line of results on envelopes of holomorphy of embedded
2-spheres in C2. The initial approach of Bedford–Gaveau [2] was by “attaching analytic
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discs” and led to very satisfactory results for 2-spheres contained in strictly pseudoconvex
boundaries [3], [15]. However, the case of general embeddings has been only treated with
the help of Seiberg–Witten theory (so far?).

The assertion of the corollary is false for embedded n-spheres in Cn for all n 6= 2. The
case n = 1 is elementary and the case n ≥ 3 follows from [19]. It is shown in [19] that
an embedded n-sphere can represent a non-zero homology class in the complement to a
generic complex algebraic hypersurface of degree ≥ 3 in Cn for n ≥ 3. If the hypersurface
is given by the equation F = 0, then the function 1/F cannot be extended to any Riemann
domain in which the n-sphere is homologically trivial.

A more precise non-extendability result is available for n = 3. Namely, there exists an
embedded 3-sphere in C3 with a Stein neighbourhood base. There is no “forced analytic
continuation” from this 3-sphere because a Stein domain coincides with its envelope of
holomorphy. The existence of such embeddings was proved by Gromov as a corollary to
his h-principle for totally real embeddings (see [9, §2.4.5(C)]) and explicit examples were
given by Ahern and Rudin [1]. Similar ideas are used to prove the implication (c)⇒(a) in
Theorem 1.2. Note, for instance, that every real surface of genus g > 0 can be embedded
in C2 in such a way that it admits a Stein neighbourhood base (see [6] for the non-trivial
case g ≥ 2).

4. Immersions of orientable surfaces

Once we are on the subject of homotopy, it is perhaps more natural to consider im-
mersed real surfaces in a Stein surface X. Let ι : Sg # X be an immersion of the real
surface Sg of genus g. We shall always assume that the immersion is generic, that is to
say, has transverse double points only. Let Σ = ι(Sg) ⊂ X be the image of ι.

Each double point x = ι(s1) = ι(s2) ∈ Σ has a sign defined as the local intersection
index of the two branches of Σ at x for any choice of orientation on Sg. Let us denote by
κ± = κ±(Σ) the number of positive and negative double points of Σ.

Double points of different sign behave differently in adjunction inequalities. (I have
learnt that from [5].) For an immersed surface in a Stein complex surface we have the
following:

[Σ] · [Σ] +
∣∣〈c1(X), [Σ]〉

∣∣ ≤ 2g + 2κ+ − 2 (2)

provided again that Σ is not a homologically trivial 2-sphere. The absence of negative
double points in this formula can be explained as follows. If we perform a blow-up at
each such point, then the proper pre-image of Σ has the same homological self-intersection
index and the same pairing with the first Chern class but only positive double points.
Replacing each positive double point by an embedded handle gives us an embedded surface
of genus g+κ+. Then (2) follows in the same way as (1) with the help of blow-up formulas
for Seiberg–Witten invariants.

Note that it is certainly impossible to replace κ+ in (2) by the difference κ+ − κ−.
Indeed, an arbitrary number of double points of either sign can be added by taking interior
connected sums with the standard figure-eight immersions of the two-sphere into R4 so
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that the homotopy class of the immersion remains unchanged. The situation appears to
be different, however, if the fundamental group is taken into account.

For a double point x = ι(s1) = ι(s2) ∈ Σ, consider a path in Sg connecting s1 and s2 .
A double point loop of x is the image of this path in X. The free homotopy class of a
double point loop (modulo sign) is defined up to addition of homotopy classes from the
subgroup ι∗π1(Sg) ⊂ π1(X).

Definition 4.1. A double point x ∈ Σ = ι(Sg) is called essential if all its double point
loops are homotopically non-trivial in X. Let κess

± = κess
± (Σ, X) be the number of positive

and negative essential double points of Σ.

Note that double points created by taking interior connected sums with immersed
spheres in R4 are never essential.

Theorem 4.1. Let Σ = ι(Sg) ⊂ X be an immersed real surface in a Stein complex
surface. Then either Σ is a homotopically trivial two-sphere or

[Σ] · [Σ] +
∣∣〈c1(X), [Σ]〉

∣∣ ≤ 2g + 2
(
κ+ − κess

−
)
− 2.

Proof. Let us assume that Σ = ι(Sg) ⊂ X is an immersed surface other than a homotopi-
cally trivial two-sphere. Let p : X̂ → X be the covering corresponding to the subgroup
ι∗π1(Sg) ⊂ π1(X). Then there exists a lift ι̂ : Sg → X̂ of the immersion ι : Sg → X.
Clearly, Σ̂ = ι̂(Sg) is a generically immersed surface of the same genus.

Notice that if Σ is an immersed sphere, then p : X̂ → X is the universal covering and
hence H2(X̂) ∼= π2(X̂) by the Hurewicz theorem. In particular, if Σ is homotopically
non-trivial, then its lift Σ̂ is homologically non-trivial.

Since X̂ is Stein, it follows that Σ̂ satisfies adjunction inequality (2), that is to say,

[Σ̂] · [Σ̂] +
∣∣〈c1(X̂), [Σ̂]〉

∣∣ ≤ 2g + 2κ+(Σ̂)− 2.

Hence, Σ satisifies the inequality of the theorem by the following lemma (which is com-
pletely trivial in the case of an embedded surface Σ).

Lemma 4.2. Each lift of Σ is an immersed surface Σ̂ = ι̂ (Sg) ⊂ X̂ such that

a) κ±(Σ̂) = κ±(Σ)− κess
± (Σ, X);

b) [Σ̂] · [Σ̂] = [Σ] · [Σ]− 2κess
+ (Σ, X) + 2κess

− (Σ, X);
c) 〈c1(X̂), [Σ̂]〉 = 〈c1(X), [Σ]〉.

Proof. Let Σ̂ be any lift of Σ to X̂ . If x̂ ∈ Σ̂ is a double point of Σ̂, then p(x̂) ∈ Σ is
a double point of the same sign because p is locally an orientation preserving diffeomor-
phism. Furthermore, by the definition of X̂ , a double point of Σ lifts to two ordinary
points in Σ̂ if and only if it is essential. This proves (a).

Let νΣ = ι∗TX/TSg be the normal bundle of Σ. Note that νΣ̂ is isomorphic to νΣ.
Recall the formula for the homological self-intersection index of an immersed surface:

[Σ] · [Σ] = e(νΣ) + 2κ+(Σ)− 2κ−(Σ),
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where e(νΣ) is the Euler number of the normal bundle. Applying this formula to Σ and
Σ̂ and using relation (a) gives equality (b).

Finally, observe that c1(X̂) = p∗c1(X) because p : X̂ → X is an unramified holomor-
phic map. Therefore,

〈c1(X̂), [Σ̂]〉 = 〈p∗c1(X), [Σ̂]〉 = 〈c1(X), p∗[Σ̂]〉 = 〈c1(X), [Σ]〉,
which proves (c).

To put Theorem 4.1 in proper perspective and establish Theorem 1.2 for orientable
surfaces, let us state the relevant existence result for Stein neighbourhoods (see [6] and
[18, §2]). Suppose that Σ ⊂ Y is an immersed orientable real surface of genus g in an
arbitrary complex surface Y . If Σ satisfies the inequality

[Σ] · [Σ] +
∣∣〈c1(Y ), [Σ]〉

∣∣ ≤ 2g + 2(κ+ − κ−) − 2, (3)

then it is isotopic (by a C0-small isotopy) to an immersed real surface Σ′ ⊂ Y with a
Stein neighbourhood base. The surface Σ′ can be chosen so that the Stein neighbour-
hoods are thin tubes around it and, in particular, have the homotopy type of Σ (see [7]).
Inequality (3) is equivalent to

e(TΣ) + e(νΣ) +
∣∣〈c1(Y ), [Σ]〉

∣∣ ≤ 0

because e(TΣ) = χ(Sg) = 2− 2g and e(νΣ) = [Σ] · [Σ]− 2(κ+ − κ−).
Note that for surfaces without negative double points, condition (3) coincides with

adjunction inequality (2) and therefore holds whenever the surface admits a Stein neigh-
bourhood in which it is not homotopically trivial. It follows from Theorem 4.1 that an
immersed surface Σ ⊂ Y with κ− 6= 0 satisfies (3) if there exists a Stein neighbourhood
U ⊃ Σ in which the negative double points of Σ are essential.

Corollary 4.3. Let C be an isotopy class of immersions of Sg into a complex surface.
Suppose that there exist a surface Σ ∈ C and a Stein domain U ⊃ Σ such that the
homomorphisms of homotopy groups π∗(Σ) → π∗(U) are injective. Then every surface
in C satisfies inequality (3) and there exists a surface Σ′ ∈ C with a Stein neighbourhood
base.

Proof. Σ = ι(Sg) is homotopy equivalent to the wedge of Sg and (κ+ + κ−) circles (the
circles being double point loops of the double points). Hence, if the map π1(Σ)→ π1(U)
is injective, then all double points are essential and the result follows from the preceding
discussion.

Example 4.1 (Immersed surfaces in C2). Let us use Theorem 4.1 and the notion of the
envelope of holomorphy to obtain a generalization of Corollary 3.1 for an immersed real
surface Σ = ι(Sg) ⊂ C2. There are the following options:

1. If g+κ+−κ− ≥ 1 (that is, (3) holds), then Σ can have a Stein neighbourhood base.
In that case, there is no forced analytic continuation for holomorphic functions in a
neighbourhood of Σ.
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2. If g + κ+ − κ− < 1, then all holomorphic functions from any neighbourhood of Σ
extend holomorphically to a Riemann domain in which at least κ− − κ+ − g + 1
negative double points of Σ become non-essential.

3. If, moreover, g = κ+ = 0, then all holomorphic functions extend to a Riemann
domain in which Σ is null-homotopic.

For instance, if S ⊂ C2 is an immersed 2-sphere with a single positive and a single
negative double point, then the double point loop of the negative double point of S bounds
an immersed disc in the envelope of holomorphy of any domain U ⊃ S. Such “extension
along 2-cells” seems to be a new phenomenon (compared to the results mentioned in §3).

Example 4.2 (Symplectic surfaces in CP 2). An oriented immersed surface Σ ⊂ Y in a
Kähler complex surface is called symplectic if the restriction of the Kähler form to Σ is a
positive two-form. Symplectic surfaces satisfy the adjunction formula:

[Σ] · [Σ]− 〈c1(Y ), [Σ]〉 = 2g + 2(κ+ − κ−)− 2.

Notice that this equality is compatible with inequality (3) if and only if 〈c1(Y ), [Σ]〉 ≤ 0.
For instance, symplectic surfaces in CP 2 cannot satisfy (3) because the first Chern class

of CP 2 is proportional to the class of the symplectic form and the latter is positive on
every symplectic surface. In particular, a symplectic surface in CP 2 all of whose double
points are positive is not contained in any Stein domain over CP 2 by the adjunction
inequality. (For symplectic spheres, this fact was first proved in a completely different
way by Ivashkovich and Shevchishin [12].)

However, a symplectic surface with negative double points can lie in a Stein domain
in CP 2 by the following argument suggested by Ivashkovich. Take any homologically
non-trivial immersed surface S ⊂ CP 2 satisfying (3) (e. g., a two-sphere in the primitive
homology class with three positive double points). S is isotopic to an immersed surface
S′ ⊂ CP 2 which has a Stein neighbourhood. A theorem of Gromov [9, §3.4.2(A)] shows
that S′ can be C0-approximated by a symplectic immersion whose image is inside the
Stein neighbourhood.

On the other hand, it follows from Theorem 4.1 that a Stein domain containing a
symplectically immersed surface Σ ⊂ CP 2 is never a “small neighbourhood” of Σ in the
topological sense. Let d := [Σ] ·[CP 1] > 0 be the degree of Σ. If U ⊃ Σ is a Stein Riemann
domain over CP 2, then at least 3d negative double points of Σ are non-essential in U .

The argument (and the result) remains valid for all surfaces of positive degree in
CP 2 that satisfy the adjunction formula. However, it would be interesting to find a
proof for genuine symplectic immersions by the Ivashkovich–Shevchishin method, which
is considerably more geometric in spirit.

5. Non-orientable surfaces

Every non-orientable closed real surface is diffeomorphic to a connected sum

Sh = RP 2# · · ·#RP 2︸ ︷︷ ︸
h+1 times

, h ≥ 0.
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Note that the Euler characteristic χ(Sh) = 1− h.
The fundamental group π1(Sh) contains the index two subgroup π+

1 (Sh) consisting of
homotopy classes of orientation preserving loops. The covering Sh → Sh corresponding
to that subgroup is the orientable double covering by the orientable surface of genus h.

If ι : Sh → Y is an immersion into an orientable four-manifold (e. g., into a complex
surface), then the normal bundle ι∗TY/TSh has a well-defined Euler number in Z.

Theorem 5.1. Let Σ = ι(Sh) ⊂ X be an immersed non-orientable real surface in a
Stein complex surface. Suppose that the homomorphisms π∗(Σ) → π∗(U) are injective.
Then the following inequality holds:

e(νΣ) ≤ h− 1,

where e(νΣ) ∈ Z is the Euler number of the normal bundle of Σ.

It should be pointed out that the statement for embedded surfaces is already different
from the orientable case. Firstly, the assumption on the homomorphism of fundamental
groups cannot be dropped. Secondly, e(νΣ) is not a homological invariant. For instance,
the Klein bottle K = S1 can be embedded into C2 with normal Euler number ±4.
Proof of the theorem. Let us consider the covering p : X̂ → X corresponding to the
subgroup ι∗π

+
1 (Sh). The manifold X̂ with the complex structure induced by p is a Stein

complex surface by Theorem 1.3. The immersion ι lifts to an embedding ι̂ : Sh → X̂ of
the orientable covering of Sh. (That ι̂ is an embedding follows because π1(Σ) injects into
π1(X) and hence all double point loops are non-trivial.) Set Σ̂ = ι̂(Sh).

An easy argument shows that

[Σ̂] · [Σ̂] = e(νΣ̂) = 2e(νΣ)

and
〈c1(X̂), [Σ̂]〉 = 0.

Furthermore, Σ̂ is not a homotopically trivial two-sphere because in that case it would
follow that ι∗ : π2(Σ)→ π2(X) has non-trivial kernel.

The desired inequality now follows from adjunction inequality (1) and Theorem 1.1
applied to the embedded orientable surface Σ̂ in the Stein complex surface X̂ .

Let us now state the existence result for Stein neighbourhoods of non-orientable sur-
faces (see [6], [7]). An immersed non-orientable real surface Σ = ι(Sh) ⊂ Y in a complex
surface is isotopic to a surface with a Stein neighbourhood base provided that

e(νΣ) ≤ h− 1. (4)

This is precisely the inequality from Theorem 1.2(c) because h− 1 = −χ(Sh) = −e(TΣ).
Hence, Theorem 1.2 for non-orientable surfaces follows from Theorem 5.1.

Example 5.1 (Embedded non-orientable surfaces in C2). By the results of Whitney and
Massey [17], the normal Euler number of an embedded non-orientable surface Σ ⊂ C2
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can take any of the following values:

−4 + 2χ(Σ), 2χ(Σ), 2χ(Σ) + 4, ... , 4− 2χ(Σ).

For instance, RP 2 admits embeddings with normal Euler numbers ±2.
Let X ⊃ Σ be a Stein domain over C2 containing Σ. Suppose that the groups π+

1 (Σ)
and π1(Σ) have different images in the fundamental group of X. Then arguing as in the
proof of Theorem 5.1, we conclude that either e(νΣ) ≤ −χ(Σ) or Σ ∼= RP 2 and e(νΣ) = 0.
However, the second possibility is ruled out by the Whitney theorem.

Consequently, analytic continuation from a non-orientable embedded surface Σ ⊂ C2

can be described as follows:

1. If e(νΣ) ≤ −χ(Σ), then the surface is isotopic to an embedded surface with a Stein
neighbourhood base (“no forced continuation”).

2. If e(νΣ) > −χ(Σ), then all holomorphic functions from a neighbourhood U ⊃ Σ can
be extended to a Riemann domain Ũ ⊃ Σ in which all orientation reversing loops
in Σ become homotopic to orientation preserving loops in Σ.

For instance, consider an embedded RP 2 ∼= Σ ⊂ C2. If the normal Euler number
equals −2, then Σ can have a Stein neighbourhood base. On the other hand, if the
normal Euler number is +2, then the only non-trivial loop in Σ bounds an immersed disc
in every Stein domain containing Σ.

6. Stein coverings

In this section, we outline a direct geometric proof for a special case of Theorem 1.3
sufficient for our applications. The argument can be traced back to the fundamental paper
of Oka [20]. In one form or another it appears in many books on holomorphic functions
of several complex variables (cf., for instance, [10, §IX.D]).

Let X be a Stein manifold of complex dimension n with a smooth strictly plurisubhar-
monic exhaustion function ϕ : X → R. Denote by Xr = {x ∈ X | ϕ(x) < r} the sublevel
set of ϕ for a regular value r ∈ R.

Proposition 6.1. For any covering p : V → Xr, the manifold V with the induced com-
plex structure is Stein, that is, admits a strictly plurisubharmonic exhaustion function.

Let us first recall that X carries a Kähler metric defined by g(·, ·) = ddcϕ(·, J ·), where
J is the complex structure on X. To measure the “defect of plurisubharmonicity” of a
C2-function β : X → R, it is convenient to introduce the following function:

λ(β, x) = min
ξ∈TxX, ‖ξ‖g=1

ddcβ(ξ, Jξ) for x ∈ X.

In other words, λ(β, x) is the minimal eigenvalue of the hermitian form ddcβ(·, J ·) with
respect to the Kähler metric g at the point x ∈ X. For instance, λ(ϕ, x) ≡ 1 by the
definition of g. Notice that β is strictly plurisubharmonic in an open set if and only if
the function x 7→ λ(β, x) is positive there.
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Lemma 6.2. There exists an exhaustion function Φ : Xr → R such that

λ(Φ, x) ≥ λ(ϕ, x) = 1 for all x ∈ Xr.

Proof. Let f : (−∞, r)→ R be a smooth function. By the chain rule, we get

ddcf(ϕ) = f ′(ϕ)ddcϕ + f ′′(ϕ)dϕ ∧ dcϕ.

Recall that dcϕ(ξ) = dϕ(−Jξ) by definition and hence

dϕ ∧ dcϕ(ξ, Jξ) =
(
dϕ(ξ)

)2 +
(
dϕ(Jξ)

)2 ≥ 0 for all ξ ∈ TX.

Consequently, if f is a convex function such that f ′(t) ≥ 1 for all t ∈ (−∞, r) and
lim
t→r−

f(t) = +∞, then Φ = f(ϕ) is the desired exhaustion function on Xr.

This lemma settles the easy case of a finite covering p : V → Xr , because then v 7→
Φ(p(v)) is a strictly plurisubharmonic exhaustion function on V .1 In the general case, an
additional argument is required.

Pick a regular value r′ > r of ϕ so that there are no critical values in the interval (r, r′).
Then the covering p : V → Xr extends to a covering p′ : V ′ → Xr′ . Let G = (p′)∗g be
the pull-back metric on V ′ ⊃ V .

Assume henceforth that V is connected. Fix a point v0 ∈ V . For any point v ∈ V ′,
let ρ(v) be the distance from v to v0 in V ′ with respect to the pull-back metric G.
A topological argument shows that v 7→ ρ(v) + Φ(p(v)) is an exhaustion function on V .
(Φ can be replaced by any exhaustion function on Xr .) Unfortunately, ρ is neither smooth
nor plurisubharmonic. The following “double averaging trick” of Oka serves to resolve
both problems.

Lemma 6.3. There exists a C2-smooth function ρ̄ : V → R with the following properties:
(i) ρ̄(v) > ρ(v) − 1 for all v ∈ V ;
(ii) λ(ρ̄, v) > −K for all v ∈ V and a constant K > 0 independent of v ∈ V .

Strictly speaking, λ(ρ̄, v) is computed with respect to the metric G. However, this is
equivalent to pushing things down to X and taking the usual λ because its definition has
been completely local.
Sketch proof of Lemma 6.3. For ε > 0, the averaging operator Aε on continuous functions
in V ′ is defined by the formula

Aεf(v) :=
1

Vol(B(v, ε))

∫
B(v,ε)

f dvol,

where B(v, ε) is the geodesic ball of radius ε about v.
The function Aεf can be defined for all points v ∈ V ′ such that B(v, ε) is relatively

compact in V ′. Clearly, |Aεf − f | is bounded by the modulus of continuity of the func-
tion f . Furthermore, Aεf is of class C1 and there is a bound for its derivatives in terms
of the metric, the modulus of continuity of f , and ε.

1In particular, this proves that Xr itself is Stein for our definition.
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We claim that, for ε > 0 small enough, the second average ρ̄ := (Aε)2ρ is the desired
function.

Let us choose a positive ε < 1/2 so that, for every point x ∈ Xr , the geodesic ball
B(x, 2ε) of radius 2ε about x is diffeomorphic to the euclidean ball and relatively compact
in Xr′ . Then the pre-image of each such ball is a disjoint union of geodesic balls of the
same radius with respect to the pull-back metric on V ′. It follows that ρ̄ = (Aε)2ρ is
well-defined in V .

By the aforementioned properties of the averaging operator, ρ̄ is of class C2, the dif-
ference |ρ̄(v) − ρ(v)| is bounded above by 2ε < 1, and λ(ρ̄, v) is bounded by a function
depending on ε and the metric G. This implies a uniform (lower) bound for λ(ρ̄, v) on
V = p−1(Xr) because G is the pull-back of a metric on Xr′ and Xr is relatively compact
in Xr′ .

To complete the proof of Proposition 6.1, let us consider the C2-function

Ψ(v) := ρ̄(v) + KΦ(p(v)) + 1 for v ∈ V.

Ψ is an exhaustion function because it majorates the exhaustion function ρ(v)+KΦ(p(v))
by Lemma 6.3(i). Furthermore, Ψ is strictly plurisubharmonic because

λ(Ψ, v) ≥ λ(ρ̄, v) + Kλ(Φ, p(v)) > 0

by Lemma 6.3(ii) and Lemma 6.2.
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[6] F. Forstnerić, Complex tangents of real surfaces in complex surfaces, Duke Math. J. 67

(1992), 353–376.
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