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Abstract

I’m trying to understand which Riemannian manifolds can be Lipschitz approx-
imated by polyhedral spaces of the same dimension with curvature bounded
below. The necessary conditions I found consist of some special inequality for
curvature at each point (the geometric curvature bound). This inequality is
also sufficient condition for local approximation. I conjecture that it is also a
sufficient condition for global approximation, and I can prove it if the curvature
bound is positive. In general I can prove it only with the additional assumption
that tangent bundle of the manifold is stably trivial.

0. Introduction

Let Pn be a sequence of m-dimensional polyhedral k-spaces (i.e. spaces with piecewise
constant curvature = k) with curvature bounded below (see 1.A for precise definition),
such that it converges to a Riemannian manifold (M, g) of the same dimension. One has
the right to ask the following question:

(i) What one can say about (M, g)?

or even simpler one:

(ii) What one can say about the curvature tensor of (M, g)?

Obviously Pn are Alexandrov spaces with curvature ≥ k, therefore one immediately
gets that (M, g) must have sectional curvature ≥ k. In fact, it is possible to say much
more about curvature of M . The first indication of this phenomenon one can find in
Cheeger’s generalization of Bochner formulas to metric spaces with cone-like singularities
[Ch], which suggests, in particular, that polyhedral spaces must have (in some sense)
positive curvature operator.

In fact, the curvature condition on M is even stronger the positive curvature operator.
I would like to call it “geometric curvature bound” (Gp ≥ 0). I say that the curvature
operator Rp ∈ S2(Λ2(Tp)) at point p ∈ M is geometrically non-negative if it can be
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expressed as

Rp =
∑
i

(xi ∧ yi)2,

where xi, yi ∈ Tp and Tp = Tp(M) denotes tangent space at p ∈M . For k ∈ R, I will also
write Gp ≥ k if

Rp − kI =
∑
i

(xi ∧ yi)2

for some collection of xi and yi ∈ Tp (where I is the curvature operator of standard
sphere) and we will write G(M) ≥ k if Gp ≥ k for any p ∈M .

The curvature operator (x ∧ y)2 is similar to curvature operator of S2 × Rm−2 and
therefore the above definition can be viewed as the following “The curvature operator is
geometrically non-negative if it can be expressed as a convex combination of curvature
operators of S2 × Rm−2” (see section 1.E for relation of G ≥ 0 to the other curvature
bounds).

Next I am ready to formulate theorems:

Local Theorem 0.1. Let Pn be a sequence of m-dimensional polyhedral spaces with cur-
vature ≥ k, which Lipschitz converge to a Riemannian manifold (M, g) of the same di-
mension, then G(M) ≥ k.

Moreover if M is a Riemannian manifold with G(M) ≥ k then each point has a neigh-
borhood which is a Lipschitz limit of a sequence of polyhedral spaces with curvature ≥ k−ε
for arbitrary small ε > 0.

This seems to be a satisfactory answer to the second question. The following is what
I can do for the first one:

Global Theorem 0.2. If (M, g) is Riemannian m-manifold with G(M) ≥ k. Assume
that M (or its finite cover) has stably trivial tangent bundle then M can be realized as a
Lipschitz limit of a sequence of m-dimensional polyhedral metrics with curvature ≥ k − ε
for arbitrary ε > 0.

I conjecture that the condition on the tangent bundle can be removed from this for-
mulation, but so far I can not even construct an approximation of (CP 2) with canonical
metric (which has G ≥ 0) by polyhedral metric with curvature ≥ −ε.

The Global Theorem above can be reduced to the cases k = {−1, 0, 1}, in the first and
last case using rescaling one can get an approximation of (M, g) with polyhedral metrics
with curvature ≥ k. In case k = 1, the condition G ≥ 1 implies, in particular, that
curvature operator of M is strictly positive (see 1.E). In particular, from Micallef-Moore
Theorem [MM] it follows that universal cover M̃ must be homeomorphic to a sphere. In
particular, M̃ has a stably trivial tangent bundle and therefore we get the following:

Corollary 0.3. An m-manifold (M, g) can be Lipschitz approximated by m-dimensional
polyhedral metrics with curvature ≥ 1 if and only if G(M) ≥ 1.
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The rest of this section is devoted to the ideas of the proofs.
The necessity of geometric curvature bound roughly follows from the fact that all

curvature of a polyhedral metric lives on hyper-edges (a simplexes of codimension 2),
and around every hyper-edge the metric looks exactly as C × Rm−2, where C is a two-
dimensional cone. Thus the “curvature” at the vertex of C looks pretty much like curva-
ture of S2 with zero radius, and this allows me to view the “curvature” at the edge as the
curvature of S2 × Rm−2 (which is (x ∧ y)2) multiplied by a Hausdorff measure of edge.
When a space is approximated by polyhedral metrics the curvature tensors of different
edges could mix with each other i.e the limit manifold must have curvature tensor which
is convex combination of the curvatures of above form, in other words, it will satisfy
condition G ≥ 0. This is only rough idea, the real proof contains much of technical work.
This part of the proof is not included in this paper but in the Appendix B I present an
unpublished result of Perelman on which this part of the proof is based.

Much more interesting things happen in the proof of the sufficient condition. First I
am constructing an isometric embedding (Mm, g) into the Euclidean space Rq in such a
way that locally the corresponding submanifold (which I also call M) is an intersection of
q−m open convex hyper-surfaces such that angle between each pair of them is less than
π/2. This condition on angles between hyper-surfaces in fact implies that its intersection
M has G(M) > 0. Then I consider an approximation of convex hyper-surfaces by convex
polyhedral hyper-surfaces with the same condition on angles and the needed polyhedral
approximation is simply intersection of these polyhedral hyper-surfaces. That proves the
local theorem.

The idea of the proof of the Global Theorem is as follows:
Assume that M is simply connected. Using that T (M) is stably trivial I represent whole

M as an intersection of open convex hyper-surfaces with the same conditions on angles
and then do the same approximation as above. The proof of this last representation is
technical, but it is obvious here that once such representation exists we have that N(M),
the normal bundle of M , is trivial; in particular the tangent bundle T (M) should be
stably trivial and it explains reasons for the strange condition on the tangent bundle in
the Global Theorem.

The fun of this paper lies in the fact that although this problem was always on the
surface the answer does not coincide with any curvature bound which were studied in
geometry so far. On the other hand this paper shows that method of polyhedral ap-
proximation (which is known to be very powerful in dimension = 2) is not that good
for higher dimensions, at least if you want to do something for positive scalar curvature,
Ricci curvature or (in dimension ≥ 4) for sectional curvature.

I want to thank Gregory Perelman for sharing ideas and making me interested in this
problem, Vladimir Voevodsky for bringing paper of Hilbert to my attention. I want to
express my very special thanks to Jost Eschenburg and Sergey Kozlov who constructed
for me a weird examples of curvature tensors which pulled me out from a dead end in this
research and to Rostislav Matveyev and Dmitry Panov for their helpful interest in this
topic.
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1. Notation, Definitions and Preliminaries

1.A. Polyhedral spaces with curvature bounded below or above.

Pseudomanifold is a simplicial complex with the following property: link of any simplex
is connected or S0 = {−1, 1}.

Polyhedral k-space is a pseudo-manifold with metric such that each m-simplex is iso-
metric to a simplex in the simply connected space of constant curvature k.

A polyhedral k-space has curvature bounded below or above if and only if space of
direction at each point is an Alexandrov space with curvature ≥ 1 or CAT (1) space
respectively. In this case the polyhedral has curvature ≥ k or ≤ k respectively.

For case of lower curvature bound there is an equivalent description: A polyhedral
k-space has curvature ≤ k if and only if the sum of angles around any hyper-edge (i.e.
simplex of codimension = 2) is ≤ 2π.

For shortness, I will call polyhedral k-space with curvature bounded below (above) by
polyhedral space with curvature ≥ k (≤ k).

In all that follows we will assume k = 0, but if it is not specially mentioned, everything
below is true for any k, once we replace Rq by the simply connected q-manifold with
constant curvature k. See [Mil] for a general discussion of polyhedral spaces of nonnegative
curvature.

1.B. Convex submanifolds of higher codimension.

Definition 1.1. A submanifold M ⊂ Rq is called locally convex if each point of M has a
neighborhood U , for which there is a collection of (strictly) convex, possibly open, hyper-
surfaces Fi, such that U = ∩iFi and moreover at each point of U the angle between
outward normals to any pair of Fi is > π/2.

If M is C2-smooth then the above property is equivalent to the following condition: at
each point x ∈ M there is an orthonormal basis {ei} ⊂ Nx(M), where N(M) is normal
bundle of M ⊂ Rq, such that the representation of the second fundamental form s :
S2(Tx(M))→ Nx(M) through this basis s =

∑
i eisi has all quadratic forms si ∈ S2(T )

positively defined.
This property can be also interpreted as the following: the submanifold is locally convex

if it can be viewed locally as a convex hyper-surface in a convex hyper-surface in ... in
Rq.

It is easy to see that locally convex submanifold has positive curvature (for the induced
intrinsic metric in the sense of Alexandrov). If the submanifold is smooth, one can say
more about its curvature tensor, but to make it precise we must discuss a little the
curvature tensor of Riemannian manifold and curvature of submanifolds in Rq.

1.C. Nice curvature tensor for submanifolds.

Here we introduce an extrinsic curvature for submanifolds. The source for this subsec-
tion is [Grom]PDR 3.1.5.
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Let T be a vector space with a scalar product, Tn will denote its tensor power of degree
n, Sn(T ) and Λn(T ) will denote respectively subspaces of symmetric and antisymmetric
elements of Tn. The scalar product on T canonically induces a scalar product on Tn and
all its subspaces.

I will need one special subspace, the space of algebraic curvature tensors A4(T ) =
Λ4(T )⊥ ∩S2(Λ2(T )) that is exactly space of all possible curvature tensors of Riemannian
manifolds. In an equivalent way this subspace A4 ⊂ S2(Λ2(T )) can be described as the
space of all tensors in S2(Λ2(T )) satisfying the first Bianchi identity

R(X, Y, Z,W ) + R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0,

therefore it does not depend on the choice of the scalar product on T .

Let M ⊂ Rq be a smooth submanifold and sx : S2(Tx(M)) → Nx(M) be its second
fundamental form at x ∈ M , here T (M) and N(M) are respectively the tangent and
normal bundle over M . Consider the Φ-curvature tensor

Φ(X, Y, Z,W ) = 〈s(X, Y ), s(Z,W )〉,
here Φ is a section of S2(S2(T (M)).

The tensor Φ admits the canonical representation

Φ(X, Y, Z,W ) = E(X, Y, Z,W ) +
1
3

(
R(X,Z, Y,W ) + R(X,W, Y, Z)

)
where E is total symmetrization of Φ, i.e.

E(X, Y, Z,W ) =
1
3

(
Φ(X, Y, Z,W ) + Φ(Y, Z,X,W ) + Φ(Z,X, Y,W )

)
∈ S4(T )

and
R(X, Y, Z,W ) = Φ(X,Z, Y,W )−Φ(X,W, Y, Z) ∈ A4(T )

is the Riemannian curvature tensor of M .
Tensor E represent extrinsic curvature, E ∈ S4(T ) ⊂ S2(S2(T )) and it behaves as an

entropy of the embedding, the more the embedding is wrinkled the bigger E gets. Let
f(X) = E(X,X,X,X) = |s(X,X)|2, f is homogeneous polynomial of degree 4 and it
describes E completely.

There are two good things about tensors Φ and E. The first is that it depends only on
elements of T , in particular it does not depend even on the dimension of ambient space
which makes it specially useful for studying embeddings of manifolds. Second – direct
construction shows that Φ describes the second fundamental form up to an isometric
rotation of N , i.e. two second fundamental forms s1, s2 : S2(T ) → N give the same
Φ ∈ S2(S2(T )) if and only if there is an isometric rotation j : N → N , such that
j ◦ s1 = s2. In particular, since Φ is a sum of Riemannian curvature tensors and E, we
have that if (M, g) is a Riemannian manifold and (M, g)→ Rq is an isometric embedding
then E-tensor together with g describes the second fundamental form at each point up
to an isometric rotation.
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1.D. Positiveness of elements of S2(S2(T )) and convexity of submanifold.

Most of this subsection is extracted from [Grom]PDR 2.4.9B(4).

I will need to consider some cones in some tensor spaces, in general if C is an open
convex cone in an Euclidean space Rn set

C∗ = {r ∈ Rn; 〈r, r′〉 > 0 for all r′ ∈ C}.

Let me start with a definition

Definition 1.2. A tensor Φ ∈ S2(S2(T )) is positive (Φ > 0), if there is a representation
Φ =

∑
i s

2
i , where si are positively defined quadratic forms on T . If i : M → Rq is a

smooth embedding we will write Φ(i) > 0 if Φ-tensor of i(M) ⊂ Rq is positive at i(x) for
all x ∈M .

The cone of positive tensors in S2(S2(T )) form a convex GL(T )-invariant cone of
tensors. If dim T ≥ 2 then there are other GL(T ) invariant cones in S2(S2(T )), one of
these cones will be of particular interest for me: namely the cone of all elements Φ =

∑
i s

2
i

for arbitrary elements si ∈ S2(T ). This cone describes all elements of S2(S2(T )) which
can appear as Φ-curvature of a submanifold.

Note that existence of the representation of the second fundamental form s =
∑

i siei
with positively defined si ∈ S2(T ) implies, in particular, that Φ =

∑
i s

2
i , i.e. Φ > 0.

Since Φ-tensor describes the second fundamental form completely the last property is
equivalent to the fact that M ⊂ Rq is “stably” locally convex. Namely, if Φ > 0 on M
then for some k we have that corresponding submanifold M ⊂ Rq = Rq × 0 ⊂ Rq ×Rk is
locally convex, as a submanifold in Rq ×Rk ∗

1.E. Positiveness of curvature tensor and symmetric 4-tensors.

The space S2(S2(T )) has two subspaces, the first is S4(T ) ⊂ S2(S2(T )) and the second
is A4

+(T ) = S4(T )⊥ ∩ S2(S2(T )) which is canonically isomorphic to space of algebraic
curvature tensors A4(T ) = Λ4(T )⊥ ∩ S2(Λ2(T ).

A4(T ). Consider cone C+ which consists of all tensors

R(X, Y, Z, T ) =
∑
i

si(X,Z)si(Y, T )− si(X, T )si(Y, Z),

where si are positive elements of S2(T ). We will call such a the curvature tensor geomet-
rically positive and write G > 0 or G(R) > 0. (For a Riemannian manifold M we will
write Gp > 0 if the curvature tensor at p ∈ M is geometrically positive and G(M) > 0 if
curvature tensor of M is geometrically positive at all p ∈M .)

∗Given k ∈ N it is not hard to construct an example of submanifold M ⊂ Rq which is not convex as
a submanifold M ⊂Rq× 0 ⊂Rq×Rk but is convex as a submanifold M ⊂Rq× 0 ⊂Rq×Rk+1
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Obviously geometrically positive curvature tensors are exactly those which can be
curvature tensors of submanifolds with positive Φ-curvature (or equivalently convex sub-
manifolds, see 1.D), i.e.

G(R) > 0⇔ R(X, Y, Z,W ) = Φ(X,Z, Y,W )−Φ(X,W, Y, Z) for some Φ > 0,

and, as you will see, any closed Riemannian manifold M with G(M) > 0 admits a
smooth isometric embedding i : M → Rq with Φ(i) > 0 (in fact, q can be taken equal
to (n+ 2)(n+ 5)/2, see [Grom]PDR 3.1.5(A) and 3.1.2(C)]). Cone Ḡ+, the closure of G+

can also be described as minimal convex O(T )-invariant cone which contains curvature
tensor of product metric space S2 ×Rn−2.

The dual cone G∗+ (see 1.D) consists of curvature tensors with positive sectional cur-
vature. (Again we will write Kp > 0 or K(Rp) > 0 meaning that Rp belongs to this
cone.)

By the way, the cones G+ and G∗+ are the smallest and biggest GL(T )-invariant cones
in A4(T ). Other GL(T )-invariant cones will lie between G+ and G∗+, in particular the
cone of the curvature tensors with positive curvature operator i.e.

Q+ = {R ∈ A4(T ) ⊂ S2(Λ2(T ));R =
∑
i

φ2
i for φi ∈ Λ2},

is one of them and if the dimension is big enough then Q+ 6= G+. Namely if the dimension
is equal 2 or 3 then G+ = G∗+, in particular, cone Q+ = G+ = G∗+. In dimension equal
to 4 we have G+ = Q+ and G∗+ = Q∗+.†

In dimension ≥ 5 all inclusions G+ ⊂ Q+ ⊂ Q∗+ ⊂ G∗+ are strict. Indeed: it is obvious
that Q+ ⊂ Q∗+ is strict, the fact that G+ ⊂ Q+ is strict is equivalent to the fact that
Q∗+ ⊂ G∗+ is strict. The last fact was shown by example, see [Zol].‡

S4(T ). Consider cone C+ which we will call the cone of positive forms. It consists of
all forms E ∈ S4(T ) such that E =

∑
s◦2i , where s◦2i is symmetric square of a positively

definite quadratic form si. We will write E > 0 if E ∈ C+ ⊂ S4(T ). Again, tensor E is
positive if it is a symmetric part of a positive Φ-tensor in S2(S2(T )).§

†By the way this fact gives the Thorpe’s characterization of curvature tensors with positive sectional

curvature, namely, if M is positively curved 4-manifold then there is a function f on M such that
Rx + f(x)ω ∈ S2(Λ2(Tx)) is a section of positive quadratic forms on Λ2(T ). Here ω denotes the volume

form, a section of Λ4(T ) ⊂ S2(Λ2(T )), see [Zol] for details.
‡Note that there is an inaccuracy in [Grom]SGMC “The closer of this cone [i.e. Q̄+] (given by Q ≥ 0)

can be defined as the minimal closed convex O(n)-invariant cone which contains the curvature of the
product metric on S2 ×Rn−2 [i.e. C̄+].”...
§By the way C+ is also the smallest GL(T )-invariant cone in S4(T ). The biggest such cone C∗+

consists of all symmetric 4-form E such that

E(X,X,X,X) > 0

for any non zero X ∈ T . Gromov in [Grom]PDR 3.1.4 states that a symmetric form in E ∈ S2k(T )
is positive if and only if corresponding quadratic form E(S2(T k)) → R is positively defined. In our

notations this fact is equivalent to the fact that C+ = Q+, and this is equivalent to C∗+ = Q∗+. The cone

C∗+ is nothing but set of all positively defined forms in S2k(T ), equivalently it is set of positively defined
homogeneous degree 2k polynomials on T . Analogously the cone Q∗+ is the set of homogeneous degree

179



PETRUNIN

2. Proofs

I will not give here a proof of the first part of the local theorem by two reasons: first
it is real pain to write and read, and second, it is not really mine. The proof I have is
just a modification of one unpublished Perelman result. Since this result of Perelman was
never published and (as far as I know) was never written, I put it in the Appendix B (It
is more fun to look at the original proof than at my compilations).

Proof of the second part of Local Theorem.

Let us prove first that if (M, g) is a Riemannian manifold with G(M) > 0 then (M, g)
is isometric to a convex submanifold in Rq. This is equivalent to the fact that there is an
isometric embedding i : M → Rq, such that Φ(i) > 0 (see 1.D).

In general, a smooth isometric embedding of (M, g) withG(M) > 0 may have undefined
Φ-tensor, but there is a way to make it positive.

Consider any smooth free isometric embedding i : (M, g) → Rq , then by Theorem
[Grom]PDR 3.1.5(A) for any tensor field E ⊂ S4(T ) such that Ex > 0 (see 1.E) at
all x ∈ M one can find a C1-close isometric embedding i′ : (M, g) → Rq, such that
E(i′) = E(i) +E. In particular, one may choose E = cg◦2 for any c > 0. Since G(M) > 0
the number c can be chosen big enough so that at Φ(i′) > 0.¶

Now, since M ⊂ Rq is a convex submanifold there is an open set U ⊂ M which
is an intersection of open convex hyper-surfaces Fi with angles between each pair of
outward normals > π/2 everywhere on U . Then one can approximate each Fi as a convex
polyhedral hyper-surface F εi such that the condition on angles will be satisfied. The
intersection U ε of all F εi is obviously a polyhedral submanifold and it has curvature ≥ 0
(see B). Cutting subdomains from U ε if necessary one gets the needed approximation.

Proof of Global Theorem. Let us first assume that T (M) is stably trivial. Once
we represent our submanifold M as an intersection of (open) convex hyper-surfaces with
angles between any pair of outward normals > π/2 everywhere on M we can repeat the
construction from the proof of Local Theorem and it will finish the proof.

2k polynomials on T which can be expressed as sum of squares. Therefore this statement is equivalent to
the fact that each positively defined polynomial is a sum of squares of polynomials, and this was shown

to be wrong in general, namely Hilbert [Hil] showed that this statement is true ONLY in the following
three cases: (i) dim T ≤ 2 and any k, (ii) k = 1 and any dim T , (iii) k = 2 and dim T = 3. This does not

effect the rest of the book, except that reader must use (practically always) the C+-sense for positiveness.
¶There is a simpler way to construct i′ with E(i′) = E(i) + E for E = cg ◦ g. First construct an

isometric embedding j : Rq →Rq′, such that E(j) = ch◦2, where h =
Pq
i=1(dxi)

2 is the unit 2-form on

Rq and then take i′ = j ◦ i. One can construct j on the following way: first choose a collection of linear
functions li : Rq → Rsuch that h◦2 =

P
i dl

4
i , then take diagonal of product of the following mappings:

a linear mapping L : Rq → Rq and twists τi : Rq → R2, τi(x) =
�
ai sin

�
bili(x)

�
, ai cos

�
bili(x)

��
with

appropriately chosen L, ai and bi.
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Existence of such a representation is obviously equivalent to the existence of a smooth
section of orthonormal bases {ei} in N(M) such that s =

∑
i siei with positively defined

si ∈ S2(T ).
Consider a cover Uk, k ∈ {1, 2, .., n} of M such that on each Uk there is a smooth

section of orthonormal bases {ei,k} ⊂ N(M) with the above properties. Since T (M) is
stably trivial we can assume that N(M) is a trivial bundle. Therefore we can extend
these bases to all M , and get n bases {ei,k} for all N(M). Therefore at each point we
have an isometric rotation Ek,k′ ∈ O(q −m) which sends {ei,k} to {ei,k′}. Without loss
of generality we can assume that corresponding mapping Ek,k′ : M → O(q −m) is ho-
motopic to a trivial one. Now let us take a smooth partition of unit uk : M → [0, 1],
uk|M\Uk ≡ 0 and

∑
k uk(x) ≡ 1 for all x ∈ M . At each point x ∈ Uk ⊂ M we have

Φx ≡
∑

i s
2
i,k. Therefore for each x ∈ M we have Φx ≡

∑
i,k uk(x)s2

i,k. Consider
nN(M) = N1(M) ⊕ N2(M) ⊕ ... ⊕ Nn(M), the sum of n copies of the normal bun-
dle, take the basis {ei,k} for Nk, and consider the subbundle N∆(M), which is spanned
by (
√
u1ei,1,

√
u2E12ei,1, ...,

√
unE1nei,1). It is obviously a trivial subbundle with trivial

orthogonal subbundle. Therefore, if one considers R(n−1)(q−m) × N(M) then there is a
bundle isomorphism i : nN(M) → R(n−1)(q−m) × N(M) which is an isometry on each
fiber, which sends N∆(M) to N(M) and moreover if p∆ : Nn → N∆ is the orthogonal
projection then i ◦ p∆(ei,k) =

√
ukei,k.

Therefore, we get a smooth section of orthonormal bases {ei,k} ⊂ N ′(M) = R(n−1)dim(Nx)

×N(M), i.e. if we had N(M) as a normal bundle of M ⊂ Rq then N ′(M) is a normal
bundle of M ⊂ Rq × 0 ⊂ Rq × R(n−1)(q−m). Now for each pair of indexes i, k we have
a nonnegative quadratic form si,k = 〈s, ei,k〉, Φx ≡

∑
i,k uk(x)s2

i,k and at each point
we have at least one quadratic form which is strictly positive. It is not hard to rotate
basis ei,k a little to get a new smooth section of bases in N ′(M) with representation
s =

∑
i,k ei,k(s′i,k) where each s′i,k is strictly positive.

If T (M) is not stably trivial one still can find an embedding M → Rq which has
positive Φ-curvature at each point. Take a small tubular neighborhood U of M . Let M̃
be a finite cover of M such that T (M̃) is stably trivial. We can assume that N(M̃) is
trivial, therefore N(M) is equivalent to a flat bundle. From the above we get existence
of flat bundle U ′ → U such that the new induced normal bundle of M with respect to
U ′ is trivial. U ′ is an open flat manifold and that makes possible to repeat the same
construction as above.

Problem section

The opposite question, i.e. which polyhedral metrics could be smoothed to a Riemann-
ian manifold with positive curvature, is still open. All examples I know so far meet the
following

Conjecture. Any polyhedral metric with curvature ≥ k can be smoothed in to a Rie-
mannian orbifold with geometric curvature ≥ k − ε.
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In case of dimension equal to 2 the above Conjecture is a trivial corollary of Alexan-
drov’s embedding theorem [Al]. In dimension in dimension 3, one can smooth each vertex
using the same Alexandrov’s embedding theorem (this time we need embedding of sur-
face of curvature ≥ 1 into S3) and one can do the smoothing in such a way that the only
singular points left will be “midpoints of edges” and these singular points are conic. Then
one can smooth the remaining points in the same way.

The conjecture would imply, in particular, that any simply connected manifold with
positive geometric curvature is diffeomorphic to a sphere. Indeed the Corollary 0.3 implies
that if M is a Riemannian manifold with G(M) ≥ 1 then it can be approximated by
polyhedral spaces Xn with curvature ≥ 1. Therefore the spherical suspension Σ(M) is
approximated by Σ(Xn) (cf. [GW]). Now from the conjecture it would follow that Σ(Xn)
is smoothable into Riemannian orbifold and therefore M is a quotient of a sphere.

Another question is whether the condition of stably trivial tangent bundle can be re-
moved from Theorem 0.2. So far, I can not even construct an approximation of (CP 2, can)
by polyhedral metrics with curvature ≥ −ε.

One may ask whether it is possible to construct an approximation of (CP 2, can) by
polyhedral metrics with curvature ≥ 0. This is already a rigid question, in particular,
from Cheeger’s results [Ch] it is easy to see that any nonnegatively curved polyhedral
metric on CP 2 carries complex structure. As it was pointed out by Dmitry Panov CP 2

carries polyhedral metrics with curvature ≥ 0 [for example, take nonnegatively curved
polyhedral metric on S2 then the space of all pairs of points in S2 homeomorphic to
CP 2 and naturally comes with nonnegatively curved polyhedral metric] although it is
not clear whether such metrics can approximate canonical metrics on CP 2, (see [Pan] for
more examples and general discussion of polyhedral spaces with complex structure).

Is there any way to generalize Alexandrov embedding theorem? For example, is it
possible to characterize Riemannian manifolds which are isometric to a complete convex
hyper-surface in a complete convex hyper-surface in ... in Rq? Is it true that any simply
connected Riemannian manifold with G > 0 is isometric to one of those? Again, if this
manifold is compact it would immediately give that any such manifold is diffeomorphic
to standard sphere.

Appendix A: Example of positive curvature tensor which is not geometrically positive

Here I present calculations of J.Eschenburg, which show that curvature tensor R of
SU(3) with bi-invariant metric has non-negative curvature operator but it is not true
that G ≥ 0. This gives an example for dimension ≥ 8, from the work of Zoltek [Zol] it
follows that such examples exist for dimension ≥ 5 but the calculations below are much

182



PETRUNIN

simpler and I hope that it will be useful for a reader who wants to quickly convince himself
that such monsters do live.

Consider Lie algebra su(3), and adjoint representation ad: su(3)→ Λ2(su(3)). The cur-
vature operator of SU(3) with bi-invariant metric has curvature operator R : Λ2(su(3))→
Λ2(su(3)) which coincide with projection on Im(ad).

Now if one can prove that Im(ad) has no simple bi-vector inside then it will follow
that curvature operator of SU(3) with bi-invariant metric is not geometrically positive.

Therefore we only have to show that if 0 6= x ∈ su(3) then adx ∈ Λ2(su(3)) is not a
simple bi-vector, i.e 6= v ∧ w.

It is sufficient to prove it for adx, where x is tangent to a maximal torus of diagonal
elements in a matrix representation. Therefore in the matrix representation it looks
like x = diag{ai, bi, ci} with a + b + c = 0. Take the standard real basis in su(3),
which comes from matrix form, i.e. take A1 = diag{i, 0,−i}, A2 = diag{0, i,−i}, take
F1 = e2∧e3, F2 = e3∧e1, F3 = e1∧e2 be real and E1 = ie2 ◦e3, E2 = ie3 ◦e1, E3 = ie1 ◦e2

imaginary parts of basis. Here e1, e2, e3 is a basis of C3 where SU(3) acts.
Then by direct calculation we have adx = (c−b)F1∧E1+(a−c)F2∧E2+(b−a)F3∧E3.

Now the fact that bi-vector φ ∈ Λ2(T ) is simple is equivalent to φ ∧ φ = 0, and

adx ∧ adx =

= (c− b)(a− c)F1 ∧ E1 ∧ F2 ∧ E2 + (a− c)(b− a)F2 ∧ E2 ∧ F3 ∧ E3+

+(b − a)(c − b)F3 ∧ E3 ∧ F1 ∧ E1

Therefore if adx is simple then at least two of numbers (c − b), (a− c), (b − a) are zeros
and since a+ b+ c = 0 we have that a = b = c = 0, i.e. x = 0.

Appendix B: A theorem of Perelman and why I need it.

In this appendix I will present the proof of an unpublished result of G.Perelman, on
whose idea I build the proof of the first part of the Local Theorem.

Let M be an Alexandrov m-space and U ⊂M be an open subset. Let F : U → Rm be
a chart F (p) = (x1(p), x2(p), ..., xm(p)). We say that F is convex if each of the co-ordinate
functions xi is convex. The proof of the following claim easily follows from Proposition 3
[Per]

B.1 Claim. Let g be a convex function on U and for some convex chart F : U → Rm
we have ∂g/∂xi < 0 then g ◦F−1 is a convex function on F (U). Moreover for any p ∈ U
and v ∈ Tp we have

∇2
vg ≤ ∇2

dF (v)

(
g ◦ F−1

)
.
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In particular, if S is a level surface of g and F be a short chart then for any p ∈ S

IIS(X,X) ≤ IIF (S)(dF (X), dF (X)).

B.2 Definition. Let Xn
GH→ X be a converging sequence of metric spaces and fn : Xn →

X be corresponding sequence of Hausdorff approximations. We say that a sequence of
measures µn on Xn weakly converge to measure µ on X if for any continuous function α
with compact support on X we have

∫
Xn

α ◦ fndµn →
∫
X
αdµ.

The proof of the following result I heard from G. Perelman about seven years ago. The
proof below should be close to the original but some ideas might differ.

B.3 Theorem. Let Mn be a sequence of Riemannian m-manifolds with curvature ≥ k
which Lipschitz converge to a closed Riemannian manifold M . Then scalar curvature on
Mn converges weakly to the scalar curvature on M . (i.e. Scgndvgn converges weakly to
Scgdvg).

Let me note that if one has no lower bound for curvature then there are examples when
limit of scalar curvatures is smaller than scalar curvature of the limit, and it is unknown
whether it could also be bigger.

Let us prepare the following Lemma (which is in fact a partial case of the theorem):

B.4 Lemma. Let Fn be a sequence of smooth convex hyper-surfaces in Rm+1 which
Hausdorff converges to a smooth convex hyper-surface F . Let Sc(F ) and Sc(Fn) de-
note scalar curvatures of F and Fn and h(F ), h(Fn) denote m-Hausdorff measure of the
corresponding hyper-surface. Then Sc(Fn)dh(Fn) converges weakly to Sc(F )dh(F )

Proof of Lemma B.4. Let α be a continuous function with compact support in Rm+1 .
Let us denote by Cr(F ) the set of points in Rm+1 which lie on outgoing normal rays to the
hyper-surface F on the distance < r to the hyper-surface. Let us define αF : C∞(F )→ R,
αF (x) = α(y) where y ∈ F is a closest point on the hyper-surface.

Now, it is well known and easy to see that
∫
Cr(F )

αF dv is a polynomial of degree m on
r, moreover, the quadratic term is exactly r2

∫
F
αSc(F )dh(F )

Now if we have Fn → F , then Cr(Fn) converge to Cr(F ) and αFn converge to αF .
Therefore,

∫
Cr(Fn)

αFndv →
∫
Cr(F )

αFdv and the coefficient with r2 of corresponding
polynomials also converges. That finishes the proof.

Proof of Theorem B.3. We first want to construct special distance-like charts in a
neighborhood of any point in M together with some nice approximating charts on Mn.
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B.5 Lemma. Given p ∈ M , v ∈ T ∗p (M) and ε > 0 there is δ > 0 and sequence
Mn 3 pn → p ∈ M and sequence of convex functions fn : Bδ(pn) ⊂ Mn → R which
converges to a convex function f : Bδ(p) ⊂M → R such that dpf = v, |f ′′| < ε everywhere
on Bδ(p).

Proof of Lemma B.5. Consider an orthonormal basis {ei} in Tp(M) such that
∑
i ei =

cv. Take r > 0 an let ai = expp rei. Now f =
∑
i φ ◦ distai , where φ(x) = α log x− βx2 if

dim (M) = 2 and φ(x) = α 1
xn−2 − βx2 if dim (M) > 2. The same arguments as in [PP]

4.3 show that f satisfy the conditions in the Lemma for appropriately chosen α and β, in
a small ball Bδ(p).

Now to construct an approximation of this function construct a sequence ai,n → ai for
each i and take fn =

∑
i φ ◦ distai,n . Again the same reasoning as in [PP] 4.3 proves that

there is ε > 0 such that for large n the function is convex in a δ-neighborhood of pn.

Now we may take any orthonormal basis vi ⊂ T ∗p (M) and construct a function fi :
Bδ(p) together with an approximations fi,n : Bδ(pn). In addition to the above properties
these functions will be almost orthogonal for a small enough δ, i.e. one can assume that
angle between level surfaces lies in between π/2± ε.

Now we start the induction by dimension, we can take dim = 2 as a base, in which case
convergence follows from Gauss-Bonnet formula. Now assume we have already proved it
for all dimensions < m.

To save space/time on the notation let us agree that extra index n will always denote
corresponding babe for Mn.

Let p ∈ M and S1, S2, ..., Sm be one-parameter families of co-ordinate surfaces fi = c.
Let us denote by Sci is the “scalar” curvature of directions tangent to Si, in other words
Sci = Sc − Ricc(ui) where ui is unit vector field normal to Si. Note that from lower
curvature bound we have |Rm| < c1 + c2Sc and therefore (1 +α)(m−2)Sc = Sc1 +Sc2 +
...+ Scm where α depend on angles between these co-ordinate surfaces and α→ 0 as all
these angles converge to π/2, in particular as ε→ 0.

Let Sc(Si) be the scalar curvature of the intrinsic metric of the corresponding co-
ordinate surface. Since the Jacobian of our charts converges to the Jacobian of the limit
chart from the induction hypothesis we have Sc(Si,n)dvgn converges weakly to Sc(Si)dvg .

From Gauss formula we have Sci + G(Si) = Sc(Si), where G(Si) =
∑
i 6=j kikj where

ki are the principal curvatures of Si. Since each Si is convex

Sci ≤ Sc(Si) ≥ G(Si).

Therefore, after passing to a subsequence Sci,n should converge weakly to some S̄ci ≤
Sc(Si) ≤ Sci + n(n− 1)ε2.

Now let us prove the following lower bound: S̄ci ≥ Sci −Cε2 for some C = C(m).
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The inequality above also insures that after passing to a subsequence G(Si,n) converges
to some measure Ḡ(Si) and obviously S̄ci = Sc(Si)− Ḡ(Si) ≥ Sci − Ḡ(Si) therefore it is
enough to show that Ḡ(Si) ≤ Cε2 for some fixed C.

To give this last estimate let us construct a new chart similar to the one before, H =
(h1, h2, ..., hm) with the approximations Hn = (h1,n, h2,n, ..., hm,n) such that ∂f/∂hi <
−1/10m. From the Claim above we have that G(Sn) ≤ cG(H(Sn)) as well as G(S) ≤
cG(H(S)) ≤ Cε2

Now H(Sn) converges to H(S) as convex hyper-surfaces in Rm and applying Lemma
we get G(H(Sn)) converges weakly to G(H(S)).

Since for any ε > 0 there is a finite covering of M by charts as in Lemma B.5 we obtain
the Theorem.

Along the same lines one can prove stronger statements:

Smooth Proposition. Let (Mn, gn) be a sequence of Riemannian m-manifolds with cur-
vature ≥ κ which GH-converges to a Riemannian manifold (M, g) of the same dimension
= m. Then there is a sequence of reparametrizations (diffeomorphisms) fn : M → Mn,
such that curvature tensor of df∗n(gn) weakly converges to the curvature tensor of g on M .

Corollary. Let R be an SO(T ) invariant convex set in A4(T ). Assume that there is a
lower bound κ > −∞ for sectional curvature in R. Let Mn be a sequence of Riemannian
manifolds with curvature tensor from R at each point which converges to a Riemannian
manifold M of the same dimension. Then the curvature tensor at any point of M is from
R.

For example, smooth limit of manifolds with positive curvature operator must have
positive curvature operator.

Note that this corollary can not hold for general SO(T ) invariant convex set in A4(T ),
for example as it shown in [Loh], [Loh] it is not true for sets R = {r ∈ A4 : Ricci(r) ≤ c}
curvature and for R′ = {r ∈ A4 : c ≤ Sc(r) ≤ c+ ε}. Although I believe it should be still
true with much more relaxed limitations on R.

Finally one can give a singular version of this result which we need in our paper:
First let me describe the singular curvature tensor of a polyhedral, assume we have

a 1 ± ε-bi-Lipschitz parametrization of polyhedral P by smooth Riemannian manifold
f : M → P , such that f−1 is smooth on each simplex. One can think about P as (M, d)
where d is a singular metric. Now let us define the curvature tensor of d as following: its
support is the image of (n− 2)-skeleton of P and on each (n− 2) simplex it is defined as
hn−2(2π − ω)α where hn−2 is the Hausdorff measure of this image, ω is the total angle
around this simplex ∆ and α = dx∧ dy is a bi-vector field with the following properties:
|α| = 1 everywhere on the image of simplex and α|f−1(∆) = 0.
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Singular Proposition. Let Pn be a polyhedral m-spaces with curvature ≥ κ which GH-
converges to a Riemannian manifold (M, g) of the same dimension = m. Then there is
a sequence of smooth parametrizations fn : M → Pn, such that the described singular
curvature tensor weakly converges to the curvature tensor of g on M .

As in the corollary above, since the described curvature tensor on (M, dn) is geometri-
cally positive we get that the curvature tensor on the limit (M, g) is geometrically positive
and that proves the first part of the Local Theorem 0.1.
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