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Abstract

In this study, the semi-Markovian random walk with a special barrier (X(t))

is considered and under some weak assumptions the ergodicity of this process is

discussed. Moreover, the characteristic function of ergodic distribution of X(t) is

given by using a joint distribution of random variables N and YN and some exact

formulas for the first and second moments of ergodic distribution of the process X(t)

are obtained. Based on these results, the asymptotic behaviours of expectation and

variance of this process are investigated as S − s→∞. It is finally proved that the

ergodic distribution of the process is close to a uniform distribution over(s, S) as

S − s takes sufficiently large values.

Key Words: Semi-Markovian random walk; ergodicity of process; asymptotic

behaviour; weakly convergence.

1. Introduction

It is known that numerous interesting problems in the fields of queuing, reliability,

stock control, storage, inventory theories and etc. are given by means of the semi-

Markovian random walk process with barriers. Many theoretical studies in this topic

exist in literature (see References).

Unfortunately, the theoretical results are so complex that it is very difficult to use them

for the purpose of applications (see, for example, [1],[2],[3],[4],[8],[20],[21]). However, in
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recent years, the asymptotic methods for investigation of the processes of queuing and

reliability theories are intensively developed (see, [1],[4],[6],[11],[16],[17]).

Particularly, the asymptotic results obtained for the harmonic and ordinary renewal

measures indicate that it is possible to get also some asymptotic results for semi-

Markovian random walk with a special barrier (see, [2],[7],[9],[17],[22],[24]).

Therefore, this paper will consider a semi-Markovian random walk with a barrier

having a special property and investigate the asymptotic behaviour of this process. Due to

a special property of the barrier we expect that some important probability characteristics

of this process can be expressed by means of a sequence of ladder variables, which is

important for applications. In the theory of storage models, such processes are interpreted

as a stock’s level in a warehouse which works under some special rules. Let’s now describe

the new physical model proposed in this paper.

Let’s observe a warehouse having a sufficiently large volume and suppose that it will

be in use for a long time. Let the warehouse work in accordance with the following rules.

By demands and supplies arising at random times, the quantity of stock in the warehouse

both decreases and increases with random portions. When the quantity of stock in the

warehouse falls to a control level s(0 < s < S), as decided previously, it immediately

becomes equal to initial quantity S. And the warehouse continues its function in this way.

This stochastic model is called “The extended model of type (s, S)”. Some special

results connected with such models can be found in literature (see [5],[8],[21],[22],[25],[26]).

However, asymptotic properties of such models have not been considered enough in

literature. Therefore, in this paper we will investigate some asymptotic properties of

a process X(t) which describes the above mentioned storage models and interprets it as

the stock’s quantity in the warehouse at time t. We now proceed to a mathematical

construction of the process X(t).

2. Mathematical Construction of the Process X(t)

Let {(ξn, ηn)}, n ≥ 1, be a sequence of independent and identically distributed pairs

of random variables defined on any probability space (Ω,=,P)where ξn’s take on positive

values, and ηn’s take on positive and negative values i.e., P {ξn > 0} = 1, P {ηn > 0} > 0,

P {ηn < 0} > 0. Suppose that ξ1 and η1 are independent random variables and the
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distribution function of ξ1 and η1 are known, i.e.

Φ(t) = P {ξ1 ≤ t}, F (x) = P {η1 ≤ x}, t ≥ 0, x ∈ (−∞,∞).

Define a renewal sequence {Tn} and random walk {Y n} as follows

Tn =
n∑
i=1

ξi , Yn =
n∑
i=1

ηi, n ≥ 1, T0 = Y0 = 0,

and a sequence of integer valued random variables Nn as

Nn+1 = inf {k ≥ Nn + 1 : S − Yk + YNn < s}, n ≥ 0, N0 = 0,

where s and S are constants (0 < s < S) and inf(∅) = +∞ is stipulated.

From now on, we denote N1 as N or N(β), where β = S − s > 0.

Let τn = TNn ,n ≥ 1, τ0 = 0 and ν (t) = max{ n ≥ 0 : Tn ≤ t}, t > 0.

We can now construct a desired stochastic process X (t) which is as follows

X(t) = max
{
s, S− Yν(t) + YNn

}
, if τn ≤ t < τn+1, n ≥ 0.

The process X(t) is called “The semi-Markovian random walk with a special barrier

on the s-level.” The main purpose of this study is to investigate the asymptotic behaviour

of some probability characteristics of the process X(t) as S − s → ∞. For this aim we

will first discuss the ergodicity of this process.

3. Preliminary Discussions

The ergodic distribution of the process X(t) can be expressed by means of renewal

function according to a sequence of random variables τ1, τ2, ... and very essential results

about the asymptotic behaviour of this renewal function exist in renewal theory. There-

fore, we think that it is advisable to use the ergodic distribution of process X(t) for the

purposes of this study.

Let’s state the following proposition on the ergodicity of X(t) as t→∞.

Proposition 3.1 Let the initial sequence of random pairs {(ξn, ηn)}, n> 1, satisfy the

following supplementary conditions

1) 0 < Eξ1 <∞;

2) Eη1 > 0;

3) η1 is non-arithmetic random variable.
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Then the process X(t) is ergodic and for all x > s the following relation for ergodic

distribution function Qβ(x/X) holds:

Qβ(x/X) = lim
t→∞

P {X(t) 6 x} =
A(x, β)
EN(β)

, (3.1)

where

A(x, β) =
∞∑
n=0

P
{
Yi 6 β, i = 1, n, Yn > S − x

}
, β = S − s > 0.

Proof. We remember that the process X(t) belongs to a wide class of processes which

are well known in literature as the class of stochastic processes with a discrete chance

interference (see [8]). Moreover, the ergodic theorem of Smith’s “key renewal theorem”

type for the latter class exists in this reference (see, [8], p.243). Consequently, the proof

of proposition 3.1 can be extracted from this general ergodic theorem. 2

Remark. To use the result of the proposition 3.1 in solving various applied problems,

the further and more precise calculation of A(x, β) is necessary. But it is not easy to

investigate A(x, β) in detail by applying only direct calculation techniques of probability

theory. Usually in applications, a mathematical technique known as the Fourier method

of analysis, is used for investigations of problems of this type. The characteristic function

of ergodic distribution, which is just a Fourier transform of the latter, will be expressed by

means of the joint distribution of pair (N, YN). Note that a great number of papers exists

in literature in which the numerical characteristics of N and YN have been investigated

as well as the functional characteristics of them (see [2],[5],[7],[16],[19], etc.). This is one

of the main motivations for choosing the pair (N, YN) as auxiliary tool of this study.

4. The Characteristic Function of the Ergodic Distribution

In this section we will investigate the characteristic function of the ergodic distribution

of the process X(t).

Let’s now state the main result of this section.

Theorem 4.1 Under the assumptions of Proposition 3.1, a characteristic function Ψβ(θ/X)

of process X(t) as t → ∞ can be expressed by the probability characteristics of the pair
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(N, YN ) as

Ψβ(θ/X) = lim
t→∞

E(eiθX(t)) =
eiθSE{exp(−iθYN )− 1}
EN(β)E{exp(−iθη1)− 1} , for all θ ∈ (−∞,+∞).

Proof. It is immediately derived that, for any measurable bounded function f(x)

defined on the interval [0,+∞), the following relation holds, from the Proposition 3.1

with probability 1:

lim
t→∞

∫ t

0

f(X(u))du = lim
t→∞

Ef(X(t)) =

=
1

EN(β)

∞∑
n=0

∫ ∞
s

f(x)P
{
Yi ≤ β, i = 1, n;S − Yn ∈ dx

}
. (4.1)

Substituting the function exp {−iθx} instead of f(x) in Formula (4.1), we get

lim
t→∞

E(e−iθX(t)) =
1

EN(β)

∞∑
n=0

∫ ∞
s

e−iθxP
{
Yi ≤ β, i = 1, n;S − Yn ∈ dx

}
Carrying out the necessary calculations we obtain

lim
t→∞

E(e−iθX(t)) =
e−iθS

EN(β)

∞∑
n=0

∫ ∞
s

eiθvP
{
Yi ≤ β, i = 1, n; Yn ∈ dv

}
. (4.2)

In order to continue this investigation we need some further notation first. Put

cn(x, β) = P
{
Yi ≤ β, i = 1, n; Yn ≤ x

}
, n ≥ 1,

c0(x, β) = ε(x), ifx ≤ β,
dn(x, β) = P

{
Yi ≤ β, i = 1, n; Yn〉β, Yn ≤ x

}
, n ≥ 1,

d0(x, β) = 0, ifx > β,

where ε(x) = 1 if x > 0 and ε(x) = 0 if x < 0.

Note that the study of cn(x, β) and dn(x, β) is closely connected with the investigation

of the random walk {Yn} ,n≥ 0, prior to the first entry into (β,∞), that is the random

walk restricted to (−∞, β]. And there is a certain relation between these probability

characteristics. To present this relation let’s introduce the following transforms of cn(x, β)

and dn(x, β)

c̃∗(z, θ, β) =
∞∑
n=0

zn
∫ β

−∞
eiθxP

{
Yi ≤ β, i = 1, n; Yn ∈ dx

}
,

d̃∗(z, θ, β) =
∞∑
n=1

zn
∫ ∞
β

eiθxP
{
Yi ≤ β, i = 1, n; Yn > β, Yn ∈ dx

}
,
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where θ ∈ (−∞,∞) and z ∈ [−1, 1].

The following basic identity is well-known in literature (see [7], p.600)

1− d̃∗(z, θ, β) = c̃∗(z, θ, β)[1− zϕ(θ)], (4.3)

where ϕ(θ) is a characteristic function of variable η1, i.e., ϕ(θ) = E(eiθη1).

From (4.3) the following is directly obtained:

c̃∗(z, θ, β) =
1− d̃∗(z, θ, β)

1− zϕ(θ)
. (4.4)

If the conditions, which are Eη1 > 0 and β < +∞, are satisfied, then it is not difficult

to prove∣∣∣d̃∗(1, θ, β)
∣∣∣ ≤ 1 and |c̃∗(1, θ, β)| ≤ EN(β) < +∞,

where

d̃∗(1, θ, β) = lim
z→1

d̃∗(z, θ, β), c̃∗(1, θ, β) = lim
z→1

c̃∗(z, θ, β).

For this reason, we can take the limit in (4.4) as z →∞ and we get

c̃∗(1, θ, β) =
1− d̃∗(1, θ, β)

1− ϕ(θ)
. (4.5)

Furthermore, it is not difficult to show that

d̃∗(1, θ, β) =
∞∑
n=1

∞∫
β

eiθxP
{
Yi ≤ β, i = 1, n− 1; Yn〉β, Yn ∈ dx

}
=

=
∞∑
n=1

∞∫
β

eiθxP {N(β) = n, Yn ∈ dx} =

∞∫
β

eiθxP {Yn ∈ dx} =

= E(eiθYN ), i.e., d̃∗(1, θ, β) = E(eiθYN ). (4.6)

Therefore, the (4.5) can be rewritten as

c̃∗(1, θ, β) =
1− E(exp(iθYN ))
1−E(exp(iθη1))

. (4.7)

It is seen from (4.2) that

lim
t→∞

E(e−iθX(t)) =

e−iθS

EN(β)

∞∑
n=0

∫ β

−∞
eiθxP

{
Yi ≤ β, i = 1, n; Yn ∈ dx

}
=

e−iθS

EN(β)
c̃∗(1, θ, β). (4.8)

Substituting now Formula (4.7) in (4.8) and replacing the parameter θ by (-θ), we

finally obtain
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Ψβ(θ/X) = lim
t→∞

E(eiθX(t)) =
eiθS

EN(β)
E {exp(−iθYN ) − 1}
E {exp(−iθη1)− 1} . (4.9)

We have thus expressed the characteristic function Ψβ(θ/X) of the process X(t) by

means of the same one’s YN(β) and η1 as t→∞.

This completes the proof. 2

Remark. Direct calculations of characteristic functions of ergodic distribution of process

X(t) are rarely feasible, but much valuable information can be extracted directly from

(4.9). Particularly, by using Formula (4.9), it is possible to show that the process X(t)

may itself behave as a random variable which is uniformly distributed on the interval

(s, S) as t → ∞ and β take on large values. Because of this, in the next section we will

investigate the asymptotic behaviour of ergodic distribution function of X(t) as β →∞.

5. The Convergence of the Ergodic Distribution Functions of Process X(t)

For the investigation of the asymptotic behaviour of ergodic distribution function of

process X(t) as β →∞, we define the auxiliary process W (t) as

W (t) =
2X(t)
β
− 1− 2s

β
,

and investigate the asymptotic behaviour of its ergodic distribution function.

It is easily seen that the process W (t) is a linear transform of X(t). Therefore,

from Proposition 3.1 it immediately follows that the process W (t) is also ergodic under

the conditions of Proposition 3.1. Let’s denote the characteristic function of ergodic

distribution of W (t) by Ψβ(θ/W ) and formulate the following statement.

Lemma 5.1 Let the initial sequence of random pairs satisfy the assumptions of Proposi-

tion 3.1 and the supplementary condition E(η2
1) <∞. Then the following expansion can

be written for characteristic function Ψβ(θ/W ) of ergodic distribution of process W (t)

Ψβ(θ/W ) =
sin θ
θ

+ O(
1
β

), as β →∞.

Proof. By definition of process W (t) we can write

Ψβ(θ/W ) = lim
t→∞

E[exp(iθW (t)] = exp[−iθ(1 +
2s
β

)]Ψβ(
2θ
β
/X). (5.1)

257



KHANIYEV

For further investigations we denote the characteristic functions of random variables

η1 and Y N = YN − β by ϕη1(t) and ϕY N (t), respectively. Moreover, we let

I1(θ, β) = 1− ϕη1(−2θ
β

) and I2(θ, β) = 1− ϕY N (−2θ
β

).

By using these notations, the formula (5.1) can be rewritten in the following form

Ψβ(θ/W ) =
eiθ − e−iθ

EN(β)I1(θ, β)
+

e−iθI2(θ, β)
EN(β)I1(θ, β)

. (5.2)

Throughout this study, the first and second terms of sum (5.2) will be denoted by

J1(θ, β) and J2(θ, β), respectively. It is our immediate aim to separately evaluate the

J1(θ, β) and J2(θ, β).

If E(η1)2 <∞ then following the inequality is valid for all t (see [7], p.514):

|ϕη1 (t)− 1− itEη1| ≤
t2

2
E(η2

1).

From this we get the following expansion for ϕη1 (t):

ϕη1(−2θ
β

) = 1− i 2θ
β
Eη1 + O(

1
β2

), as β →∞.

Consequently,

I1(θ, β) = 1− ϕη1(− 2θ
β

) = i
2θ
β
Eη1(1 + O(

1
β

)). (5.3)

We will now study the asymptotic behaviour of EN(β) as β →∞. For this, we need

some further notations. Let (
n∑
i=1

ν+
i ;

n∑
i=1

χ+
i ), n ≥ 0, be the sequence of strictly ascending

ladder epochs (1st component) and ladder heights (2nd component) of the random walk

{Yn}, n ≥ 0, i.e.

ν+
0 = χ+

0 = 0; ν+
1 = inf { k ≥ 1 : Yk > 0}, χ+

1 = Yν+
1
,

ν+
n+1 = inf

{
k ≥ 1 : Y nP

i=1
ν+
i +k

> Y nP

i=1
ν+
i

}
, χ+

n+1 = Yn+1P

i=1
ν+
i

− Y nP

i=1
ν+
i

, n ≥ 1,

where inf(∅) =∞ is stipulated.

The pairs (ν+
n , χ

+
n ), n ≥ 1, are mutually independent and identically distributed (see

[7], p.392). It is known that under the condition Eη1 > 0 the equality P
{
ν+

1 <∞
}

= 1

is valid.

It is well known that if Eη1 > 0 then Eν+
1 <∞ (see [7], [17]).

Moreover, we define the renewal process H(β) as
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H(β) = inf
{
n ≥ 1 :

n∑
i=1

χ+
i > β

}
.

Note that N(β) can be rewritten as N(β) =
H(β)∑
i=1

ν+
i . From this it is obviously seen

that N(β) is a reward renewal process and it can easily be verified by using Wald’s identity

(see [2], [5], [7], etc.) that

EN(β) = Eν+
1 EH(β). (5.4)

Note that EH(β) is a renewal function associated with {χ+
n }, n ≥ 0. Then the

asymptotic expansion holds under the condition E(χ+
1 )2 <∞ (see [8], p.366)

EH(β) =
β

E(χ+
1 )

+
E(χ+

1 )2

2(Eχ+
1 )2

+ o(1), as β →∞.

Therefore, we have

EN(β) =
E(ν+

1 )
E(χ+

1 )
β +

E(ν+
1 )E(χ+

1 )2

2(Eχ+
1 )2

+ o(1), as β →∞.

It is well known that if 0 < Eη1 <∞, then the following equality holds:

E(χ+
1 ) = Eη1Eν

+
1 <∞.

Using (5.4) we get

EN(β) =
β

Eη1
+
Eν+

1 E(χ+
1 )2

2(Eχ2
1)2

+ o(1), as β →∞. (5.5)

Note that if the conditions Eη1 > 0 and E(η2
1) < ∞ are satisfied, then the condition

E(χ+
1 )2 <∞ also is satisfied. We can thus rewrite (5.5) as

EN(β) =
β

Eη1
(1 + O(

1
β

)), as β →∞. (5.6)

By the asymptotic relations (5.3) and (5.6), it is easily seen that

EN(β)I1(θ, β) = 2iθ(1 +O(
1
β

)). (5.7)

Coming back to sum (5.2), we conclude that the J1(θ, β) may be written as

J1(θ, β) =
eiθ + e−iθ

EN(β)I1(θ, β)
=

sin θ
θ

(1 + O(
1
β

)). (5.8)

Let us estimate the second term J2(θ, β) of sum (5.2). It follows from the inequality

for Taylor expansion of a characteristic function that if E
∣∣Y N ∣∣ < ∞, then following

inequality is valid for arbitrary θ (see [7], p.514)∣∣∣∣ϕYN (−2θ
β

)− 1
∣∣∣∣ ≤ 2|θ|

β
E
∣∣ Y N ∣∣. (5.9)
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On the other hand, by definition Y N = YN − β > 0, with probability 1. Therefore,

E
∣∣Y N ∣∣ = E(YN − β) = E(

N(β)∑
i=1

ηi) − β = Eη1EN(β) − β.

Taking into account (5.6), we get

E
∣∣Y N ∣∣ = Eη1

β

Eη1
(1 + O(

1
β

)) − β = O(1), as β →∞. (5.10)

Therefore, from inequality (5.9) and expansion (5.10) we conclude that

1− ϕY N (−2θ
β

) = O(
1
β

), as β →∞. (5.11)

Thus by using (5.7) and (5.11), J2(θ, β) can be rewritten as

J2(θ, β) = O(
1
β

), as β →∞. (5.12)

By using formulas (5.8) and (5.12) we finally have from (5.2)

Ψβ(θ/W ) = J1(θ, β) + J2(θ, β) =
sin θ
θ

+O(
1
β

), as β →∞.

This completes the proof of Lemma 5.1. 2

It is well known that the one-to-one correspondence between distribution functions and

characteristic functions is continuous. Since the limit characteristic function ϕ1(θ) = sin θ
θ

is continuous at θ = 0, then from the continuity theorem (see [19], p.48) the following

statement is immediately derived.

Theorem 5.1 Under the assumptions of Lemma 5.1 the family of ergodic distribution

functions Qβ(x/W ) of process W (t) converges weakly to Q1(x) which is the uniform

distribution function over [-1,1], i.e. for arbitrary x,

Qβ(x/W )→ Q1(x), as β →∞.

Proof. The proof of the Theorem 5.1 is directly derived from Lemma 5.1 by using the

continuity theorem (see [19], p.48). 2

Remark. The assertion of Theorem 5.1 is very important for applications, but

Theorem 5.1 does not answer the questions associated with the asymptotic behaviour

of the moments of process X(t). Because it is possible that a sequence {πn(x)} of

distribution functions converges weakly to a limit π(x), the moments of the πn(x) do
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not converge to the moments of π(x) (see, [19], p. 53). Therefore, it is advisable to

separately investigate the asymptotic behaviour of the moments of ergodic distribution

of the process X(t).

6. Exact Formulas for the First and Second Order Moments of Ergodic

Distribution of Process X(t)

Taking into account the practical importance of the expectation and variance of the

ergodic distribution of X(t), in this section we will extract from the (4.9) the exact

expressions for them. For this purpose we introduce the following notations:

mk = E(ηk1 ),Mk = E(Y kN ), k = 1, 2, 3

and for shortness of expressions we put

Mk1 =
Mk

M1
;mk1 =

mk

m1
, k = 2, 3.

Let us denote the first and second moments of ergodic distribution of process X(t) by

EX = lim
t→∞

EX(t),

E(X2) = lim
t→∞

EX2(t), and

V ar(X) = lim
t→∞

V ar(X(t)).

We can now state the main result of this section as follows.

Theorem 6.1 Let the following supplementary conditions are satisfied

1) 0 < Eη1 <∞; 2) E|η1|3 <∞.

Then the first and second moments of ergodic distribution of the process X(t) exists

and can be expressed by moments of YN as:

EX = S − M2

2M1
+

m2

2m1

E(X2) = S2 +
1
3

(
M3

M1
− m3

m1
) − (S +

m2

2m1
)(
M2

M1
− m2

m1
);

V ar(X) =
1
3

[
M3

M1
− m3

m1

]
− 1

4

[
M2

2

M2
1

− m2
2

m2
1

]
.

Proof. Note that the conditions (1) and (2) provide the existence and finiteness of

first three moments of YN for each finite value of parameter S (see [7], p.397). Therefore,
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Taylor expansions of the characteristic functions of random variables η1 and YN can be

written as follows (see, [7], p.514 or [19], p.23).

E{exp(−iθη1)− 1} = −iθm1

{
1− iθ

2
m21 +

(iθ)2

6
m31 + o(θ2)

}
(6.1)

and

E{exp(−iθYN )− 1} = −iθM1

{
1− iθ

2
M21 +

(iθ)2

6
M31 + o(θ2)

}
, as θ → 0. (6.2)

Dividing the expression (6.2) by (6.1) we can obtain
E{exp(−iθYN )− 1}
E{ exp(−iθη1)− 1} =

M1

m1

{
1− iθ

2
[M21 −m21] +

(iθ)2

12
[2(M31 −m31)− 3M21(M21 −m21)] + 0(θ2)

}
.

By Wald’s identity, we have from this
1

EN(β)
E{exp(−iθYN )− 1}
E{exp(−iθη1)− 1} = 1− iθ

2
(M21 −m21)+

+
(iθ)2

12
[2(M31 −m31)− 3m21(M21 −m21)] + 0(θ2), (6.3)

because of that M1 = E(YN) = Eη1EN (see, [7], p.397 or [2], p. 20 and etc.).

Let’s now write the Taylor expansion of exp {iθS} for all finite values S as θ → 0, i.e.

eiθS = 1 + iθS +
(iθ)2

2
S2 + o(θ2). (6.4)

By using (6.3) and (6.4), we can show that, as θ → 0

lim
t→∞

E(eiθX(t)) = 1− iθ

2
[M21 −m21 − 2S]+

+
(iθ)2

12
[2(M31 −m31)− 3(M21 −m21)(m21 + 2S) + 6S2] + o(θ2).

From this, it is easily seen that under the conditions of this theorem, the first and

second order moments of the ergodic distribution of the process X(t) exist and they can

be presented as

EX = S − M2

2M1
+

m2

2m1
,

E(X2) = S2 +
1
3

(
M3

M1
− m3

m1
) − (S +

m2

2m1
)(
M2

M1
− m2

m1
).

By using the expressions for E(X) and E(X2), we can hence calculate the V ar(X)

V ar(X) =
1
3

[
M3

M1
− m3

m1

]
− 1

4

[
M2

2

M2
1

− m2
2

m2
1

]
.
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This completes the proof of Theorem 6.1. 2

These formulas are very important for solving a number of problems of applied

sciences. In addition to this, in the following we will study the asymptotic behaviours of

expectation and variance of stock’s level in this model as S − s→∞.

7. Asymptotic Expansion for the Expectation of the Ergodic Distribution of

the Process X(t)

In this previous section, the exact expression for the expectation of ergodic distri-

bution of process X(t) was obtained. But it is well known that the calculation of such

expressions is very difficult and unsuitable for purposes of practice. On the contrary, the

asymptotic methods of investigation of such problems lead us to some convenient results

for applications. Because of this, the asymptotic methods for investigation of moments

of ergodic distribution of process X(t) are considered as necessary tools for purposes

of praymptotic behaviour of expectation EX of process X(t), when β = S − s → ∞.

For this aim we will use some additional notations which were introduced in section 5.

Consequently, in this section we will investigate the asduced in section 5. Namely, let

(
n∑
i=1

ν+
i ;

n∑
i=1

χ+
i ), n ≥ 0, be the sequence of strictly ascending ladder epochs (1st compo-

nent) and ladder heights (2nd component) of the random walk {Yn}, n ≥ 0.

It is known that under the condition Eη1 > 0 the equality P
{
ν+

1 <∞
}

= 1 is valid.

If the conditions Eη1 > 0 and E|η1|3 < ∞ are satisfied, then the first three moments

of random variables ν+
1 and χ+

1 exist. Let us denote these moments by αk and µk,

respectively, i.e.

αk = E(ν+
1 )k, µk = E(χ+

1 )k, k = 1, 2, 3.

In addition, to shorten the notation we put

µk1 =
µk

(µ1)k
, k = 2, 3, and σ2

1 = V ar(χ+
1 ).

Remember that in Section 5 we defined the renewal process H(β) as

H(β) = inf
{
n ≥ 1 :

n∑
i=1

χ+
i > β

}
.
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There are some significant points understanding in the literature connected with the

moments of the renewal process H(β) (see [2], [8], etc.). For example, it is known that

(see [7], p.366) if a distribution of χ+
1 is non-arithmetic and χ+

1 has an expectation µ1

and variance σ2
1 , then

EH(β) =
β

µ1
+

1
2
µ21 + o(1), as β →∞.

However, if the third absolute moment of η1 exists then some sharper result for EH(β)

can be stated. This statement is precisely given in the following manner.

If Eη1 > 0 and E|η1|3 <∞ then

EH(β) =
β

µ1
+

1
2
µ21 + o(

1
β

) as β →∞, (7.1)

(see for example, [17], p.210-211).

Let us now investigate the asymptotic behaviour of EH2(β) as β →∞:

Lemma 7.1 If Eη1 > 0 and E|η1|3 < ∞, then the following asymptotic expansion is

true as β →∞:

EH2(β) =
β2

µ2
1

+ (2µ21 − 1)
β

µ1
+

1
6

[9µ2
21 − 3µ21 − 4µ31] + o(1).

Proof. Put F+
n (t) = P

{
n∑
i=1

χ+
i ≤ t

}
, n ≥ 1,t ≥ 0 and F+

0 (t) = 0 if t ≤ 0, 1 if t > 0.

Then we can write

EH2(β) =
∞∑
n=1

n2(F+
n−1(β) − F+

n (β)). (7.2)

Finally we can introduce the new notation

R(β) = EH2(β) − β2

µ2
1

− (2µ21 − 1)
β

µ1
and put ϕ+(λ) = E(exp

{
−λχ+

1

}
), λ > 0.

Let R̃(λ) denote the Laplace transform of R(t). With these notations, from (7.2), we

have the following relationship

R̃(λ) =
1− ϕ+(λ)

λ

∞∑
n=1

n2(ϕ+(λ))n−1 − 2
λ3µ1

− 2µ21 − 1
λ2µ1

. (7.3)

Note that if |x| < 1, then the next equality is valid
∞∑
n=1

n2xn−1 =
2

(1− x)3
− 1

(1− x)2
.
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By using this, we can rewrite (7.3) as

R̃(λ) =
2

λ(1 − ϕ+(λ))2
− 1
λ(1− ϕ+(λ))

− 2
λ3µ2

1

− (2µ21 − 1)
λ2µ1

. (7.4)

We will investigate the behaviour of R̃(λ) as λ → 0 . For this purpose, let us

investigate at first the behaviour of ϕ+(λ) as λ → 0. It is known that under the

condition E(χ+
1 )3 < ∞ the following asymptotic expansion is true (see [19], p. 23) as

λ→ 0:

1− ϕ+(λ) = λµ1

{
1− λ

2
µ21µ1 + λ2

6
µ31µ

2
1 + o(λ2)

}
.

Hence, as λ→ 0

(1− ϕ+(λ))−1 =
1
λµ1

{
1 +

λ

2
µ21µ1 +

λ2

2
[
1
2
µ2

21µ
2
1 −

1
3
µ31µ

2
1] + o(λ2)

}
.

Therefore, from this we easily derive

(1− ϕ+(λ))−2 =
1

(λµ1)2

{
1 + λµ21µ1 + λ2[

3
4
µ2

21µ
2
1 −

1
3
µ31µ

2
1] + o(λ2)

}
.

Substituting these relations in Formula (7.4), we finally get

λR̃(λ) =
3
2
µ2

21 −
1
2
µ21 −

2
3
µ31 + o(1), as λ→ 0. (7.5)

Taking the limit in (7.5) we have

lim
λ→0

λR̃(λ) =
1
6

[9µ2
21− 3µ21 − 4µ31]. (7.6)

Applying the Tauber-Abelian theorems to (7.6) we obtain (see [7], p.442)

lim
β→∞

R(β) = lim
λ→0

λR̃(λ) =
1
6

[9µ2
21 − 3µ21 − 4µ31],

which is the same as

R(β) =
1
6

[9µ2
21− 3µ21 − 4µ31] + o(1), as β →∞.

Therefore, under the conditions of Lemma 1, the following asymptotic expansion

holds:

EH2(β) =
β2

µ2
1

+ (2µ21 − 1)
β

µ1
+

1
6

[9µ2
21 − 3µ21 − 4µ31] + o(1), as β →∞.

This completes the proof of Lemma 1. 2

We can now immediately state the next result connected with the variance of H(β).
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Lemma 7.2 If E(χ+
1 )3 < ∞, then the following asymptotic expansion for variance of

H(β) is valid

V ar(H(β)) =
β

µ1
σ2

11 +
1
12

[15µ2
21 − 6µ21 − 8µ31] + o(1), as β →∞,

where σ2
11 =

σ2
1

µ2
1

=
V ar(χ+

1 )
(E(χ+

1 ))2
·

Proof. It is mentioned above that if the conditionE|η1|3 <∞ holds, then the following

asymptotic expansion can be written

EH(β) =
β

µ1
+

1
2
µ21 + o(

1
β

), β →∞.

Therefore, it is easily seen that as β →∞

(EH(β))2 =
β2

µ2
1

+
µ21

µ1
β +

1
4
µ2

21 + o(1).

Taking into account the results of Lemma 7.1, we obtain

V ar(H(β)) =
β

µ1
σ2

11 +
1
12

[15µ2
21 − 6µ21 − 8µ31] + o(1) as β →∞.

This completes the proof of Lemma 7.2. 2

Let us give the following theorem which is the main aim of this section.

Theorem 7.1 If Eη1 > 0 and E|η1|3 <∞, then the asymptotic expansion for expectation

of ergodic distribution of process X(t) can be given as β →∞:

EX =
S + s

2
+
m1

4

[
2− α1 − 3

σ2
η

m2
1

− σ2
ν

α1

]
− µ2

1

24β
[
9µ2

21 − 8µ31

]
+ o(

1
β

),

where σ2
ν = V ar(ν+

1 ) and σ2
η = V ar(η1).

Proof. By Theorem 6.1,

EX = S − M2

2M1
+

m2

2m1
, where Mk = E(Y kN), k = 1, 2. (7.7)

Using Wald’s identity it is possible to show that

E(YN ) = E(
H(β)∑
i=1

χ+
i ) = E(χ+

1 )EH(β) = µ1EH(β),

and

V ar(YN ) = σ2
1EH(β) + µ2

1V ar(H(β)), (see [5] or [8]).
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Therefore,

E(Y 2
N ) = µ2

1(EH(β))2 + σ2
1EH(β) + µ2

1V ar(H(β)).

Hence,

M2

M1
= µ1

{
EH(β) +

V ar(H(β))
E(H(β))

+ σ2
11

}
. (7.8)

Using Lemma 7.2 and asymptotic expansion (7.1) for EH(β), we can write it as

β →∞

V ar(H(β))
E(H(β))

= σ2
11 +

µ1

12β
{

15µ2
21 − 6µ21 − 8µ31 − 6µ21σ

2
11

}
+ o(

1
β

).

Therefore, taking into account this equality from (7.8) we finally obtain

M2

2M1
=
β

2
+

1
4
µ1µ21 + µ1σ

2
11 +

µ2
1

24β
[15µ2

21− 6µ21 − 8µ31 − 6µ21σ
2
11] + o(

1
β

). (7.9)

By using formula (7.9), we immediately get from (7.7)

EX =
S + s

2
+
m1

2
− µ1

4
+

σ2
η

2m1
− 5σ2

1

4µ1
− µ2

1

24β
{

15µ2
21 − 6µ21 − 8µ31 − 6µ21σ

2
11

}
+o(

1
β

).

Carrying out the corresponding calculations, we can rewrite this relation as

EX =
S + s

2
+
m1

2
− µ1

4
+

σ2
η

2m1
− 5σ2

1

4µ1
− µ2

1

24β
[9µ2

21− 8µ31] + o(
1
β

). (7.10)

Note that the following is well known (see [5], [7])

σ2
1 = V ar(χ+

1 ) = V ar(
ν+

1∑
i=1

ηi) = Eν+
1 V ar(η1) + (Eη1)2V ar(ν+

1 ) =

= α1σ
2
η +m2

1σ
2
ν and µ1 = E(χ+

1 ) = m1α1.

By using these equality, from (7.10) we finally have, as β →∞

EX =
S + s

2
+
m1

4

[
2− α1 − 3

σ2
η

m2
1

− σ2
ν

α1

]
− µ2

1

24β
[
9µ2

21 − 8µ31

]
+ o(

1
β

). (7.11)

This completes the proof of Theorem 7.1. 2
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8. Asymptotic Expansion for the Variance of the Ergodic Distribution of the

Process X(t)

In this section we will give some asymptotic results connected with the second moment

of the process X(t). For this aim let us put

µk1 =
µk

(µ1)k
, m̃k1 =

mk

mk
1

, k = 2, 3; and σ2
1 = V ar(χ+

1 ), σ2
11 =

σ2
1

µ2
1

and state the following result.

Theorem 8.1 Let the conditions of proposition 3.1 and supplementary condition E|η1|3 <
∞ be satisfied.

Then the variance of ergodic distribution of the process X(t) has the following asymp-

totic expansion as β →∞:

V ar(X) =
β2

12
+

13µ2

12µ1
β +

1
48

[c1µ2
1 + 4c2m2

1] + o(1),

where c1 = 91σ4
1 + 134σ2

11− 16µ31 − 7 and c2 = 3m̃2
21 − 4m̃31.

Proof. In section 6, we have shown that

V ar(X) =
1
3

[
M3

M1
− m3

m1
]− 1

4
[
M2

2

M2
1

− m2
2

m2
1

]. (8.1)

By using Wald’s identity it is not difficult to see that (see [5])

M1 = E(YN ) = E(
H(β)∑
i=1

χ+
i ) = Eχ+

1 EH(β) = µ1EH(β), (8.2)

M2 = E(Y 2
N ) = µ2

1EH
2(β) + (µ2 − µ2

1)EH(β), (8.3)

M3 = E(Y 3
N ) = µ3

1EH
3(β) + 3µ1(µ2 − µ2

1)EH2(β)+

(µ3 − 3µ1µ2 + 2µ3
1)EH(β). (8.4)

Note that under the conditions of this Theorem 8.1, the first three moments of random

variable χ+
1 and renewal process H(β) exist. Therefore, the formulas (8.2), (8.3) and (8.4)

can be written.

Using the formulas (8.2), (8.3) and (8.4) we obtain

M2

2M1
=
µ1

2
EH2(β)
EH(β)

+
µ2 − µ2

1

2µ1
, (8.5)

and
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M3

3M1
=
µ2

1

3
EH3(β)
EH(β)

+ (µ2 − µ2
1)
EH2(β)
EH(β)

+ [
µ3

3µ1
− µ2 +

2
3
µ2

1]. (8.6)

On the other hand, we can rewrite the formula (8.1) as follows

V ar(X) =
M3

3M1
− (

M2

2M1
)2 + (

m2

2m1
)2 − m3

3m1
. (8.7)

Taking into account the expressions (8.5) and (8.6) we have from (8.7)

V ar(X) =
µ2

1

3
EH3(β)
EH(β)

− µ2
1

4
(EH(β))2 +

µ1 − µ2
1

2
EH(β) − µ2

1

2
V ar(H(β))+

+
µ2 − µ2

1

2
V ar(H(β))
EH(β)

− µ2
1

4
[
V ar(H(β))
EH(β)

]2 +
µ3

3µ1
− m3

3m1
− (

µ2

2µ1
)2

+(
m2

2m1
)2 − µ2

2
+

5
12
µ2

1. (8.8)

Using the Tauberian and Abelian theorems (see [8], p.442), it is possible to get as

β →∞,

EH(β) =
β

µ1
+
µ21

2
+ o(

1
β

), (8.9)

V ar(H(β)) =
β

µ1
(µ21 − 1) + A+ o(1), (8.10)

EH3(β) = (
β

µ1
)3 + (

β

µ1
)2 +

β

µ1
B + o(β), (8.11)

where A =
1
12

[15µ2
21 − 6µ21 − 8µ31], B = 9µ2

21 − 3µ31 − 5.

Carrying out the corresponding calculations, from (8.9), (8.10) and (8.11) we can show

as β →∞
V ar(H(β))
EH(β)

= (µ21 − 1) +O(
1
β

) = (µ21 − 1) + o(1), (8.12)

and
EH3(β)
EH(β)

= (
β

µ1
)2 + 4

β

µ1
µ21 + (7µ2

21 − 3µ31 − 5) + o(1). (8.13)

Taking into account these expansions ((8.9)-(8.13)) in Formula (8.8) we obtain the

following asymptotic expansion for V ar(X) as β →∞:

V ar(X) =
β2

12
+

13
12
µ2

µ1
β+

+
1
12

{
91(

µ2

2µ1
)2 − 4

µ3

µ1
− 12µ2 − 12µ2

1 + 3(
m2

m1
)4 − 4

m3

m1

}
+ o(1). (8.14)
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With the notations

c1 = 91σ4
11 + 134σ2

11− 16µ31 − 7, c2 = 3m̃2
21 − 4m̃31,

we can rewrite the formula (8.14) as

V ar(X) =
β2

12
+

13µ2

12µ1
β +

1
48

[c1µ2
1 + 4c2m2

1] + o(1).

This completes the proof of Theorem 8.1. 2
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[24] Ross, S. M.: Introduction to Probability Models, Academic Press, New York, 1993.

[25] Saaty, T.L.: Elements of Queueing Theory With Applications, Dover, New York, 1983.

[26] Senturia, L. and Puri Prem, S.A.: A semi-Markov storage model, Adv. App. Probab., 1,2,

362-378 (1973).

[27] Unver, I.: On distributions of the semi-Markovian random walk with reflecting and

delaying barriers, Bulletin of Calcutta Mathematical Society, 89, 231-242 (1997).

[28] Zhang, Y. L.: Some problems on a one dimensional correlated random walk with various

types of barrier, Journal of Applied Probability, 29, 196-201 (1992).

Tahir KHANIYEV

Karadeniz Technical University,

Faculty of Arts and Sciences,

Department of Mathematics,

61080, Trabzon, TURKEY

e-mail: khaniev@risc01.ktu.edu.tr

Received 31.01.2001

272


