
Turk J Math

27 (2003) , 273 – 281.

c© TÜBİTAK

Boundary Points of Self-Affine Sets in R

İbrahim Kırat

Abstract

LetA be an n×n expanding matrix with integer entries andD = {0, d1, · · · , dN−1}
⊆ Zn be a set of N distinct vectors, called an N-digit set. The unique non-empty

compact set T = T (A,D) satisfying AT = T + D is called a self-affine set. If T

has positive Lebesgue measure, it is called a self-affine region. In general, it is not

clear how to determine a point to be on the boundary of a self-affine region. In

this note, we consider one-dimensional self-affine regions T and present a simple

approach to get increasing subsets of the boundary of T . This approach also gives

a characterization of strict product-form digit sets introduced by Odlyzko.
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1. Introduction

Let Mn(Z) denote the set of n× n matrices with entries in Z, and let A ∈Mn(Z) be

expanding, that is, each eigenvalue of A has modulus > 1. Suppose | detA| = q, we let

D = {d0 = 0, d1, · · · , dN−1} ⊆ Zn be a set of N distinct vectors, and call it an N-digit set.

It is well known that there exists a unique compact set T = T (A,D), called an (integral)

self-affine set, satisfying the set-valued equation

T = A−1
⋃
d∈D

(T + d)
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(see e.g. [1]). The family {Si(x) = A−1(x+ di)}N−1
i=0 is called an iterated function system

(IFS). The set T can be expressed explicitly by

T =
{ ∞∑
i=1

A−ixi : xi ∈ D
}
. (1.1)

T is called an (integral) self-affine region if T has nonvoid interior. A self-affine region is

called an (integral) self-affine tile if N = q. If T is a self-affine region, then it is equal to

the closure of its interior, i.e., T = T o and the boundary ∂T of T has Lebesgue measure

zero. This fact was first proved in [5] for self-affine tiles and it was later generalized to

self-affine regions in [3]. For such a tile, there exists a subset J ⊆ Zn, such that

T + J = Rn and (T + t)o
⋂

(T + t′)o = ∅, t 6= t′, t, t′ ∈ J .

In wavelet theory, self-affine regions are the supports of scaling functions [2]

f(x) =
∑
di∈D

cif(Ax − di).

In number theory, self-affine tiles give the generalized decimal expansions. Recently,

the geometric and algebraic properties of self-affine tiles have been studied extensively

in literature. However, the knowledge on the identification of boundary points is still

limited. In this note, the emphasis will be on the identification of boundary points.

If T o = ∅, then T = ∂T and there is little to study about the boundary points. Hence

we only need to study self-affine regions. We note that, in general, it is a complicated

problem to characterize D so that T (A,D) is a self-affine region as mentioned in [6] and

[7]. In general, even in the one-dimensional case, it is not known which pair (q, D) makes

the set T (q, D) ⊆ R a tile. When q is a prime power, the problem is solved in [6]. If

N > q, the problem is even more difficult, as has been stated by Odlyzko [7]: “the task

of classifying them seems hopeless.”

We use the convex hull of T , denoted by K, to approximate the boundary of T . In

this case, we apply the IFS defining T to K successively. This approach is elementary

and simple in one-dimensional case. In particular, we use it to find the boundary

points of disconnected tiles in R which are infinite unions of intervals. It also gives a

characterization of strict product-form digits. But it is not clear how to find the initial

set for the iteration in higher dimensions.
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In section 2, we present the method to find increasing subsets of the boundary of

self-affine tiles. We illustrate the idea in examples. In section 3, we discuss the difficulties

arising in the use of this method in higher dimensions.

2. Getting the boundary points: simple arithmetic in the service of self-affine

sets

Throughout the section, T will denote a one-dimensional set. Let q ≥ 2 be an integer,

and D = {0, d1, d2, ..., dq−1} ⊂ Z, 0 < d1 < d2 < · · · < dq−1, be a q-digit set. Let

T := T (q, D) be the self-affine tile defined by q and D. Then we have the following result.

Proposition 2.1 [4] The following two statements holds true and are equivalent.

(i) T is a connected tile if and only if D = {0, a, 2a, · · · , (q − 1)a} for some a > 0.

(ii) T is a connected tile if and only if T = [0, a] for some a > 0.

The above proposition shows that disconnected tiles are of interest. Suppose that E

gives a complete set of coset representatives of Zq , and suppose that it has a factorization

E = E1 + E2 + ...+ Er, |E| = |E1||E2|...|Er| = q, where 0 ∈ Ei for all i. Then for any

integers 0 ≤ f(1) ≤ f(2) ≤ ... ≤ f(r), set

D = qf(1)(E1) + qf(2)(E2) + · · ·+ qf(r)(Er).

Then D is called a product-form digit set. If we have the extra condition that E =

{0, 1, 2, ..., q− 1}, D is called a strict product-form digit set [6]. For such digit sets, the

following result is well-known.

Theorem 2.2 [6], [7] An integral self-affine tile T(A,D) is a finite union of intervals if

and only if D = jD′, where j ≥ 1 is an integer and D′ a strict product-form digit set.

Remark. For N > q, there are no results in the literature concerning conditions as in

Theorem 2.2.

It follows from Theorem 2.2 that, for a prime number q, any q-digit set of strict-

product form will be of the form D = {0, a, 2a, · · · , (q− 1)a} for some a > 0. We will see

in the examples below that for q=4, D = {0, 1, 8, 9} is a strict product-form digit set and

T (4, D) = [0, 1]∪ [2, 3] using our technique.

275



KIRAT

Thus the most interesting case is when T (A,D) is an infinite union of disjoint intervals.

For q=4, D = {0, 1, 8, 25}, T (4, D) is not of strict product form and consists of an infinite

number of intervals [6]. Using our technique, we will obtain boundary points of T (4, D)

in the examples.

Let Cn denote the space of all non-empty compact subsets of Rn. Let || · || be a norm

on Rn. We define the Hausdorff metric on Cn with respect to || · || by

dH(D,D′) := max{sup
x∈D

inf
x′∈D′

‖x− x′‖ , sup
y′∈D′

inf
y∈D
‖y − y′‖}

It is well known that (Cn, dH) is a complete metric space. In this paper, the conver-

gence of sequences of compact sets will be with respect to the Hausdorff metric.

The way we approximate the boundary of T will be independent of the connectedness.

For this, we consider the convex hull of T , which is of course a closed set in dimension 1,

the simplest case. We denote it by K. We let

Sj =
1
q
(x + dj), j = 0, 1, 2, ...,N − 1,where d0 = 0,

and for J = (j1, ..., jl), we let SJ = Sj1 ◦ ... ◦ Sjl . Then Sj(K) ⊆ K, j = 0, 1, 2, ...,N − 1.

We let K0 = K and Kl = ∪|J|=lSJ (K0) for l ≥ 1. Hence Kl+1 ⊆ Kl and

T (q, D) = T = ∪N−1
j=0 Sj(T ) = ∩∞l=1Kl = lim

l→∞
Kl.

If we choose K0 to be any non-empty compact set, we still have T (q, D) = T =

liml→∞Kl [1]. But we don’t necessarily have T ⊆ Kl or ∂Kl ⊆ ∂T (see Section 3). If T

has an empty interior, then we can take K0 = {0} ⊆ ∂T and Kl ⊆ ∂T = T .

We denote the boundary of T by ∂T . We set ∂0T = ∂K0 = {0, dN−1/(q − 1)} ⊆ ∂T

(by (1.1)) and ∂lT = ∂Kl ⊆ ∂T for l ≥ 1. Letting Il = K \Kl, we see that Il is increasing

in l and K \T = ∪∞l=1Il = liml→∞ Il. We note that Il consists of a finite number of open

intervals. Therefore, ∂lT = ∂0T ∪ ∂Il is increasing in l.

We call an increasing sequence of sets {Ul}∞l=1 (i.e. Ul ⊆ Ul+1 for all l) finitely

increasing if Um = Um+1 = Um+2 = · · · for some m ∈ N. Therefore, using Theorem 2.2,

we have the following characterization of strict product-form digit sets.
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Theorem 2.3 Let T ⊆ R be a self-affine region. Then

(i) ∂T = liml→∞ ∂lT holds true. Here, the convergence is with respect to the Hausdorff

metric.

(ii) A self-affine region T is a finite union of intervals if and only if ∂lT is finitely

increasing (or Kl is finitely decreasing). Moreover, in such a case, we can find T explicitly

and if T is a tile, then D is a strict product-form digit set.

Proof. (i) We first note that the limit liml→∞ ∂lT exists since T = liml→∞Kl. It is

easy to see that ∂Kl ⊆ ∂T . Conversely, every point x of ∂T is a limit of a sequence of

points in ∂Kl since T = T o and T o is non-empty and T = liml→∞Kl. Since (Cn, dH)

is a complete metric space, liml→∞ ∂lT is a compact set. Thus x ∈ liml→∞ ∂lT so that

∂T ⊆ ∂Kl . Therefore, ∂T = liml→∞ ∂lT .

(ii) The proof follows from the observations before the statement of the theorem. 2

Although the above theorem is very simple, it is quite useful. In practice, Theorem

2.3 tells us how to get as many points of ∂T as we like. Not only that, but it also

characterizes the strict product-form digits. In the first example below, the tile T is an

infinite union of intervals as mentioned above. However, the self-affine region T in the

second example, which contains the tile of the first example, is a union of two intervals.

Example 1. Let q = 3, D = {0, 1, 5}. Here S0(x) = x/3, S1(x) = (x + 1)/3,

S2(x) = (x+ 5)/3. Then K = K0 = [0, 5/2],

K1 = S0(K) ∪ S1(K) ∪ S2(K)

= [0, 5/6]∪ [1/3, 7/6]∪ [5/3, 15/6]

= [0, 7/6]∪ [5/3, 5/2]

and

K2 = S0(K1) ∪ S1(K1) ∪ S2(K1)

= [0, 7/18]∪ [5/9, 5/6]∪ [1/3, 13/18]∪ [8/9, 7/6]

∪[5/3, 37/18]∪ [20/9, 15/6]

= [0, 5/6]∪ [8/9, 7/6]∪ [5/3, 37/18]∪ [20/9, 15/6].

Hence ∂1T = {0, 7/6, 5/3, 5/2}, ∂2T = {0, 5/6, 8/9, 7/6, 5/3, 37/18, 20/9, 5/2}.
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Example 2. Let q = 3, D = {0, 1, 5, 6}. Let S0(x) = x/3, S1(x) = (x + 1)/3,

S2(x) = (x+ 5)/3, S3(x) = (x+ 6)/3. Then K = K0 = [0, 3]

K1 = S0(K) ∪ S1(K) ∪ S2(K) ∪ S3(K)

= [0, 1] ∪ [1/3, 4/3]∪ [5/3, 8/3]∪ [2, 3]

= [0, 4/3]∪ [5/3, 3]

and

K2 = S0(K1) ∪ S1(K1) ∪ S2(K1) ∪ S3(K1)

= [0, 4/9]∪ [5/9, 1]∪ [1/3, 7/9]∪ [8/9, 4/3]

∪[5/3, 19/9]∪ [20/9, 8/3]∪ [2, 2 + 4/3] ∪ [2 + 5/9, 3].

Hence T (3, D) = K1 = K2 = [0, 4/3]∪ [5/3, 3] and ∂T = ∂1T = ∂2T = {0, 4/3, 5/3, 3}.
For an integral self-affine tile T , it is known that the Lebesgue measure of T is an

integer [6]. The second example is given [3] to illustrate that the Lebesgue measure of

a self-affine region T does not have to be an integer. But it is known to be a rational

number [3]. We included Example 2.2 to illustrate that our method works for self-affine

regions which are not tiles. For the next two examples, we consider 4-digit tiles. In the

third example, we apply Theorem 2.3 to a disconnected tile to show that it is a finite

union of intervals (hence its digit set is in strict-product form). In the fourth example,

we obtain boundary points of a tile which is known to be an infinite union of pairwise

disjoint intervals; but it is not of product form [3], [6].

Example 3. Let q = 4, D = {0, 1, 8, 9}. We set S0(x) = x/4, S1(x) = (x + 1)/4,

S2(x) = (x+ 8)/4, S3(x) = (x+ 9)/4 and K0 = K = [0, 3]. By computation, we get

K1 = S0(K) ∪ S1(K) ∪ S2(K) ∪ S3(K)

= [0, 1] ∪ [2, 3]

= S0(K1) ∪ S1(K1) ∪ S2(K1) ∪ S3(K1)

= K2.
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Hence [0, 1] ∪ [2, 3] = T (4, D) = K1 = K2 = ... and {0, 1, 2, 3}= ∂T = ∂1T = ∂2T = ...,

i.e., ∂lT is finitely increasing. Therefore, D is a strict product-form digit set by Theorem

2.3.

Example 4. Let q = 4, D = {0, 1, 8, 25}. Here S0(x) = x/4, S1(x) = (x + 1)/4,

S2(x) = (x + 8)/4, S3(x) = (x+ 25)/4 and K0 = K = [0, 25/3]. A tedious computation

gives

K1 = S0(K) ∪ S1(K) ∪ S2(K) ∪ S3(K)

= [0, 49/12]∪ [25/4, 25/3].

Hence ∂1T = ∂K1 = {0, 49/12, 25/4, 25/3} ⊆ ∂T .

K2 = S0(K1) ∪ S1(K1) ∪ S2(K1) ∪ S3(K1)

= [0, 61/48]∪ [25/16, 2+ 49/48]∪ [2 + 25/16, 2 + 25/12]

∪[6 + 1/4, 6 + 61/48] ∪ [6 + 29/16, 6 + 7/3].

Hence ∂1T ⊆ ∂2T = ∂K2 = {0, 61/48, 25/16, 2+ 49/48, 2+ 25/16, 2+ 25/12, 6 + 1/4, 6 +

61/48, 6 + 29/16, 6 + 7/3} ⊆ ∂T and ∂T = liml→∞ ∂lT .

3. Discussion

We first note that the method of the previous section also applies to self-affine sets T

with D = {0, d1, · · · , dN−1} ⊆ R. As the title of this paper suggests, the identification of

the boundary points of T in higher dimensions is not the subject of this paper. However,

we like to talk about complication occurring in higher dimensions. For n ≥ 2, we do

not necessarily have ∂Kl ⊆ ∂T . For example, if A ∈ M2(Z) is a similarity, then ∂K is a

polygon (polytope for n ≥ 2) when Am is a multiple of the identity for some m; otherwise,

in the generic case, ∂K is a C1 curve [8].

For a concrete example, we let A =
[

1 −1

1 1

]
and D = {(0, 0), (1, 0)}. Then T is the

well-known twin dragon tile. For this tile, it is known that ∂T is a Jordan curve and has

Hausdorff dimension ≈ 1.523627 [8]. But ∂K is an octagon. Thus, the method of the

previous section does not apply in higher dimensions. A simpler example is A =
[

2 0

0 2

]
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and D = {(0, 0), (1, 0), (0, 1), (1, 1)}. Then T = [0, 1]× [0, 1], the unit square. The convex

hull of T is T and a corner point of the convex hull is (1, 1) which is a boundary point.

But A−1(1, 1) = (1/2, 1/2), which is an image of (1, 1) under a map of the IFS defining T ,

is not a boundary point. A one-dimensional example is A = [q] and D = {0, 1, ..., q− 1}.
In fact, it is known that the pieces of the boundary of a tile satisfy a vector iterated

function system [8]. Now, let drH be the metric defined on Crn, the space of all r-tuples of

non-empty compact subsets of Rn, given by

drH(D,D′) := max
1≤i≤r

{dH(Di, D′i)}.

Then one can show that (Crn, drH) is also a complete space. Let F = {α ∈ J \ {0} :

T ∩ (T + α) 6= ∅}. Then it is easy to see that F is a finite set. For α ∈ F , we let

Tα = T ∩ (T + α). Therefore, we have ∂T = ∪α∈FTα. For α, β ∈ F , we consider the sets

C(α, β) = {(d, d′) ∈ D×D : β = Aα+ d′ − d} 6= ∅. Using the identity AT = T +D, we

see that

ATα = (T +D) ∩ (T +D +Aα) =
⋃
β

⋃
(d,d′)∈C(α,β)

A−1(Tβ + d).

Thus the pieces Tα of ∂T satisfies a vector iterated function system. Suppose that we

have the nonempty compact sets Q0
α ⊂ Tα for all α ∈ F and Qlα is defined iteratively via

Qlα =
⋃
β

⋃
(d,d′)∈C(α,β)

A−1(Ql−1
β + d), l ≥ 1.

Then we know that Qlα ⊆ Tα increasingly converges to Tα in the Hausdorff metric. For

applications, it is not clear how to get J in the definition of F . Then it is not clear how

to get the set F and how to get a point of Q0
α in ∂T to start the iteration. If we can do

that, all Qlα ⊂ ∂T . There are no answers to these questions in the literature nor do we

yet have answers to these questions.
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